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Abstract: In order to obtain point spread functions( PSFs) of a simple optical system accurately and improve
the restored image quality, we present a wide-spectrum PSF estimation method based on PSF measurements.
First, narrow-band PSFs are measured, and combining image matching algorithm, the sensor position and the
deviation of the optical axis in the real optical system are calibrated. Then, the PSF of each wavelength and
field of view is simulated and used for calculating the wide-spectrum PSFs of the real optical system according
to the object reflectance spectrum and the spectral sensitivity information of the sensor. Experimental results
indicate that the proposed PSF estimation method is better than the narrow-band PSF estimation and blind PSF
estimation. The restored image is more stable and its quality is improved significantly. The proposed method
can estimate the PSFs of the real optical imaging system accurately.
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1 Introduction

Optical system aberrations are a common cause
for image degradation. In order to compensate for
the aberrations and make the image clear, research-
ers usually use such a large number of lenses and
expensive materials that causes optical systems to be
bulky and costly.

Simple optical system imaging is an emerging
technology for simplifying optical systems using com-
putational imaging. This technique first relaxes the
constraints of the optical design of the system by de-
signing a simple optical system as the front end and
leaving residual aberrations. Then, at the back end,
a spatially varying deconvolution algorithm is per-
formed on the blurred image obtained by the simple
optical system to reduce the optical blurs. Mean-
while, it can simplify the optical system.

In this technique, the point spread function
(PSF) of the optical system is used as the convolu-
tion kernel in the deconvolution algorithm, which is
an important factor affecting the recovery result. PSF
represents the impulse response of an optical system.
Its Fourier transform is an optical transfer function
(OTF) representing the response of the system in
the frequency domain. If the PSF is inaccurate, it is
prone to cause severe ringing effects that ultimately
affect image quality.

The inclined edge method is a widely used PSF
acquisition method"'?’. Tt captures sub-images with
inclined edges in the image and uses fitting, interpo-
lation and differentiation to obtain the line spread
function of the sub-image, subsequently to calculate
the PSF of the system. However, this method as-
sumes that the PSF is Gaussian. The PSF of the real

system is much more complicated than Gaussian, so

doi:10.3788/C0.20191206. 1418

the limitations of this method are obvious. The blind
deconvolution algorithm uses prior knowledge to esti-
mate the PSF and clear image of the optical system
directly from the blurred image'*'. However, the
PSF of the optical system is spatially varying and
needs to be processed in blocks. The amount of in-
formation in a small block of the blurred picture is
very limited and blind deconvolution itself is an ill-
conditioned problem. Thus, the restoration result is
not reliable. In order to overcome these problems,
some calibration methods using blurred/clear image

pairs have been proposed'’.

These methods pro-
duce a calibration plate with distinct feature informa-
tion in the full field of view. A simple optical system
is then used to capture the blurred image of the cali-
bration plate and then deconvolution calculation is
carried out on the blurred image and the synthesized
or acquired clear calibration plate image to obtain
spatially varying PSFs. The direct measurement
method is the most intuitive PSF acquisition method
because the target board with the point source array
is directly captured by the imaging system''”’. How-
ever, this method is subject to interference from sen-

"1 To reduce the impact of noise on PSF

sor noise
acquisition, researchers built a mathematical model
to fit the measured PSF and then use the fitting re-
interference

sults to reconstruct the noise-free

PSF'"*") | This method is limited by mathematical
models and may result in large errors in fitting re-
sults. Shih et al. '™ calibrate the tolerance of the
optical system through analysis of the original PSF
and established PSF, furthermore, they modify the
model to simulate the PSF of the real optical system,
effectively avoiding the influence of measurement
noise.

However, all of these aforementioned methods

overlook the important fact that image sensor are typ-
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ically broadband, which means that the filter in front
of the sensor allows light of a wider spectral range to
pass. Thus, the spectra of the incident light in the
optical system and that received by the sensor vary
with the target. On the other hand, as the PSF of
the imaging system is closely related to the wave-
length of the incident light, it is difficult to deter-
mine the PSF of the real target by simple measure-
ment or calibration. It is necessary to comprehen-
sively consider the information of the target reflec-
tance spectrum and the spectral sensitivity of the
sensor. In this paper, a wide-spectral PSF estima-
tion method for simple optical systems using PSF
measurement is proposed. The sensor’s position and
the optical-axis deviation of the real optical system
are calibrated by measuring narrow-band PSF and
image matching method. Then, the PSF of each
field of view and each wavelength of the real optical
system are simulated and the PSF of the simple opti-
cal system is calculated in combination with the tar-
get reflectance spectrum and the spectral sensitivity
of the sensor. This method is advantageous for its a-
bility to directly measure the PSF, effectively reduce
the interference of the sensor noise through simula-
tion, accurately estimate the wide-spectrum PSF of
the real simple optical system, avoiding the ringing
effect caused by incorrect estimation of the PSF and

improving the stability of the restored image.

2 Imaging optical system PSF model

The PSF is the light intensity distribution of a
point target formed on the image plane through an
optical system. In an ideal optical imaging system,
the light emitted from the target is focused to form an
Airy spot after it passes the optical system. In the
real system, due to the existence of optical aberra-
tions, the light emitted from the point target cannot
be focused well, forming a larger size diffuse spot

and resulting in image blur. Moreover, the light with

different wavelengths has different refractive indices
in the optical material and the deflection of the light
is also different, so the PSF also changes with the
wavelength of the incident light. For diffuse objects,
light is reflected by the point target into the optical
system and projected on the image sensor. Assuming
that the reflectance spectrum of the target is locally
consistent, the obtained blurred image can be regar-
ded as the convolution result of the real clear image
and the PSFs of the optical system. The imaging

model can be expressed as:

b(x,y) = [[r(0) i) ] @

[sCA) = k(x,y,A) JdA + n(x,y)

= i(x,y) @h(x,y) +nlxy), (1)
where A represents the wavelength of the incident
light, x and y represent the image coordinates, b is
the blurred image, r is the normalized reflectance
spectrum of the target, i is the true sharp image, s is
the spectral sensitivity of the sensor, k is the PSF of
the single-wavelength light of the optical system, n
is the sensor noise and h is the PSF of the real point
target. Therefore, the blur kernel of the real optical
system, that is the PSF of the real point target, can
be represented by the spectral sensitivity of the sen-
sor, the normalized target reflectance spectrum and

the single-wavelength PSF as follow :

h(x,y) = fs()\) cr(A) - k(x,y,A)dA . (2)

3 Wide-spectrum PSF estimation

Equation (2) indicates that to calculate the
wide-spectrum PSF of the real object point, we need
to know the PSF of any single-wavelength light.
However, measuring the PSEF of any single-wave-
length light of any field of view will consume a lot of
manpower and material resources, and the results
will be highly susceptible to sensor noise. In this pa-
per, two sets of narrow-band spatially varying PSF

are measured and the image matching algorithm is
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combined with this to calibrate the machining errors
affecting PSF in the real optical system, which are
sensor’s position error and the deviation of the opti-
cal axis, and the simulated model of the optical sys-
tem is corrected so that the simulated PSF is closer

to the PSF of the real optical system. Optical design

software is then used to intensively simulate the spa-
tially varying PSF of each wavelength to accurately
obtain a single wavelength optical PSF. Finally, the
wide-spectral PSF is obtained by weighted calcula-
tion of the acquired spectral information. A flow

chart of the proposed method is shown in Fig. 1.

Narrow-band PSF measurement

PSF simulation in different sensor positions

v

Machining error calibration of optical system

v

PSF simulation of light with different wavelengths Spectral information acquisition

v

Wide-spectrum PSF calculation

Fig.1  Flow chart of the proposed wide-spectrum PSF estimation
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3.1 Narrow-band PSF measurement
The experimental setup for measuring the nar-

row-band PSF is shown in Fig. 2, which consists of

Narrow-band filter

ical oi
ianloee Optical pinhole

an LED source, two narrow-band filters (650 nm and
532 nm), an optical pinhole and a self-designed

simple optical system.

Lens Image sensor

Fig.2 Schematic diagram of experimental step for narrow-band PSF measurement
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After the object distance is fixed, adjusting the
position of the sensor until the sensor can receive a
clear image, then fixing the sensor. A narrow-band
point source consisting of a light source, an optical
pinhole and a narrow-band filter is captured by the
sensor. This serves as a measurement of a narrow-
band PSF. The point source is moved perpendicular-
ly to the optical axis to measure narrow-band PSFs in
different fields. The experiment is carried out in a

dark room to reduce the interference of unexpected

light. Tt is also important to pay attention to control-
ling the exposure time during PSF acquisition to a-
void the saturation of the measured PSF intensity
value.
3.2 Optical axis deviation calibration

In a real optical system, the assembly error
causes the point of intersection of the optical axis
and the sensor to deviate from the sensor center.
Therefore, the PSF of the real optical system is not

usually circularly and symmetrically distributed a-
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bout the center of the image. Ignoring this error can
lead to mismatching of the field of view of the simu-
lated PSF, which seriously affects the accuracy of
the PSF estimation.

The PSF of the off-axis object point in the opti-
cal system is symmeltrical on the meridional plane,
and as such, the axis of symmetry of the PSF of the
off-axis object point must pass through the point of
intersection of the optical axis and the sensor. After
finding all the symmetry axes of the measured PSF,
the least-squares method is used to calculate the clo-
sest point in the image to these symmetry axes,
which is the calibrated optical center.

3.3 Sensor’s position calibration

The position of the sensor of the real optical
system is usually uncertain and positional error of the
sensor is difficult to avoid, which leads to a certain
degree of defocusing of the real system relative to the
design system. Ignoring this defocusing will cause
serious error to the PSF simulation. In this paper,
the position of the sensor in the real optical system is
calibrated by matching the simulated PSFs of differ-
ent sensor positions with the measurement PSF.
First, the field of the measured PSF is matched with
the simulated PSF. Then, a set of PSFs in different

fields of view is generated using optical design sofi-
ware. The field of the measured PSF is calculated
based on the optical axis deviation, as previously
calibrated. An acceptable field matching error is
set. If the field difference of the measured PSF and
its nearest simulated PSF is less than the field-matc-
hing error, the measured PSF and the simulated PSF
are considered to be in the same field of view. The
difference greater than the field-matching error
means that no simulated PSF is in the same field of
view as the measured PSF, and the measured PSF of
this field should be discarded. After the field is
matched, the simulated PSFs of different sensor po-
sitions in the same field are matched with the meas-
ured PSF. Although the measured PSF is seriously
affected by the noise of the sensor, its size and
shape hardly change and the intensity distribution is
roughly the same as the real PSF. Because of this,
this paper uses the template matching method to
process matching by taking the maximum value of
the normalized cross-correlation matrix between the
simulated PSF and the measured PSF as the matc-

L16]

hing degree The normalized cross-correlation

matrix can be expressed as:

> X lwls,) —wl[flx sy +1) ~f,]

y(x,y) =

where w is the measured PSF, f is the simulated
PSF, w is the average of w, and ];x}, is the average of
the area coincident with w in f. The range of
y(x, ) is [ - 1,1].
higher the matching degree of f and w. When the

The larger the value, the

normalized f is the same as w, the y value reaches
1. We took the position of the sensor with the high-
est matching degree as the calibration sensor posi-
tion. At this position, the simulated PSF was closest
to the real measured PSF.

For all wavelengths and fields, the measured

Y S L) —w]? S S ks ) —f, 17T

(3)

PSF and the simulated PSF corresponding to the cal-
ibrated sensor position should have the highest simi-
larity. Therefore, the average of all wavelengths and
matching fields is used as the final match to further
reduce the impact of noise.
3.4 Wide-spectrum PSF generation

The back focal length and the image size of the
optical system are adjusted according to the calibra-
ted sensor position and the optical axis deviation.
The PSF of the real optical system at each wave-

length is densely simulated using the two-dimension-
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al image simulation function of CODE V. After ob-
taining the spectral sensitivity of the sensor and the
target reflectance spectrum, the simulated single-
wavelength PSFs are weighted calculated to generate

a wide-spectrum PSF.

4 Experiments and results

In order to verify the accuracy of the proposed
PSF estimation method, we use a self-designed sim-
ple optical system to take blurred images. The
blurred images are restored using the proposed PSF
estimation method, the blind estimated PSF'*' and
the single-wavelength PSF, and the results are com-
pared.

First, a self-designed simple camera is used to
capture the blurred image of the target board and
perform the PSF measurement. The configuration
and parameters of the self-designed simple camera
are shown in Fig. 3 and Tab. 1. The simulated proto-

type of the camera is shown in Fig. 4.

Fig.3  Configuration of the self-designed simple camera
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Tab.1 Lens parameters of the self-designed
simple camera

®1 BHRERENHREXSH

Surface Radius Thickness Glass
Object Infinity Infinity
1 31.84 4.00 HK9L_CDGM
2 125.56 5.80
stop Infinity 5.80
4 21.29 3.50 HK9IL._CDGM
5 109.53 25.42
Image Infinity 0

Fig.4  Prototype of self-designed simple camera
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The optical axis deviation and the sensor’s posi-
tion in the optical system are calibrated using the
measured PSF. The matching curve of the sensor’s
position is shown in Fig. 5. The abscissa in Fig. 5
represents the position difference between the simu-
lated sensor and designed one. The ordinate is the
matching degree. When the abscissa is 1.34 mm,
the matching degree reaches its highest, being
0.857 0. When the sensor is in this position, the
matched simulated PSF is very close to the measured
PSF for all measured fields. Fig. 6 shows a compari-
son of 8 sets of measured PSFs with their matched
simulated PSFs.

0.9

0.8

4
N

g
=

Matching degree

o
i

0.4 . . . . . .
1.00 1.10 120 1.30 140 1.50 1.60 1.70

Difference of simulated sensors
position and its design position/nm

Fig.5 Sensor-position matching curve
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It can be seen that the 8 sets of measured PSFs
and their matched simulated PSFs are very close in
size and shape in comparison, but the measured PSF

is affected by noise and some detailed information is
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lost. However, the PSF simulated after calibration of
optical system is minimally affected by noise, its de-
tails are more abundant and it can more accurately

represent the single-wavelength PSF.

Measured PSF Matched simulated PSF

Fig. 6  Comparison of measured PSFs and matching
simulated PSFs
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The target board’s reflectance spectrum is
measured using fiber spectrometer, Ocean Optics
USB4000 and is shown in Fig. 7. The spectral sensi-
tivity of the sensor is then obtained by consulting the
sensor’s technical data. Finally, the spatially var-
ying wide-spectrum PSF of the real system is calcu-

lated using equation (2), as shown in Fig. 8.

1.0
0.9
0.8
0.7
0.6
0.5

Relative intensity

400 450 500 550 600 650 700 750 800
Wavelength/nm

Fig.7 Reflectance spectrum of target board
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The captured blurred image is divided into 7 x
13 rectangular overlapping patches, and the patches
are restored using the deconvolution method of
Krishnan et al. ' and the proposed wide-spectrum
PSF. The restored patches are stitched together fi-

nally. For comparison, the patches are also restored

using the blind estimation PSF™' and the single-
wavelength PSF. The deconvolution algorithm used
is also the method of Krishnan et al.. Note that, the
wavelength of the chosen single-wavelength PSF is
532 nm, which is the wavelength with the highest

spectral sensitivity to the sensor. The comparison of

the restoration results is shown in Fig. 9 and Fig. 10.

Fig. 8 Spatially varying wide-spectrum PSF of the real

imaging system

K8 Sebrl & RGeS WAL AL SOt PSF

‘

Fig.9  Comparison of restored results for “satellite”

image[ 1 (a) Blurred image, (b)restored re-
sults of Krishnan’s blind-estimated PSF, (c)
restored results of single-wavelength PSF and
(d)restored results of proposed method
BlO TG RS R, (a) BOWE
(b) Krishnan 55 i PSF & Ji 45585 (¢) K
PSF A J5 4 2R 5 (d) A 31 PSF A A2 s 2R
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Fig. 10 Comparison of restored results for target image.

(a) Blurred image, (b) restored results of
Krishnan’s blind-estimated PSF, (¢) restored
results of single-wavelength PSF and (d) re-
stored results of proposed method

10 “HRl” BRZIREURXS . (a) BERIIEL; (b)

Krishnan 51l PSF & JGZ5 58 s (¢) B K PSF

SRS (d) A SCAkTT PSE 52 Ji4s

Fig.9(a) and 10(a) are the original blurred
images captured by the self-designed simple camera
with a resolution of 1 920 x 1 080. Fig. 9(b) and
10(b) are the restored results by the blind-estimated
method. Severe ill-conditioned problems make it dif-
ficult for accurately PSF estimation, causing severe
The images near

Fig.9(c) and
10(c) are the restored results by single wavelength

ringing effects and residual blur.

the patch joints are also unnatural.

PSFs. Since the influence of the wide-spectrum is
the PSF has errors and the result also has
Fig. 9(d) and 10(d) are the
results by proposed method. Whether it is in the

ignored ,

some ringing effect.

central field or in the marginal field, the image qual-
ity shows obvious improvement compared with the
blurred image. There is almost no ringing effect and
the image quality is stable.

The grayscale mean gradient( GMG) of the im-
age is calculated as a quantitative evaluation index of

the restored image quality. GMG can reflect the con-

trast and detail of the image. The larger the value,
the clearer the image and the better the quality of the
The expression of GMG is as fol-

restored image.

lows :

M-1 N-1 A12+A12
GMG = —
(M—l)(N—l)zZ,

(4)
where M and N represent the number of pixels in the
horizontal and vertical directions of the image, re-
spectively. Al and Al represent the horizontal and
vertical gradients of the images. The comparison re-
sults of Fig. 8 and Fig. 9 are shown in Tab. 2. It can
be seen that the quality of the restored image ob-
tained by proposed method is superior to the results
that obtained by blind estimation PSF and the single
wavelength PSF.

Tab.2 Comparison of image grayscale mean gradients

x2 BERKETHHESL

Satellite Target

Blurred image 0.002 4 0.003 1
Krishnan et al. 0.006 9 0.008 5
Using 532 nm PSF 0.108 0 0.013 1
Ours 0.109 0 0.014 1

5 Conclusion

In this paper, based on the wide spectral char-
acteristics of the real optical imaging system, a cal-
culation model for a real object PSF was established
and a wide-spectral PSF estimation method based on
PSF measurement was proposed. A measured PSF
was used to calibrate the real optical system and then
the PSF of the single-wavelength light of each field
of view in the real system was simulated. Combined
with the target reflectance spectrum and the spectral
sensitivity information of the sensor, the wide-spec-
trum PSF was finally calculated. The experimental
results showed that compared with the blind estima-
tion PSF and single-wavelength optical PSF, the PSF
estimated by the proposed method can significantly
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improve the quality and stability of the restored im-
age. The proposed method can accurately estimate
the PSF of the real optical imaging system.

While calibrating the optical system machining
error with the measured narrow-band PSF, only two
kinds of error, the optical axis$ center error and the
deviation of the detector position are considered.

This method is suitable for optical systems with low

—— SO IR —

1 7]
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error tolerance.

For less tolerant systems, more general calibra-
tion methods may be needed to estimate the tilt toler-
ance, the decentration tolerance, etc. of the system.
Another possibility is that more sophisticated optical
system processing adjustment techniques might be
needed to reduce the impact of other errors on PSF

estimation.
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