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In confined microfluidic spaces such as microchannels, electroosmosis is a convenient Coulomb-force
mechanism used to electrically actuate charged particles and ions presented in the fluid and pump
the electrolytic fluid itself through drag forces. The shape and position of electrode pairs, whose
induced charges are in contact with the fluid, determine the electric field and hence the resulting
fluid-dynamic velocity distribution. In this paper, we address the inverse design of the electrode-pair
patterns in such actuation mechanisms. Our approach is to use topology optimization to inversely
determine the patterns of an electrode pair. The optimization procedure requires a mathematical
description of the desired fluid behaviour, and then drives the patterns of the electrode pairs to achieve
the goal performance. We demonstrate the behaviour of the procedure, which couples the
Navier-Stokes equations with charge transportation, to implement an efficient electroosmotic
micromixer for laminar microflow. We show that the procedure allows to investigate such microflows
under the influence of selected parameter variations, thereby exploring the design space towards opti-
mal device performance. This developed method is novel on the topology optimization of a surface
structure to control bulk performance and its implementation over a lower-dimensional surface of an
otherwise volumetric domain, where the material interpolation is implemented between Dirichlet
and Newmann types of boundary conditions.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The lab-on-a-chip approach has brought about a paradigm shift
in orchestrating fluid laboratory operations, providing high yield in
a confined space combined with high flexibility for experiments in
biology and chemistry [1–3]. In microfluidics, it is often necessary
to move fluids from one part of the device to another, to control
fluid flow, enhance mixing, and separate fluid constituents, to
name the most important unit operations. Electroosmosis, particu-
larly suitable for microfluidic devices, provides an attractive
approach for manipulating liquids in microdevices, since the
microdevices operating on this principle do not require any mov-
ing parts. In this context, electroosmosis has been investigated in
several reports as a primary mover, typically focusing on electroos-
motic micromixers [4,5] and electroosmotic pumping [6–8].

Electroosmosis is caused by the accumulation of net electric
charges on a solid surface that is in contact with an electrolyte
solution [9,10]. As a result, charges concentrate in the thin liquid
layer next to the solid surface. This thin layer is known as the
Debye (or double) layer, and its thickness typically has a magni-
tude of 10 nm [9]. Away from the solid surface, the electrolyte is
neutral. The charge separation next to the solid wall causes either
a positive or negative potential difference (i.e. Zeta potential)
across the Debye layer. The magnitude of the Zeta potential
depends on the characteristics of both the solid and liquid. In the
presence of an external electric field, the charges trapped in
the double layer are attracted to the opposite electrode and drag
the liquid along in this direction. Therefore, the electric field cre-
ates a body force that induces fluid motion, through its action on
the charges, as sketched in Fig. 1. Usually, the Debye layer is much
smaller than the characteristic size of a typical microfluidic
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Fig. 1. Sketch for electroosmosis in a microchannel, where E is the electric field, kD is the thickness of the Debye layer, and u is the velocity.
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channel, so that the fluid dynamics in the thin Debye layer can be
approximated to be a slip wall with slipping velocity proportional
to the tangential component of the external electric field. As a
result, the electrode patterns on the walls of the microchannel play
a dominant role on the microfluidic performance of electroosmotic
actuation.

Several reports consider the mathematical modelling of
electroosmosis-like electrodynamic microflows by analytical,
numerical and experimental approaches [4,11–16]. The most rele-
vant studies consider Joule heating effects [17,18]; the implemen-
tation of shape optimization-based geometrical design of
electroosmotic microchannel [19,20]; the optimization of the zeta
potential distribution for minimal dispersion in an electroosmotic
microchannel [21]; and topology optimization of a dielectric solid
for induced-charge electroosmotic flow [22]. In these reports, elec-
trodes play the dominant role in generating the microfluidic
motion due to their ability to induce an external electric field with
attracting charges. Therefore, reasonable patterns of a electrode
pair are a key for achieving the desired performance of a electroki-
netic microflow. Then, asymmetric polarization and nonplanar pat-
terns have been adopted for electroosmotic actuation [23,24]; a
staggered array of electrodes has been utilized to produce elec-
troosmotic vortices for micromixing [25]; an asymmetric electrode
pair has been used in an electroosmotic microconcentrator [26]; an
electric potential effect imposed on the wall electrodes has been
discussed for binary fluids [27]; facing rows of electrodes have
been used for remediation of polluted soils by electrokinetic soil
flushing [28], to name the most recent reports. Although several
relevant results provided insight into the control of electroosmosis,
limits on determining the exact electrode patterns still exist in
view of design methods lacking generality, flexibility and effi-
ciency, mainly because of the remaining dependence on a design-
ers’ intuition. Therefore, this paper focuses on a flexible topology
optimization method for the electrode patterns of electroosmotic
microfluidics to overcome these limits.

Topology optimization is currently regarded to be the most
robust methodology for the inverse determination of material dis-
tributions in structures that meet given structural performance cri-
teria [29]. The optimal topology of structures was investigated
already as early as 1904 for trusses by Michell, and this resulted
in structure types carrying his name [30]. The method has been
developed for elasticity by Bendsøe and Kikuchi [31], and then
was extended to a variety of application areas, e.g. acoustics, elec-
tromagnetics, fluid dynamics and thermodynamics [32–59], to list
the most prominent. As a layout optimization method, topology
optimization can improve the shape and topology of structures
simultaneously, whereas shape optimization determines the
performance of a device by adjusting the positions of structural
boundaries only, therefore retaining the original topology of the
structure. Therefore, topology optimization is more general. Cur-
rently, the density method [50,51], and level set method [60–63],
have been widely used to describe the material distribution in
topology optimization. The density method was first used to design
stiffness and compliance mechanisms [31–33], but has been
extended to multiple physical problems, such as acoustic, electro-
magnetic, fluidic, optical and thermal problems
[29,34,48,49,52,53,57]. For fluidic problems, it was first considered
for Stokes flows [57,64,65] and Darcy-Stokes flows [56,66]; it was
later extended to Navier-Stokes flows [55,67–70], non-Newtonian
flows [71], unsteady flows [54,59,72], flows with body forces
[73,74], and two-phase flow with immiscible interfaces [75]; it
has also been applied to design fluidic devices [76–81]. The level
set method, pioneered by Osher and Sethian [82], accomplishes a
change of topology by evolving and merging the zero contour of
the level set function, i.e., embedding the boundary in a higher
dimension. This method provides a general approach to track the
implicit interface between two phases, and it has been applied to
fluidic shape and topology optimization [55,70,83,84]. One of the
major advantages of the level set method lies in expressing contin-
uously moving interfaces, and abstracting the material domains
that correspond to the structural topology. Compared to the level
set method, the density method has the merits of rapid and robust
convergency, weak dependence on the initial distribution of the
design variable, and the ability to deal with multiple constraints.
It is therefore our method of choice for the current paper.

The conventional approach for topology optimization in fluid
dynamics considers the bulk topology of the flow region, instead
of considering a boundary approach that would reside in a lower
dimension of the computational domain [85]. For electroosmosis,
the flow channel topology will not be modified, but rather the
electrode patterns will be inversely designed. In the paper we
described the inverse design of electrode patterns by implement-
ing an interpolation of the electric insulation and electric poten-
tial on specified walls of microchannels; our method can
therefore also be regarded to be the first attempt to inversely
determine a structural topology at lower dimension than the
computational domain.

The capability of our optimization method for electrode pat-
terns is demonstrated by determining the electrodes for elec-
troosmotic micromixers, because electroosmosis is particularly
effective in this research area. Microflow is usually associated
with a highly ordered laminar flow, and the lack of turbulence
makes diffusion to be the primary mechanism for mixing. While
diffusive mixing of small molecules can occur in a matter of
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seconds over lengths of tens of micrometers, mixing of larger
molecules require equilibration times from minutes to hours over
comparable lengths. Such delays are impractically long for many
chemical analyses. These problems have led to an intensification
of research efforts towards more efficient micromixers in
microfluidics [86]. Most micromixers are either passive based
on geometrical stirring, or active with requiring moving parts or
external forces (e.g. pressure or electric field) [86]. In a passive
micromixer, the ways of increasing the mixing are equivalent to
shredding two or several fluids into very thin alternating layers,
which decreases the average diffusion length for the molecules
between two different fluids. However, these devices usually
require long mixing channels, because different fluids often run
in parallel. Another way of improving mixing efficiency is to
use active micromixers with moving parts that stir the fluids.
At the microscale, moving parts in an active mixer are very frag-
ile. One efficient alternative is to use electroosmosis to achieve a
mixing effect that is perpendicular to the main direction of the
microflow [4,87]. Therefore, we consider the inverse design of
electrode patterns for electroosmotic micromixers, to demon-
strate the capability of the presented method.

Our computed results show that complete micromixing of
microflows can be achieved over relatively short lengths by elec-
trodes with customized design patterns. In the following, an elec-
troosmotic micromixer is modeled using the topology optimization
method in Section 2; the variational problem for the electrode pat-
terns is analyzed and solved in Section 2; the solution procedure
for the variational problems is introduced in Section 3; the com-
puted results are discussed in Section 4; the paper is concluded
in Section 5. All mathematical descriptions in the paper are pro-
vided in the Cartesian coordinate system.
2. Modelling

To demonstrate the capability of our method, a direct-current
(DC) electroosmotic micromixer with electrodes on its walls is
modelled. In this electroosmotic micromixer, a fluid flux is
imposed on the inlet with known concentration distribution, the
anode and cathode actuating the electroosmosis are localized on
the ceiling and floor surfaces to produce the secondary flow per-
pendicular to the main direction of the microflow and achieve a
mixing effect (Fig. 2a). In the DC case, the asymmetry between
the anode on the ceiling and cathode on the floor can result in
the existence of the tangential component of the electric field in
the electrical double layer (EDL). And this tangential electric field
Fig. 2. (a) Sketch of the computational domain X for an electroosmotic micromixer, w
microchannel, Q0 is the fluid flux imposed on the inlet of the microchannel, V0 is the e
electrode patterns are determined on Cde , and S is one cross-section of the electroosmo
further imposes a body force on the fluid in the EDL and induces
the fluid velocity (Fig. 2b).

In electroosmosis, the electric potential can be decomposed
into an external electric potential due to the imposition of the
externally applied electrode potential and an electric potential
due to surface wall charge [88]. Therefore, the body force
imposed on the fluid is the electric force of these two potentials.
Under the continuum hypothesis, the Navier-Stokes equations,
including an electrical driving body force term to represent the
interaction between the excess ions of the EDL and the external
electric field induced by the electrode potential, is used to
described the electroosmotic flow, where the wall boundaries
are of no-slip type and an assumption is made that the Joule
heating effect is negligible [89]:

qu � ruþr � �g ruþruT� �þ pI
� � ¼ �r�0

k2D
wrV ; in X

�r � u ¼ 0; in X

u ¼ 0; on Cw

ð1Þ

where u; p are the fluid velocity and pressure, respectively; I is the
unit tensor; q and g are the density and dynamic viscosity of the
electrolyte solution, respectively; kD is the Debye length, and it is
the characteristic thickness of the EDL for a given solid-electrolyte
liquid interface; �r and �0 are the relative permittivity of the elec-
trolyte solution and permittivity of free space, respectively; w is
the electric potential due to surface wall charge; V is the external
electric potential imposed by the electrodes; X is the computational
domain sketched in Fig. 2, with the inlet boundary Ci, wall bound-
ary Cw ¼ Cwa [ Cde and outlet boundary Co satisfying
Ci [ Co [ Cw ¼ @X.

Within the EDL, the electrical potential drops from the zeta
potential to zero [9,89]. The ion distribution in the EDL is deter-
mined primarily by the zeta potential, and the corresponding
potential distribution due to surface wall charge can be obtained
by solving the equation

r2w ¼ 1
k2D

w; in X

w ¼ �f; on Cw

n � rw ¼ 0; on Ci [ Co

ð2Þ

where n is the outward unit normal on @X. For a symmetrical and
univalent electrolyte at room temperature, the Debye length of
the EDL is on the magnitude 10 nm for a concentration of 10�3 M.
In micro scale, it is very small compared to the characteristic length
here Ci is the inlet, Co is the outlet, Cw composed of Cwa and Cde is the wall of
lectrical potential imposed on the anode, the cathode is connected to ground, the
tic micromixer; (b) demonstration for the secondary flow in the cross-section S.
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of the microchannel [9]. This results in the high-resolution mesh for
the EDL discretisation and heavy computation cost in the numerical
computation of electroosmosis; especially, these problems are
definitive in the three-dimensional numerical computation. To
avoid such problems caused by the multi-scale physics of electroos-
mosis, the Helmholtz-Smoluchowski relation has been widely used
to remove the body force term of the Navier-Stokes equations by
approximating the EDLs to be slip walls, with the fluid velocity pro-
portional to the tangential component of the electric field intensity
[11]. Therefore, based on such a thin double layer approximation,
Eqs. (1) and (2) can be replaced to be

qu � ruþr � �g ruþruT� �þ pI
� � ¼ 0; in X

�r � u ¼ 0; in X

u ¼ �leo rV � n � rVð Þn½ �; on Cw

ð3Þ

where leo ¼ ��r�0f0=g is the electroosmotic mobility, with f0 repre-
senting the Zeta potential. This Zeta potential can be determined by
a full model, i.e. the three capacitor model that has been provided in
the Refs. [90–92].

For the computational domain of the electroosmotic micro-
flow, the inlet and outlet boundaries are used to truncate the
microchannel from its system or network. Because of the thin
double layer approximation with the Helmholtz-Smoluchowski
relation which approximates the EDLs to be slip walls, slip veloc-
ity can exist at the intersection between the inlet and walls of the
computational domain. This comes in conflict with the typically-
used parabolic velocity distribution with no-slip velocity at the
sides of the inlet. A defective boundary condition has non-
essence to enforce the velocity distribution on the corresponding
boundary [93,94]. Therefore, the defective boundary condition is
imposed on the inlet of the electroosmotic microflow with a spec-
ified flux, to avoid the conflict:Z
Ci

�u � ndC ¼ Q0; on Ci; ð4Þ

where Q0 ¼ U
R
Ci
1ds is the know flux at the inlet Ci, and U is the

average velocity. At the outlet, an open boundary condition can
be imposed as

�g ruþruT� �þ pI
� � � n ¼ 0; on Co ð5Þ

For electroosmotic micromixers, the two factors that influence
the mixing performance are diffusion and chaotic advection. The
mixing of two species diluted in the electroosmotic microflows
can be described by the convection-diffusion equation

u � rc �r � Drcð Þ ¼ 0; in X; ð6Þ
where c is the concentration, and D is the diffusion constant. The
imposed boundary conditions for the convection-diffusion equation
are the known concentration distribution at the inlet

c ¼ ci xð Þ; on Ci; ð7Þ
and the diffusion insulation at the wall and outlet

� Drcð Þ � n ¼ 0; on Cw [ Co; ð8Þ
where ci is the known concentration distribution at the inlet of the
electroosmotic micromixer.

The distribution of the external electrical potential in the elec-
troosmotic micromixer can be derived by the Laplace equation

�r � rrVð Þ ¼ 0; in X; ð9Þ
where r is the electric conductivity. As sketched in Fig. 2, the wall
boundary Cw is split into two parts, Cwa and Cde. For the external
electrical potential, Cwa is an electric insulation boundary with
� rrVð Þ � n ¼ 0; the design domain for the electrodes Cde is the
union of the electric insulation and electric potential boundary
parts. To distinguish those two types of boundary, a variable
denoted physical density is utilized; it takes on values in the range
0;1½ �, with 0 and 1 respectively representing electric potential and
electric insulation boundary types. The boundary condition on Cde

can then be expressed as an interpolation of electric potential and
electric insulation

� rrVð Þ � n ¼ a V � V0ð Þ; on Cde; ð10Þ
where V0 is the specified electric potential on the electrodes, and a
is the penalization expressed to be [57]

a ¼ amax

q 1� cfp
� �
qþ cfp

; ð11Þ

with cfp;amax and q respectively representing the physical density
variable, the penalization parameter, and the parameter used to
tune the convexity of the penalization. The value of amax should
be chosen to be large enough to ensure the domination of the term
V � V0ð Þ in Eq. (10), when the physical density takes on the value 0.
Meanwhile, Eq. (10) degenerates into the electric insulation bound-
ary condition, when the physical density takes on the value 1. Based
on numerical tests, amax and q are chosen to be 1� 105 and 1� 10�3,
respectively. The electric insulation boundary condition is imposed
on the inlet, outlet, and the left walls of the electroosmotic
microflows

� rrVð Þ � n ¼ 0; on Ci [ Co [ Cwa: ð12Þ
The physical density variable in Eq. (11) is computed from a

design variable defined on Cde, using the procedure introduced in
[95]: the design variable is modified using a Helmholtz filter to
ensure a minimum scale of the implicitly expressed pattern

� r2rs � rscf þ cf ¼ c; in Cde;

� r2rscf � ns ¼ 0; on @Cde;
ð13Þ

where c is the design variable, and cf is the filtered design variable;
rs is the gradient operator defined for the local coordinate system
on Cde; r is the filter radius, and is used to control the feature size of
the electrode patterns; ns is the outward unit normal on @Cde. After
filtering, the filtered design variable is projected using the threshold
method to remove intermediary values between 0 and 1 and to
derive the physical density

cfp ¼
tanh bnð Þ þ tanh b cf � n

� �� �
tanh bnð Þ þ tanh b 1� nð Þð Þ ; ð14Þ

where b and n are the projection parameters. For the choice of the
projection parameters, one can refer to [96].

The following task is to solve for the optimal 0� 1 distribution
of the physical density, which implicitly defines the electrode pat-
terns, using a variational problem constructed by the topology
optimization approach. For a micromixer used to mix two fluids
with different solutes, the desired effect is achieved when a spa-
tially averaged concentration value is found at the outlet of the
device. The mixing performance can be evaluated mathematically
through the normalized least square variance between the
obtained concentration and the anticipated concentration at the
outlet, and in which the normalizing factor is the least square dif-
ference between the concentration distribution at the inlet and
the anticipated concentration at the outlet [80,98,99]. The design
target is to find reasonable electrode patterns that can achieve
the highest degree of mixing corresponding to the lowest mixing
evaluation. Therefore, a variational problem is constructed as
follows:
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whereW0 is the least square variance between the obtained concen-
tration and the anticipated concentration at the inlet, and ds is the
differential on @X.

3. Analyzing and solving

The variational problem is solved using an iterative approach,
for which the design variable is evolved towards optimality
according to gradient information extracted from the variational
problem in Eq. (15). The gradient information is determined via
adjoint analysis of the variational problem.

By the adjoint method for a partial differential equation con-
strained optimization problem [100], the variational problem is
analyzed, based on weak forms of the adjoint equations for the
convection-diffusion equation, Navier-Stokes equations, Laplace
equation, and Helmholtz filter (details are supplied by Appendix A):

1. Find ca 2 H Xð Þ and kca 2 H�1
2 Cið Þ satisfying:
Z
X
u � rĉaca þ Drca � rĉa dv

þ
XNe

i¼1

Z
Xi

ssupg u � rcað Þ u � rĉa � Dr2ĉa
� �

dv

þ
Z
Ci

kcaĉa þ cak̂ca dsþ 1
W0

Z
Co

2 c � �cð Þĉa ds

¼ 0; 8ĉa 2 H Xð Þ and 8k̂ca 2 H1
2 Cið Þ; ð16Þ
2. Find ua 2 H Xð Þð Þ3; pa 2 L2 Xð Þ; kfa 2 H�1
2 Cwð Þ

� �3
and kQa 2 R

satisfying:Z
X
q ûa �ruð Þ �uaþ u �rûað Þ �ua½ �þrua : g rûaþrûT

a

� ��
�p̂aI��par� ûaþ ûa �rccadv

þ
XNe

i¼1

Z
Xi

�sglsrpa �rp̂aþ @ssupg
@u

� ûa

� 	
u �rcað Þ u �rc�Dr2c

� �
þssupg ûa �rcað Þ u �rc�Dr2c

� �
þssupg u �rcað Þ ûa �rcð Þdvþ

Z
Ci

k̂Qaua �nþkQaûa �nds

þ
Z
Cw

kfa � ûaþ k̂fa� p̂an
� �

�uads¼0;

8ûa 2 H Xð Þð Þ3; 8p̂a 2L2 Xð Þ; 8k̂fa 2 H1
2 Cwð Þ

� �3
and 8k̂Qa 2R;

ð17Þ
3. Find Va 2 H Xð Þ satisfying:Z

X
rrVa �rbV advþ

Z
Cde

aVa
bV ads

þ
Z
Cw

leo rbV a� n �rbV a

� �
n

h i
�kfads¼0; 8bV a 2H Xð Þ; ð18Þ

4. Find cfa 2 H Cdeð Þ satisfying:Z
Cde

r2rscfa � rsĉfa þ cfaĉfa þ V � V0ð ÞVa
@a
@cfp

@cfp
@cf

ĉfa ds

¼ 0; 8ĉfa 2 H Cdeð Þ; ð19Þ



Fig. 3. Flowchart for the iterative procedure used to solve the variational problem
in Eq. (15).
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where kf and kQ are the Lagrangian multipliers used to impose
the velocity boundary condition and defective boundary condi-
tion on Cw and Ci for the Navier-Stokes equations; kc is the
Lagrangian multiplier used to impose the known concentration
boundary condition on Ci for the convection-diffusion equa-
tion; ca;ua; pa;Va and cfa are the adjoint variables of the corre-
sponding state variables; kfa and kQa are the adjoints of the
Lagrangian multiplier kf and kQ ; kca is the adjoint of the

Lagrangian multiplier kc; ĉa; ûa; p̂a; bVa; ĉfa; k̂fa and k̂ca are the test
functions of the corresponding adjoint variables; H Xð Þ and
L2 Xð Þ are the first-order Hilbert space and the second-order
Lebesgue integrable functional space defined on X;H�1=2 Cwð Þ
is the dual space of the trace space H1=2 Cwð Þ;H Cdeð Þ is the
first-order Hilbert space defined on Cde;R is the real number
field; to solve the partial differential equations corresponding
to the constraints of Eq.(15), a linear element-based finite ele-
ment method is utilized, with the Navier-Stokes equations and
convection-diffusion equation stabilized using the generalized
least squares (GLS) and streamline upwind Petrov-Galerkin
(SUPG) technologies [101]; Ne represents the number of finite
elements used to discretize X; sgls and ssupg are the stabilization
parameters chosen as in [101]:

sgls ¼ h2
i

12g
;

ssupg ¼ 4

h2
i D

þ 2 uj j
hi

 !�1

;

ð20Þ

with hi representing the size of the i-th element Xi. The first-order
adjoint derivative of the variational problem in Eq. (15)is

dŴ ¼
Z
Cde

�cfadcds; 8dc 2 L2 Cdeð Þ; ð21Þ

where Ŵ is the augmented Lagrangian corresponding to the varia-

tional problem in Eq. (15); dŴ and dc are the first-order variational
of the augmented Lagrangian and design variable; L2 Cdeð Þ is the
second-order Lebesgue integrable functional space defined on Cde.
In Eq. (21), cfa is obtained by sequentially solving the Eqs. (16)–
(19). Subsequently, the adjoint derivative is used to evolve the
design variable.

After adjoint analysis, an iterative procedure that covers the
following steps can be used to solve the variational problem
(Fig. 3):

(a) The PDE constraints are solved with the current design
variable;

(b) The adjoint equations are solved based on the solution of the
PDE constraints;

(c) The adjoint derivative of the optimization objective function
is computed;

(d) The design variable is updated using the method of moving
asymptotes (MMA) [102];

(e) The convergence criterion is checked. If not satisfied, the
procedure will return to (a), else the procedure is
terminated.

For convergence, either the change of the objective function val-

ues in five consecutive iterations satisfies 1=5
P4

i¼0

Wk�i �Wk�i�1j j= Wkj j � 1� 10�3 in the k-th iteration step, or the
maximal iteration number 240 has been reached, where Wk is
the objective function value in the k-th iteration.

In this iterative procedure, the threshold parameter n in Eq. (14)
is set to 0:5; the initial value of the projection parameter b is set to
1, and is doubled after every 40 iterations, until a preset maximal
value of 32 is reached; the finite element solution of all partial dif-
ferential equations and corresponding adjoint equations is imple-
mented using the finite element software COMSOL Multiphysics
(http://www.comsol.com). Discretization is performed using linear
cubic elements for all spatially distributed variables. More details
on the relevant programming parameters are found in [59,68].
4. Results and discussion

In this section we report our exploration of the new capability,
by considering a fluidic microchannel of square cross-section, and
with a cathode on its floor and an anode attached to the ceiling. An
electrolyte with density q ¼ 1� 103 kg/m3, dynamic viscosity
g ¼ 1� 10�3 Pa�s, dielectric constant �r ¼ 80:2, conductivity

r ¼ 0:12 X �mð Þ�1, and Zeta potential f0 ¼ �0:1 V flows in the
channel. The Zeta potential reflects the choice of channel material.

The characteristic size of the cross-section of the computational
domain sketched in Fig. 2 is set to be l, so that the length of the
microchannel covered by the electrodes is defined by nl � l with nl

representing the fold number. The length of the inlet and outlet
of the design domain is also equal to l, so as to remove the influ-
ence of the entry conditions at the electrodes. The computational
domain is discretized by 20� 20� 20 ¼ 8000 brick elements per

l3 sector. he ¼ l=20 denotes the size of a finite element. The design
domain is set to be the floor and ceiling surfaces of the channel
demonstrated in Fig. 2.

For micromixing, diffusion alone is inefficient. Moving fluids
can greatly enhance mixing through chaotic advection in which
the region containing the impurities is strongly deformed; the
interface between the impurities grows exponentially, and diffu-
sion becomes efficient. Therefore, the two physical processes that
implement mixing in a micromixer are diffusion and chaotic
advection [86,97]. The relative importance of these two factors
can be measured by the dimensionless Péclet number, calculated
from Pe ¼ Ul=D with U representing the averaged velocity at the
inlet. When the Péclet number satisfies Pe � 1, the main mixing
factor is the fluidic convection. Otherwise, the main factor is the
diffusion. The convection intensity of the flow is characterised by
the Reynolds number, calculated from Re ¼ qUl=g. When Re � 1,

http://www.comsol.com


Fig. 5. Convergence history of the optimization objective function values, which are
normalized by a measure computed from the initial distribution of the design
variable.
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convection dominates the flow; otherwise, viscosity dominates it.
In microfluidics, the typical magnitudes of a sample volume, char-
acteristic size of microchannels are 1 lL and 100 lm, respectively;
the typical sample is aqueous solution with density, dynamic vis-
cosity and diffusion constant in 103 kg=m3;10�3 Pa � s and
10�8 m2=s, respectively. Then, the typical values of Péclet number
and Reynolds number are 103 and 10, for the microflows in
microfluidic chips. And these values have been widely used in
the researches reviewed in [86].

After selecting the parameters as listed in Table 1, the varia-
tional problem in Eq. (15) is solved iteratively. Snapshots for the
evolution of the physical density variable and associated conver-
gence history of the optimization objective function are shown in
Fig. 4 and 5. From these, the robustness of the topology optimiza-
tion method is confirmed by inspection. In the evolution history,
the symmetry of the physical density is broken; such symmetry-
break can avoid the counteract of the electroosmotic action in
the cross-section of the micromixer and achieve the mixing-
Table 1
Parameters used for solving the variational problem in Eq. (15). Here he is the size of
the finite elements used to discretize the computational domain.

Parameter V0 nl Pe Re r l

Value 5 V 6 1� 103 10 2he 400 lm

(a) Initial (b) Iterati

(d) Iteration 40 (e) Iteratio

(g) Iteration 160 (h) Iteratio

Fig. 4. Snapshots for the evolut
performance evolution corresponding to the convergent history
of the objective function. The final electrode patterns are shown
in Fig. 6a, including the distribution of the streamlines in the
micromixer. The electrode patterns generate a tangential velocity
at the walls of the micromixer (Fig. 6b); this can effectively swirl
the streamlines (Fig. 6a) and enhance the chaotic advection of
the microflow by inducing secondary flows in the cross-sections
(Fig. 6c); the enhanced advection distorts the interface between
the two fluids, as shown in Fig. 6d. By inspecting the concentration
distribution at the outlet, we surmise that complete mixing is
achieved over a length of 2:4mm, or six folds of the channel width.
In Fig. 6, the derived electrode patterns stir the moving fluids,
on 5 (c) Iteration 20

n 80 (f) Iteration 120

n 200 (i) Iteration 240

ion of the physical density.



Fig. 6. (a) The derived electrode patterns and streamlines in the electroosmotic micromixer with electrical potential 5 V; (b) tangential velocity induced by the electrodes
with the derived patterns at the walls of the micromixer; (c) distribution of the projected velocity vectors in the cross-sections of the electroosmotic micromixer; (d)
concentration distribution in the cross-sections of the electroosmotic micromixer.
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greatly enhance mixing through chaotic advection and strongly
deform the interface between the impurities; equivalently, the dif-
fusion area grows exponentially, and this make the mixing perfor-
mance becomes efficient.

The chaotic advection in the electroosmotic microflow can be
confirmed from the swirled and distorted streamlines in Fig. 6.
For the steady flow, a streamline is the trajectory of a fluid-
infinitesimal. As the fluid-infinitesimal moves along the corre-
sponding distorted streamline, pressure and viscous force are
imposed on it. The imposed pressure and viscous force can be
equivalent to the composed action of a centrifugal, Coriolis, and
Euler force, for which the centrifugal and Coriolis forces are per-
pendicular to the velocity of the fluid-infinitesimal, and the Euler
force is parallel to the velocity of the fluid-infinitesimal (Fig. 7a).
The density of the composed centrifugal and Coriolis force can be
Fig. 7. (a) Sketch detailing the equivalent centrifugal force fx , Coriolis force fC , and Euler
Coriolis force density for the fluid-infinitesimals in different cross-sections; (c) Euler for
computed from qdu=dt � q du=dt � u= uj jð Þu= uj j, and the density of
the Euler force from q du=dt � u= uj jð Þu= uj j, where t is the time
and du=dt is equal to u � ru in the steady flow. The equivalent
force density is plotted in Fig. 7b and c for the fluid-
infinitesimals at different cross-sections. The chaotic distribution
of the equivalent force density provides a dynamic mechanism
for chaotic advection and swirled streamlines under the action of
the electrode patterns. The mixing performance achieved by the
electrodes is further confirmed by comparing the results to the
case with the electrodes left unbiased (Fig. 8), where the mixing
performance is improved more than 80-fold. After removing the
electrodes, diffusion dominates the mixing performance, and the
mixing efficiency decreases greatly because of the weak advection
in the microflow with low Reynolds number; definitive improve-
ment is achieved by chaotic advection with strongly swirled
force fE imposed on an infinitesimal volume of fluid; (b) composed centrifugal and
ce density for the fluid infinitesimals at different cross-sections.



Fig. 8. Concentration distribution in the cross-sections of the electroosmotic
micromixer, (a) with the inversely designed electrodes, and (b) with unbiased
electrodes. The degree of mixing is improved by more than 80-fold as compared to
the case with the electrodes left unbiased.

(a) V0 = 1V

(c) V0 = 3V

(e) V0 = 5V

Fig. 9. (a)–(e) The derived electrode patterns corresponding to different applied electrical
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streamlines, when the electrodes with the derived patterns is
localized on the walls.

Various parameters influence the outcome of the optimization
procedure. These include the electric potential, mixing length,
Péclet number and Reynolds numbers, feature size of the patterns,
and the geometry of the microchannel. And the effects of these
parameters are analysed as follows.
4.1. Effect of electric potential

The stronger the electrical potential, the higher the electroki-
netic force acting within the channel, so that we expect that
the optimized patterns of the electrodes will depend strongly
on the applied voltage, and that the effective mixing length will
increase as the voltage is lowered. In the numerical experiments,
the geometry, mesh, and fluid properties are as beore and shown
in Fig. 2. The minimum feature size is controlled by setting
r ¼ 2he. Evaluation of the mixing performance W versus different
applied voltages is plotted in Fig. 9f, from which it is concluded
that higher electrical potentials correspond to better mixing. This
(b) V0 = 2V

(d) V0 = 4V

(f) Plot of mixing evaluation

potentials; (f) plot of themixing evaluations corresponding to the patterns in (a)–(e).



Table 2
Mixing evaluation W calculated for every pair of electrode patterns in Fig. 9a–e, for different electric potentials.

V0 ¼ 1 V V0 ¼ 2 V V0 ¼ 3 V V0 ¼ 4 V V0 ¼ 5 V

Fig. 9a 0:3518 0:1570 0:0824 0:0417 0:0121
Fig. 9b 0:3650 0:1435 0:0710 0:0420 0:0113
Fig. 9c 0:3821 0:1626 0:0623 0:0387 0:0097
Fig. 9d 0:3756 0:1711 0:0691 0:0280 0:0081
Fig. 9e 0:3597 0:1520 0:0728 0:0325 0:0072
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is because these generate stronger electric fields, which induce
more efficient disturbances and chaotic advection in the micro-
flow. When the electrical potential was set to 4 V and 5 V
(Fig. 9d and e), the achieved performance evaluation from perfect
mixing was W ¼ 0:0280 and W ¼ 0:0072, considerably less than
the threshold of W < 0:050 defined in [99]. We surmise that the
computed electrode patterns with the electrical potentials at
4 V and 5 V can achieve complete mixing over the length of the
microchannel.

To confirm the optimality of the electrode patterns shown in
Fig. 9a–e, the mixing evaluationW is calculated for each pair of pat-
terns for a range of applied voltages. The values in Table 2 confirms
(a) nl = 1 (b) nl = 2

(d) nl = 4

(f) nl = 6

Fig. 10. (a)–(f) The derived electrode patterns for different mixing lengths; (g
that each electrode pair maximises its effect at its designated volt-
age, which is indicated in bold.

4.2. Effect of mixing length

To achieve different mixing lengths, the simulation model is
varied by successively incrementing the fold number from 1 to 6,
with all other parameters retained as defined for the original
model. The computed electrode patterns are shown in Fig. 10a–f.
The mixing is evaluated versus channel length, and plotted in
Fig. 10g. Clearly and as expected, the degree of mixing improves
with an increase in the mixing length.
(c) nl = 3

(e) nl = 5

(g) Plot of mixing evaluation

) plot of the mixing evaluations corresponding to the patterns in (a)–(e).
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4.3. Effect of Péclet number and Reynolds number

We next investigate the effect of the Péclet number and Rey-
nolds number on inversely designed electrode patterns. The Péclet
number is used to measure the relative importance between con-
vection (transferring the sample through the channel) and diffu-
sion (interpenetration of the phases). For electrokinetic mixing,
lower Péclet numbers should therefore be better, and this is con-
firmed by the results shown in Fig. 11, where the Reynolds number
is held at Re ¼ 10 and lower Pélet numbers correspond to better
mixing performance.

The Reynolds number characterises the relative importance of
convection versus the viscosity of the fluid. However, pipe Rey-
nolds numbers below 2300 indicate laminar flow without turbu-
lence, so that the Reynolds number mainly characterises the
degree of convection. Because convection is an important parame-
ter for micromixing, the value of the Reynolds number will influ-
ence the electrode patterns, with complete mixing favouring low
Reynolds numbers, as confirmed by the results in Fig. 12, where
the Péclet number is held at Pe ¼ 1� 103. In the flows with low
Reynolds numbers, the mixing progress is influenced predomi-
(a) Pe = 1 × 103

(c) Pe = 2 × 103

(e) Pe = 3 × 103

Fig. 11. (a)–(e) The derived electrode patterns of electroosmotic micromixers with differ
in (a)–(e).
nantly by the diffusion, and the lateral convection of the flow can
be strengthened by electroosmotic effect induced by the derived
electrode patterns; the derived patterns corresponding to low
Reynolds number have relatively better performance than those
corresponding to relatively high Reynolds number, because higher
Reynolds number represents higher longitudinal fluidic velocity,
resulting in a short mixing time in the electroosmotic micromixer
with fixed microchannel length, even though the electroosmotic
micromixer has electrodes with reasonable patterns on its ceiling
and floor walls.

4.4. Effect of feature size

Manufacturability is an important factor for electrode patterns,
and depends mainly on the feature size of the derived electrode
patterns and their multiplicity, which necessitates the use of a
complex contacting layer. Both the feature size and multiplicity
of the patterns can be controlled by the radius of the Helmholtz fil-
ter in Eq. (15). The effect of the feature size is investigated by set-
ting the filter radius in a range of different values
r ¼ nhe;n 2 f1;2;3;4;5g, where he is the finite element size used
(b) Pe = 1.5 × 103

(d) Pe = 2.5 × 103

(f) Plot of mixing evaluation

ent Péclet numbers; (g) plot of the mixing evaluations corresponding to the patterns



(a) Re = 5 (b) Re = 10

(c) Re = 20 (d) Re = 40

(e) Re = 80 (f) Plot of mixing evaluation

Fig. 12. (a)–(e) The derived electrode patterns of electroosmotic micromixers with different Reynolds numbers; (f) plot of the mixing evaluations corresponding to the
patterns in (a)–(e).
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to discretize the computational domain. Corresponding to these
radii, the electrode patterns are computed as shown in Fig. 13a-e,
and the corresponding degrees of mixing are plotted in Fig. 13f,
where simplifications to the electrode patterns result in less effec-
tive mixing.

4.5. Effect of geometry

Curved microchannels are widely used to increase microfluidic
integrability, extending mixing length and enhancing mixing per-
formance by introducing the Dean effect [103]. Here we investigate
the effect of combining curved channels with electrode patterns of
electroosmotic micromixers. As sketched in Fig. 14, the central line
of the microchannel forms an arc corresponding to different central

angles, where the length of the arc is kept constant. Here AB
_

is the
central arc, Rc is the radius of the arc, and h is the spanned angle. All
other parameters are the same as those listed in Table 1.

When a fluid moves along a curved microchannel, there will be
a transverse pressure gradient generated from the curvature, with
an increase in pressure and a decrease in velocity close to the inner
wall, and the opposite effect at the outer side of the microchannel.
This gives rise to a secondary flow in the cross-section of the
microchannel, with the fluid in the center being swept towards
the outer edge of the bend; the fluid near the wall returns towards
the inside of the bend. This secondary flow induces the so-called
Dean effect. The strength of the Dean effect is characterised by
the Dean number, calculated to be De ¼ qUl=g

ffiffiffiffiffiffiffiffiffiffiffiffi
l=2Rc

p
¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffi
l=2Rc

p
[103]. In microfluidics, the Dean number is proportional to the
Reynolds number, and is inversely proportional to the square root
of the radius l=2Rc. Microflows in micromixers usually have rela-
tively low Dean numbers. The effect of the Dean number mainly
corresponds to the effects of geometry for microflows with a fixed
Reynolds number. In Fig. 14, different central angles of the central

arc AB
_

correspond to different Dean numbers. The electrode pat-
terns are computed by varying the central angles for curved chan-
nels (Fig. 15a-e). The corresponding mixing evaluations are plotted
in Fig. 15f. The results show that the electrodes remain fairly sim-
ilar across the parameter variations, deformed along the bent chan-
nel, and that a stronger Dean effect with larger Dean number is
helpful in enhancing the mixing efficiency.



(a) r = he (b) r = 2he

(c) r = 3he (d) r = 4he

(e) r = 5he (f) Plot of mixing evaluation

Fig. 13. (a)–(e) The derived electrode patterns of electroosmotic micromixers corresponding to different filter radii; (f) plot of the mixing evaluations corresponding to the
patterns in (a)–(e).

Fig. 14. Sketch for the computational domain of a curved electroosmotic-
micromixer, where AB

_

is the central arc, Rc is the radius of the arc and h is the
spanned angle.
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5. Conclusion

This paper presented an inverse design method with which to
determine the electrode designs for electroosmosis, a widely used
actuation mechanism in microfluidics. The method was imple-
mented using the finite element method, embedded in a topology
optimization approach. The electrode patterns for an electroos-
motic micromixer were investigated with the goal to achieve the
complete mixing of two fluids.

A variational problem was constructed, constrained by the
Navier-Stokes equations and convection-diffusion equation
defined in the microchannel, and a Helmholtz-Smoluchowski
approximation at the walls, where the Helmholtz-Smoluchowski
relation, derived based on the thin double layer approximation, is
used to avoid modelling the Debye layer with much smaller feature
size compared to that of the microfluidic channel. The variational
problem was analyzed and solved using a Lagrangian multiplier-
based adjoint method and a gradient information-based iterative
procedure.

Several numerical results were computed to demonstrate the
optimality of the inversely designed electrode patterns and the
robustness of the method. The method can also be directly
extended to provide a systematic approach for the electrode design
of electroosmotic microfludics, with potential applications in
chemical reactors and biochemistry due to the outstanding perfor-
mance of the derived electrodes. The research focused on DC



(a) De = 0, θ = 0 (b) De = 2.56, θ = 4

(c) De = 3.62, θ = π/ 2 (d) De = 4.43, θ = 3 4 (e) De = 5.12, θ = π

(f) Plot of mixing evaluation

π/

π/

Fig. 15. (a)–(e) The derived electrode patterns of electroosmotic micromixers corresponding to different Dean numbers; (f) plot of the mixing evaluations corresponding to
the patterns in (a)–(e).
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(direct current) electroosmosis with steady microflows; it can also
be used for AC (alternating current) electroosmosis with unsteady
microflows, and can straightforwardly incorporate the Joule heat-
ing effect due to the electric field. These extensions will be inves-
tigated in our future work.

A novel feature of the implementation is the optimization over
a lower-dimensional surface of an otherwise volumetric domain.
Mathematically, the material interpolation is implemented
between Dirichlet and Newmann types of boundary conditions.
Therefore, it can be regarded to be a first step towards a class of
topology optimization problems using surface structures to control
bulk performance.
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Appendix A

To solve the partial differential equations in the constraints
(PDEs) of the variational problem (Eq. (15)), a linear element-
based finite element method is utilized for the weak forms of these
PDEs [101]. The corresponding weak forms are:

� Find V 2 H Xð Þ satisfying:
Z
X
rrV � rbV dv þ

Z
Cde

aV bV ds ¼ 0; 8bV 2 H Xð Þ; ð22Þ
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� Find u 2 H Xð Þð Þ3; p 2 L2 Xð Þ; kf 2 H1
2 Cwð Þ

� �3
and kQ 2 R

satisfying:
Z
X
q u �ruð Þ � ûþ g ruþruT� ��pI

� �
:rû� p̂r�udv

�
XNe

i¼1

Z
Xi

sglsrp �rp̂dvþkQ

Z
Ci

û �ndsþ k̂Q

Z
Ci

u �nds�Q0

 !

þ
Z
Cw

uþleo rV� n �rVð Þn½ �� � � k̂f þ kf �pn
� � � ûds¼0;

8û2 H Xð Þð Þ3; 8p̂2L2 Xð Þ; 8k̂f 2 H�1
2 Cwð Þ

� �3
and8k̂Q 2R;

ð23Þ

� Find c 2 H Xð Þ and kc 2 H1
2 Cið Þ satisfying:Z

X
u�rcĉþDrc�rĉdvþ

XNe

i¼1

Z
Xi

ssupg u�rc�Dr2c
� �

u�rĉð Þdv

þ
Z
Ci

c�cið Þk̂cþkcĉds¼0;

8ĉ2H Xð Þand8k̂c2H�1
2 Cið Þ;

ð24Þ
� Find cf 2 H Cdeð Þ satisfying:Z

Cde

r2rscf � rsĉf þ cf ĉf � cĉf ds ¼ 0; 8ĉf 2 H Cdeð Þ; ð25Þ

where ĉ; û; p̂; bV ; ĉf ; k̂f ; k̂Q and k̂c are the test functions of the cor-
responding state variables, respectively; sgls and ssupg are the sta-
bilization parameters in Eq. (20).

Based on the weak forms of the PDE constraints, the augmented
Lagrangian corresponding to the variational problem in Eq. (15)
can be derived to be

Ŵ¼ 1
W0

Z
Co

c��cð Þ2dsþ
Z
X
rrV �rVadvþ

Z
Cde

aVVads

þ
Z
X
q u�ruð Þ�uaþ g ruþruT� ��pI

� �
:rua�par�udv

�
XNe

i¼1

Z
Xi

sglsrp�rpadvþkQ

Z
Ci

ua �ndsþkQa

Z
Ci

u�nds�Q0

 !

þ
Z
Cw

uþleo rV� n�rVð Þn½ �� ��kfaþ kf �pn
� ��uads

þ
Z
X
u�rccaþDrc �rcadv

þ
XNe

i¼1

Z
Xi

ssupg u�rc�Dr2c
� �

u�rcað Þdv

þ
Z
Ci

c�cið Þkcaþkccadsþ
Z
Cde

r2rscf �rscfaþcfcfa�ccfads; ð26Þ

where ca;ua; pa;Va, and cfa are the adjoint variables of the corre-
sponding state variables, respectively; kfa and kQa are the adjoints
of the Lagrangian multiplier kf and kQ , respectively; kca is the
adjoint of the Lagrangian multiplier kc . According to the

Karush-Kuhn-Tucker conditions [100], the variational of Ŵ should
satisfy
dŴ ¼ @Ŵ
@V

; dV

* +
H Xð Þ

þ @Ŵ
@u

; du

* +
H Xð Þð Þ3

þ @Ŵ
@p

; dp

* +
L2 Xð Þ

þ @Ŵ
@kQ

dkQ þ @Ŵ
@c

; dc

* +
H Xð Þ

þ @Ŵ
@kc

; dkc

* +
H1

2 Cið Þ

þ @Ŵ
@cf

; dcf

* +
H Cdeð Þ

þ @Ŵ
@c

; dc

* +
L2 Cdeð Þ

¼ 0; ð27Þ

at the optima of the variational problem in Eq. (15), where h�; �i is
the operator used to implement the inner product on a correspond-
ing functional space; d is the operator used to implement the first
order variational of a variable. Based on the adjoint method, the
adjoint derivative of the variational problem in Eq. (15) can be com-
puted to be

dŴ ¼ @Ŵ
@c

; dc

* +
L2 Cdeð Þ

ð28Þ

with the adjoint equations

@Ŵ
@c

; dc

* +
H Xð Þ

þ @Ŵ
@kc

; dkc

* +
H1

2 Cið Þ
¼ 0;

@Ŵ
@u

; du

* +
H Xð Þð Þ3

þ @Ŵ
@p

; dp

* +
L2 Xð Þ

þ @Ŵ
@kQ

dkQ ¼ 0;

@Ŵ
@V

; dV

* +
H Xð Þ

¼ 0;

@Ŵ
@cf

; dcf

* +
H Cdeð Þ

¼ 0;

ð29Þ

where

@Ŵ
@c

; dc

* +
H Xð Þ

þ @Ŵ
@kc

; dkc

* +
H1

2 Cið Þ

¼
Z
X
u � rdcca þ Drca � rdcdv

þ
XNe

i¼1

Z
Xi

ssupg u � rcað Þ u � rdc � Dr2dc
� �

dv þ
Z
Ci

kcadc

þ cadkc dsþ 1
W0

Z
Co

2 c � �cð Þdcds; ð30Þ

@Ŵ
@u

; du

* +
H Xð Þð Þ3

þ @Ŵ
@p

; dp

* +
L2 Xð Þ

þ @Ŵ
@kQ

dkQ

¼
Z
X
q du � ruð Þ � ua þ u � rduð Þ � ua½ � þ rua

: g rduþrduT� �� dpI
� �� par � duþ du � rcca dv

þ
XNe

i¼1

Z
Xi

�sglsrpa � rdp

þ @ssupg
@u

� du
� 	

u � rcað Þ u � rc � Dr2c
� �

þ ssupg du � rcað Þ u � rc � Dr2c
� �

þ ssupg u � rcað Þ du � rcð Þdv þ
Z
Ci

dkQua � nþ kQadu � nds

þ
Z
Cw

kfa � duþ dkf � dpn
� � � ua ds; ð31Þ
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@Ŵ
@V

; dV

* +
H Xð Þ

¼
Z
X
rrVa � rdV dv þ

Z
Cde

aVadV ds

þ
Z
Cw

leo rdV � n � rdVð Þn½ � � kf ds; ð32Þ
@Ŵ
@cf

; dcf

* +
H Cdeð Þ

¼
Z
Cde

r2rscfa � rsdcf þ cfadcf þ V � V0ð ÞVa

� @a
@cfp

@cfp
@cf

dcf ds; ð33Þ
@Ŵ
@c

; dc

* +
L2 Cdeð Þ

¼
Z
Cde

�cfadcds: ð34Þ

Then, based on the arbitrariness of the first order variational of
the field variables in Eqs. (28) and (29), the weak forms of the
adjoint equations in Eqs. (16)–(19) and the adjoint derivative in
Eq. (21) can be derived.
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