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A template consensus method for visual tracking* 
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Visual tracking is a challenging problem in computer vision. Recently, correlation filter-based trackers have shown to 

provide excellent tracking performance. Inspired by a sample consensus approach proposed for foreground detection, 

which classifies a given pixel as foreground or background based on its similarity to recently observed samples, we 

present a template consensus tracker based on the kernelized correlation filter (KCF). Instead of keeping only one tar-

get appearance model in the KCF, we make a feature pool to keep several target appearance models in our method and 

predict the new target position by searching for the location of the maximal value of the response maps. Both quantita-

tive and qualitative evaluations are performed on the CVPR2013 tracking benchmark dataset. The results show that 

our proposed method improves the original KCF tracker by 8.17% in the success plot and 8.11% in the precision plot. 
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Visual tracking is a very classical and popular problem in 
computer vision with a wide range of applications, such 
as vehicle navigation, augmented reality, human com-
puter interface and surveillance. A typical scenario of 
visual tracking is to track an unknown object initialized 
by a bounding box in subsequent image frames. Despite 
numerous tacking methods have been proposed in recent 
years[1-3], creating a generic tracker is still rather chal-
lenging due to factors, such as illumination changes, par-
tial or full occlusion, background clutter, complex mo-
tion and scale variations.  

Recently, correlation filter trackers[4-15] have achieved 
promising results on the visual tracking benchmark 
dataset both on accuracy and robustness, while operating 
at real-time. Henriques et al[6] proposed the circulant 
structure with kernels (CSK) tracker to explore the 
structure of the circulant patch to enhance the classifier 
by the augmentation of negative samples, which adopt 
the gray feature into the visual tracking. To further boost 
the performance of CSK tracker, Danelljan et al[7] adopt 
the color-naming feature into the visual tracking task, 
which is a powerful feature for the color objects. Based 
on CSK, Henriques et al[8] introduced the kernelized 
correlation filter (KCF) into the tracking application and 
adopted the histogram of oriented gradients (HOG) fea-
ture instead of raw pixel to improve both the accuracy 
and robustness of the tracker. Asha et al[11] proposed to 
use integral channel features in correlation filter frame-

work with adaptive learning rate to efficiently track the 
object. Ji et al[12] proposed the correlation filter tracker 
based on sparse regularization to learn the correlation 
filter model on a significantly larger set of negative 
training samples, without worsening the positive samples. 
F Xu et al[13] proposed a multi-scale kernel correlation 
filter tracker with feature integration and robust model 
updater, by integrating HOG and color-naming feature to 
maintain a more powerful object representation, and 
principal component analysis (PCA) was applied to boost 
the computation speed. A kernelized correlation filters 
tracker with PSR redetection was employed[14] to correct 
the tracker and restore target tracking once tracking fail-
ure is detected. Bibi et al[15] proposed an approach to 
update the scale of the tracker by maximizing over the 
posterior distribution of a grid of scales. Altogether, the 
key idea of correlation filter is that the correlation can be 
calculated by fast Fourier transform (FFT) to avoid the 
time-consuming convolution operation. Based on a peri-
odic assumption of the training samples in the target 
neighborhood and approximating the dense sampling 
strategy by generating a circulant matrix, a linear classi-
fier or a linear regressor can be learned efficiently in the 
Fourier domain. From these trackers[11-15], there are some 
improvements for the correlation filter-based method in 
some respects, such as feature integration, target 
multi-scale, adaptive learning rate and redetection. 
However, this kind of target appearance model is simple, 
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rigorous, and prone to drift. Due to factors like fast mo-
tion and occlusion, in the detection step, the localization 
of the target in the next frame might be inaccurate or 
erroneous, these errors will be propagated to the target 
appearance model, and the tracker will face the risk of 
unrecoverable drift. Therefore, using more effective tar-
get appearance model is crucial. 

Wang et al[16] presented an effective and adaptive 
background modelling method for foreground detection 
in both static and dynamic scenes. They keep a cache of 
a fixed number of lasted observed background values for 
each pixel and classify an input pixel as background if it 
matches most of the values stored in its model. Inspired 
by this work, we present a template consensus method 
for visual tracking in this paper. In the KCF[6,8], a target 
appearance model is updated by a fixed learning rate. In 
our tracker, instead of keeping only one target appear-
ance model, we make a feature map pool to take more 
target appearance models into consideration and predict 
the new target position by searching for the location of 
the maximal response score in the response maps. 

To validate our method, we perform extensive experi-
ments on the CVPR2013 tracking benchmark dataset[2] 
with 50 videos. The results show that the proposed method 
improves the success plot by 8.17% and the precision plot 
by 8.11% compared with the original KCF tracker. 

Our method is built on the KCF tracker[8], which 
achieves promising results on visual tracking benchmark 
dataset[2]. In the following, we briefly introduce the main 
idea of KCF tracker. Readers can refer to Ref.[8] for 
more details. In Ref.[8], Henriques et al assumed that the 
cyclic shift version of base template is able to approxi-
mate the dense sampling procedure. For simplicity, sup-
pose that all samples are one dimensional, and x=[x1, 
x2,…, xn] represents the base template at the first frame, 
then a cyclic shift of x is represented as Px=[xn, x1, x2,…, 
xn−1], where P is a permutation matrix. Then, all the cir-
cular shifts of template x are given by {Pix|i=1, 2,…, 
n−1}. In the case of the 2-dimensional image patch x of 
size M×N pixels, there will be two possible shifting 

directions, KCF considers all cyclic shifts xm,n(m, n)∈  
{0,1, …, M−1}×{0,1, …, N−1} as the training samples 
for the classifier. The regression labels ym,n follow a 
Gaussian function, which take the value 1 for the center 
of the target and smoothly decay to 0 for any other shifts. 
The goal of training is to find the optimal weight w that 
minimizes the squared error over samples xm,n and their 
regression labels ym,n. 

w=argminw∑m,n|<φ(xm,n), w>−ym,n|
2+λ||w||2,       (1) 

where φ is the mapping to the Hilbert space induced by 
kernel k, defining  ( ), ( ) ( , )k< >=x x x x ϕ ϕ , and λ is a 
parameter for the regularization term. Using the FFT, the 
solution w can be expressed as w=∑m,na(m, n)φ(xm,n), and 
the coefficient a is calculated as: 
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Note that a is a vector and we denote the discrete Fou-

rier transform (DFT) of a vector with a hat. ˆxxk  is the 
Gaussian kernel correlation of x with itself in the Fourier 
domain. For an image patch with C feature channels, we 
have 
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where ⊙ is the element-wise product, and c is the index 
of feature channels.  

In the tracking step, a patch z with the same size of x is 
cropped out in the new frame. With the learned coeffi-
cient a


and the target appearance model x


, the matching 

scores for all the circular shifts of z can be calculated via 
=y  ऐ 1 ( )xz− a k

   .                        (4) 
Finally, the target’s new position is estimated by 

searching for the location of the maximal value of ӯ. 
We present the technical details of the proposed algo-

rithm. As shown in Fig.1, our method consists of two 
stages, which are the base KCF tracking stage and the 
template consensus KCF tracking stage.

 

Fig.1 Main steps of the proposed method, which consists of the base KCF tracking stage and the template con-
sensus KCF tracking stage
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During the base KCF tracking stage, from the second 

frame to the N frame, the new target position is predicted 
by the base KCF tracker via Eq.(4). However, a little 
different from the original KCF, when the target position 

is updated, we save the target feature map (1)x


  and the 

corresponding coefficient (1)a


 into the feature map pool 
at the same time. When the base KCF tracking stage is 
over, there will be N target feature maps and coefficients 
saved in the feature map pool. Algorithm 1 summarizes 
the main steps of this stage.  

 
Algorithm 1 The base KCF tracking stage 

·win_sz: size of the tracked region. 
·pos: center location of tracking target in spatial domain. 
·patch: region of img centered at pos with win_sz. 
·feature(x): extract the feature of x (eg. HOG). 
·cos_window: cosine window weights. 
1: for img=1, … , N 
2:  if img >1 
3:   patch <— region (img, pos, win_sz) 
4:    z <— ऐ (feature(patch) ʘ cos_window) 
5:   zxk


 <— ऐ (correlation ( , )z x


)   —>Eq.(3) 

6:   pos<—posargmaxloc(ӯ)  —>Eq.(4) 
7 :  end if 
8 :  patch <— region (img, pos, win_sz) 
9:   x <— ऐ (feature(patch) ʘ cos_window) 
10:  xxk


 <— ऐ (correlation ( ,x x  ))  —>Eq.(3) 

11:  / ( )xx< − +a y k
  λ     —>Eq.(2) 

12 :  ( )i < −x x
 

;  
13 :  ( )i < −a a

 
; 

14 :  if first image :η<—1 else η<— inter_factor 
15:     ( ) (1 )i < − × + − ×a a a

 η η  
16: (1 )< − × + − ×x x x

 η η   
17: end for 

From the N+1 frame to the end of the sequence, the 
tracking target position is updated by the template con-
sensus KCF tracker. During the target detection stage, we 
have N target feature maps ( )ix


 and the corresponding 

coefficients ( )ia


 stored in the feature map pool com-
pared with the original KCF which only keeps one target 
appearance model.  

Firstly, a patch z with the same size of x is cropped out 
in the new frame, and then we calculate all the matching 
scores of z and ( )ix


via  

( ) 1 ( ) ( )( ), 1, ,i i zx iF i N−= =y a k


   .             (5) 

Then we obtained N response maps. 
We choose the location of the maximal value of ӯ(i) 

as the new target position via  
argmaxloc argmaxi ӯ(i),  i=1, 2,…, N.            (6) 
After we got the new target position, we need to 

update ( )ix


 and ( )ia


 in the feature map pool via  
( ) ( )

1(1 )i i

t t t−= × + − ×a a a
 η η ,                    (7) 

( ) ( )

1(1 )i i

t t t−= × + − ×x x x
 η η  .                  (8) 

Algorithm 2 summarizes the main steps of this 
stage. 
Algorithm 2 The template consensus KCF tracking stage 

·win_sz: size of the tracked region. 
·pos: center location of tracking target in spatial domain. 
·patch: region of img centered at pos with win_sz. 
·feature(x): extract the feature of x (eg. HOG). 
·cos_window: cosine window weights. 
1: for img=N+1, … , end 
2:  patch <— region (img, pos, win_sz) 
3:  z  <— ऐ (feature(patch) ʘ cos_window) 
4:  for i = 1, ... , N 
5:    ( )i <zxk


— ऐ (correlation ( )( , )ixz  )    

6:   ( ) ( ) ( )( ) Eqi i zx t< − − >y a k .(5) 
7 :  end for 
8:  pos <— pos+argmaxloc argmaxi ӯ(i=1:N)—>Eq.(6) 

9 :  patch <— region (img, pos, win_sz) 
10:  x  <— ऐ (feature(patch) ʘ cos_window) 
11:  xxk


 <— ऐ (correlation ( , )x x  )—>Eq.(3) 

12:  / ( )xx< − +a y k
  λ —>Eq.(2) 

13 :  for i=1, … ,N 
14:    ( ) ( )(1 )—i i

t × + − ×<a a a
 η η  

15:  ( ) ( )(1 )—i i× + − ×<x x x
 η η   

16:  end for 
17: end for 

For the experiment, CVPR2013 visual tracking 
benchmark dataset contains 50 fully annotated sequences 
and covers a variety of scenarios for visual tracking. 
These sequences are annotated with the 11 attributes, 
including illumination variation, scale variation, occlu-
sion, deformation, motion blur, fast motion, in plane ro-
tation, out-of-plane rotation, out-of-view, background 
clutters and low resolution. Over the past several years, 
many tracking literature were evaluated on the dataset.  

To analyze the performance of our algorithm, we fol-
low the evaluation metrics proposed in Ref.[2], two 
evaluation methods are used, which are precision plot 
and success plot. The precision plot counts the percent-
age of successfully tracked frames based on the center 
location error (CLE). The success plot presents the per-
centage of successfully tracked frames, by measuring the 
intersection over union (IOU) metrics, and the threshold 
of IOU is varied from 0 to 1. To rank the trackers, two 
types of ranking metrics are used, which are the preci-
sion score whose threshold is set as 20 for the precision 
plot, and the area under the curve (AUC) metric for the 
success plot. Both plots and ranking metrics are com-
puted using the software provided by Ref.[2]. 

The number of feature maps N proposed above con-
trols the balance of sensitivity and precision of the target 
model. We determine this value based on the experiment 
results evaluated on the dataset[2]. As it can be seen in 
Fig.2, the precision score tends to get maximum when N 
is set to 20, so we determine to set N=20 in this paper. 
The other parameters are the same with the original KCF 
and keep fixed for all evaluation sequences. 

We evaluate our method on the benchmark[2] com-
pared with 7 state-of-the-art trackers, including KCF[8], 
Struck[17], CN[7], TLD[18], CXT[19], CSK[6] and MIL[20]. 
For fair evaluations, we compare all the methods fol-
lowing the protocol of the benchmark. We report the 
results in OPE, SRE and TRE using the distance preci-
sion and overlap success rate in Fig.3. It can be seen that
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our method attains the best overall performance in all 
evaluation settings. The proposed method outperforms 
the original KCF by 8.17% in the success plot and 8.11% 
in the precision plot. And the results in OPE are in gen-
eral consistent with those in SRE and TRE. 

 
Fig.2 Precision scores (20 pixels) obtained on the 
CVPR2013 visual tracking benchmark dataset with 
different numbers of feature maps 

 

 

 

 

 

 

Fig.3 Distance precision and overlap success plots 
over 50 sequences using OPE, TRE and SRE 
 

We also present some tracking results on qualitative 
evaluation in Fig.4. Ten challenging sequences are se-
lected to validate the effectiveness of our tracker. Overall, 
our tracker can track the targets more precisely while 
other methods almost can not deal with these compli-
cated scenarios. The proposed tracker performs well in 
presence of in-plane rotation, out of view and 
out-of-plane rotation, which can be explained that our 
method maintains more target appearance models in the 
feature map pool. 

In addition to the tracking accuracy, the greatest ad-
vantage of KCF is the computational efficiency, making 
it especially suitable for a variety of real-time applica-
tions. In our method, saving more target appearance 
models in the feature map pool will certainly make the 
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tracker slower, so we make a real time performance 
comparison between our method, KCF tracker and other 
excellent trackers evaluated on the CVPR2013 tracking 
dataset. Tab.1 lists the mean frames per second (FPS) of 
other trackers and our method in OPE running on a 
computer with Intel i7 6700K CPU (4.0GHz). We can 
see that our tracking algorithm also satisfies the require-
ment of real-time performance. 

 
 

Fig.4 Tracking results of our method, KCF[8], CSK[7], 
Struck[12] and CN[6] on 10 challenging sequences 
(Photos from left to right and top to down are Coke, 
David, David3, Freeman4, Football, Freeman, Singer2, 
Jogging, Jumping and Lemming respectively.) 
 

Tab.1 Comparison of real time performance  

Algorithm Precision (20 pixel) Mean FPS 

Our 0.800 94 

KCF 0.740 437 

Struck  0.656 21 

CN 0.629 269 

CSK 0.545 558 
 
In this paper, we propose a novel tracking algorithm 

based on the KCF. Compared with the original KCF 
tracker which keeps only one target appearance model 
and updates with a fixed learning rate, we propose to use 
the feature map pool to keep more target appearance 
models and predict the new target position by searching 
for the location of the maximal value of the response 
maps. The experimental results on the CVPR2013 track-
ing benchmark dataset show the superior performance of 
our method compared with the original KCF tracker. 
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