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Abstract: A surface plasmon resonance temperature sensor based on a side opening hollow-core
microstructured optical fiber is proposed in this paper. This design employs a gold nanowire
to excite the plasmon mode, and can be easily filled with the sensing medium through the side
opening of the fiber, which not only simplifies the fabrication of the sensor but can also use the high
refractive index sensing medium. The coupling characteristics, sensing performance and fabrication
tolerance of the sensor are analyzed by using the finite element method. The simulation results
indicate that the maximum sensitivity is 3.21 nm/◦C for the x-polarized core mode in the temperature
range of 13.27–50.99 ◦C, and 4.98 nm/◦C for the y-polarized core mode in the temperature range of
14.55–51.19 ◦C, when benzene is used as the sensing medium. The sensor also shows a good stability
in the range of ±10% fabrication tolerance.

Keywords: temperature sensors; surface plasmon resonance; microstructured optical fibers;
fiber optics sensors

1. Introduction

Surface plasmon resonance (SPR) has high sensitivity to refractive index (RI) changes, which
makes it useful for the detection of physical, chemical and biological quantities [1–8]. Recently,
microstructured optical fibers (MOF) were actively studied in SPR sensing [5,6,8–11]. In comparison
with other configurations such as prisms and conventional optical fibers [1,2,6,8], benefits of the
MOFs are that they can realize desirable guiding properties and the convenience of reasonable
mechanical strength [2,5,8–11]. In most MOF-SPR sensors, to implement SPR sensing for liquid
samples, the cladding holes of the MOFs are basically required to be coated with the metal films
and infused with the samples [2,5,8–11]. Moreover, by replacing the liquid sample with a large
thermo-optic coefficient sensing medium, these MOF-SPR sensors can be utilized for temperature
sensing [12–14]. Compared with other types of fiber temperature sensors [15–22], the advantages of
MOF-SPR temperature sensors are that they can achieve higher sensitivity and can tune the sensitivity
and sensing range by changing the sensing medium [12–14].

In these reported MOF-SPR temperature sensors [12–14], the sensing medium are filled into the
cladding holes of the MOF. In order to maintain the light guiding mechanism of the total reflection,
the highest RI of the sensing medium must be lower than the RI of the fiber material. For example,
it is usually less than 1.42 in fibers made of silica whose RI is assumed to be 1.45 [12–14]. Therefore,
these SPR temperature sensors cannot employ some high RI sensing media which have a high thermal
coefficient, such as toluene, benzene, liquid crystal materials, etc. [23,24]. Besides, the air hole diameter

Sensors 2019, 19, 3730; doi:10.3390/s19173730 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/17/3730?type=check_update&version=1
http://dx.doi.org/10.3390/s19173730
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 3730 2 of 9

of the MOF is usually a few microns [12–14]. Coating the walls of such small holes with the metal
layer and filling them with the sensing medium requires high precision and complicated processes.

To solve the problems mentioned above, we designed a SPR temperature sensor based on a side
opening hollow MOF in this paper. So far, the hollow fibers filled with the liquid have demonstrated
that they can work effectively when the RI of the liquid is higher than that of the fiber material [25,26].
Additionally, the open-structured MOFs, such as exposed-core MOFs, have also been studied and the
liquids can easily be filled into the sensing region [27–32]. This design combines the advantages of the
hollow fibers and open-structured MOFs, and thus can employ high RI sensing media without the
complex filling process. Moreover, the sensor adopts a gold nanowire to excite the surface plasmon
polaritons (SPP) mode, which avoids the complex fabrication of the metal coating. We used the
COMSOL Multiphysics software to analyze the SPR character and sensing performance of the sensor,
and we also discuss sensor stability in the range of ±10% fabrication tolerance.

2. Structure and Principle

As shown in Figure 1a, the hollow core of the MOF-SPR sensor is surrounded by a double-layered
hexagonal array of air holes. The sensing medium and the gold nanowire are filled in the hollow core of
the fiber. A slot is cut along the length of the fiber to connect the outside and the hollow core, which can
accelerate the filling process of the sensing medium. The slot can be fabricated by some mature
technologies such as focused ion beam milling [33,34] or femtosecond laser micromachining [35,36].
Both ends of the sensor can be connected to the single mode fiber (SMF) to access the sensing system
for practical experimental testing, as shown in Figure 1b.

Sensors 2019, 19, x FOR PEER REVIEW 2 of 10 

 

metal layer and filling them with the sensing medium requires high precision and complicated 
processes.  

To solve the problems mentioned above, we designed a SPR temperature sensor based on a side 
opening hollow MOF in this paper. So far, the hollow fibers filled with the liquid have demonstrated 
that they can work effectively when the RI of the liquid is higher than that of the fiber material [25,26]. 
Additionally, the open-structured MOFs, such as exposed-core MOFs, have also been studied and 
the liquids can easily be filled into the sensing region [27–32]. This design combines the advantages 
of the hollow fibers and open-structured MOFs, and thus can employ high RI sensing media without 
the complex filling process. Moreover, the sensor adopts a gold nanowire to excite the surface 
plasmon polaritons (SPP) mode, which avoids the complex fabrication of the metal coating. We used 
the COMSOL Multiphysics software to analyze the SPR character and sensing performance of the 
sensor, and we also discuss sensor stability in the range of ±10% fabrication tolerance. 

2. Structure and Principle 

As shown in Figure 1a, the hollow core of the MOF-SPR sensor is surrounded by a double-
layered hexagonal array of air holes. The sensing medium and the gold nanowire are filled in the 
hollow core of the fiber. A slot is cut along the length of the fiber to connect the outside and the hollow 
core, which can accelerate the filling process of the sensing medium. The slot can be fabricated by 
some mature technologies such as focused ion beam milling [33,34] or femtosecond laser 
micromachining [35,36]. Both ends of the sensor can be connected to the single mode fiber (SMF) to 
access the sensing system for practical experimental testing, as shown in Figure 1b. 

 

Figure 1. (a) Schematic diagram of the surface plasmon resonance (SPR) sensor based on a side 
opening hollow fiber and (b) experimental setup diagram of the proposed SPR sensor for temperature 
sensing. 

The electromagnetic mode of the MOF is studied by finite element method (FEM). The sensor 
structure parameters are shown in Figure 1, where the lattice constant (Λ) of the MOF is 2 μm. Both 
the diameter of the air holes (d) and the width of the slot (w) are 0.4 Λ, and the diameter of the gold 
nanowire (dg) is 200 nm. The opening depth (h) and the core diameter (dc) of the MOF are 2 Λ and 2.6 
Λ, respectively. Here, we ignore the material dispersion of the fused silica RI, assuming it is 1.45. The 
RI of air is assumed to be 1, and the permittivity (ϵDL) of the gold can be calculated by the Drude-
Lorentz model as [37]: 

Figure 1. (a) Schematic diagram of the surface plasmon resonance (SPR) sensor based on a side opening
hollow fiber and (b) experimental setup diagram of the proposed SPR sensor for temperature sensing.

The electromagnetic mode of the MOF is studied by finite element method (FEM). The sensor
structure parameters are shown in Figure 1, where the lattice constant (Λ) of the MOF is 2 µm. Both the
diameter of the air holes (d) and the width of the slot (w) are 0.4 Λ, and the diameter of the gold
nanowire (dg) is 200 nm. The opening depth (h) and the core diameter (dc) of the MOF are 2 Λ and 2.6 Λ,
respectively. Here, we ignore the material dispersion of the fused silica RI, assuming it is 1.45. The RI
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of air is assumed to be 1, and the permittivity (εDL) of the gold can be calculated by the Drude-Lorentz
model as [37]:

εDL(ω) = ε∞ −
ω2

D

ω(ω+ iγD)
−

∆ε ·Ω2
L(

ω2 −Ω2
L

)
+ iΓLω

(1)

where the parameters and values can be found in Reference [37]. The perfectly matched layer (PML)
and the triangular sub-domain are used to match the outmost layer and discretize the computation
region, respectively.

In order to satisfy the conditions for total reflection and ensure the sensor can work normally,
the sensing medium RI used here must be higher than the silica RI. In Figure 2, we present the real part
of the neff [Re(neff)] curve, loss spectra and the electric field distribution of the correlation mode of the
sensor when the sensing medium RI (n) is 1.47. The red dashed lines in Figure 2a,b denote the Re(neff)
of the x- and y-polarized SPP modes excited on the surface of the nanowire. The black solid lines and
blue dashed lines in Figure 2a,b represent the Re(neff) and loss spectra of the x- and y-polarized core
modes. As a result, the x-polarized resonance peak is at 1.066 µm (phase matching point C) and the
y-polarized resonance peak is at 1.037 µm (phase matching point F). At non-resonance wavelengths,
the x- and y-polarized core modes are well limited in the core region as shown by patterns A and D in
Figure 2c, while the x- and y-polarized SPP modes are well limited on the surface of the nanowire,
as shown by patterns B and E in Figure 2c. At resonance wavelength, as seen from patterns C and F
in Figure 2c, the x- and y-polarized core modes show syncretic patterns which means that they are
coupled to the x- and y-polarized SPP modes respectively, and thus generating the resonance peaks
in the loss spectra. If the n is changed by the temperature, the Re(neff) of the relevant mode is also
changed accordingly, and causes the shift of the resonance peak. Therefore, this mechanism can be
used to detect the temperature changes.
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Figure 2. (a) Dispersion relations of the x-polarized core mode and surface plasmon polaritons (SPP)
mode, losses as a function of wavelength for the x-polarized core mode, (b) dispersion relations of the
y-polarized core mode and SPP mode, losses as a function of wavelength for the y-polarized core mode
when the n is 1.47, and (c) electric field distributions of the relevant modes where the red arrows show
the polarization direction of the electric field.
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3. Results and Discussion

3.1. Sensing Performance

Here, we adopt benzene as the sensing medium, and its dispersion equation is given as [23]:

n0 = 1.475922 +
9671.57
λ2 − 5.2538×

108

λ4
+ 8.5442×

1013

λ6 − 2.6163×
1018

λ8 (2)

The temperature-induced change of the benzene RI (n) is evaluated by [12–14]:

n = n0 +
dn
dT
× (T − T0) (3)

where the thermal coefficient (dn/dT) of the benzene is 7.594 × 10−4/◦C at the reference temperature
T0 = 20 ◦C [23]. Here, in order to simplify the calculation method, the thermal coefficients of the
gold and the silica are negligible because they are much lower than liquids. Therefore, temperature
changes can be assumed to change the n only. To investigate the sensing performance of the proposed
sensor for temperature sensing, in Figure 3 we present the loss spectra of the x- and y-polarized
core modes at different n affected by temperature changes. Here, as we observe the temperature (T)
decreasing, the position of the resonance peak shifts to a shorter wavelength, which is consistent with
the phenomena of the hollow MOF-SPR sensors [25,26]. The temperature sensitivity is calculated
by [12–14].

S[nm/°C] = ∆λpeak/∆T (4)
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different n (temperatures).

Figure 4 shows the temperature sensitivities of the x- and y-polarized core modes at different
temperatures. In general, the y-polarized sensitivities are higher than the x-polarized sensitivities,
and they are gradually increasing with increasing temperatures. The maximum x- and y-polarized
sensitivities are 3.21 nm/◦C in the detection range of 13.27–50.99 ◦C and 4.98 nm/◦C in the detection
range of 14.55–51.19 ◦C, respectively. This value is much higher than that of other fiber optic temperature
sensors, as shown in Table 1. Note that the sensitivity and detection range of the proposed sensor
can be changed if using other sensing media. For example, the maximum sensitivities are 2.21 nm/◦C
for the x-polarized core mode in the temperature range of 13.27–59.15 ◦C, and 3.40 nm/◦C for the
y-polarized core mode in the temperature range of 14.55-59.38 ◦C, when we employ the toluene as the
sensing medium whose thermal coefficient and dispersion equation can be found in Reference [23].
Furthermore, they also can be adjusted to a desirable value by using some tunable RI sensing media
such as liquid crystal [24] and liquid mixture [12].



Sensors 2019, 19, 3730 5 of 9
Sensors 2019, 19, x FOR PEER REVIEW 5 of 10 

 

 

Figure 4. Temperature sensitivities of the x-polarized and y-polarized core modes at different 
temperatures. 

Table 1. Sensitivity comparison of various fiber optic temperature sensors. 

Fiber Structure Sensitivity 
(nm/°C) 

Temperature 
range (°C) 

Ref. 

Fabry-Pérot cavity 0.0846 20–100 [17] 
Fiber Bragg grating 0.172 30–65 [18] 

Mach-Zehnder interferometer 0.014 10–70 [19] 
Liquid sealed PCF 0.166 23.7–66.1 [20] 

Modal interferometer 0.0926 28–51 [21] 
FFPI 0.014 −79–70 [22] 

MOF-SPR 0.72 0–50 [13] 
Side opening hollow fiber-SPR 4.98 14.55–51.19 This work 

3.2. Fabrication Tolerance 

For the nanowire filled MOF-SPR temperature sensor in this paper, some fabrication tolerances 
that occur in actual manufacturing may have an impact on the sensing performance. Therefore, in 
the next section, we discuss the effect of fabrication tolerances in the range of ±10%.  

The first fabrication tolerance to be considered is the effect of gold nanowire positions on the 
SPR spectra. This manufacturing method of filling the nanowire directly into the MOF hollow core 
simplifies the manufacturing process compared to the previously mentioned coating process [9–13]. 
However, it is hard to keep the position of the nanowire in the MOF hole stationary. Here, we only 
consider the effect of the nanowire at the bottom region of the hole under gravity, as shown in Figure 
5. The rotation angle (θ) is used to describe the position of the nanowire, and the case where θ is 
positive indicates that the nanowire is deflected to the right. Because of symmetry, only the case 
where θ is positive is considered. When θ changes from 0° to 20° in Figure 6, the x- and y-polarized 
resonance peaks move to shorter wavelengths and the moving distance is very small, which has a 
smaller effect on the corresponding sensitivity, especially in the range of 0° to 10°. 

Figure 4. Temperature sensitivities of the x-polarized and y-polarized core modes at different temperatures.

Table 1. Sensitivity comparison of various fiber optic temperature sensors.

Fiber Structure Sensitivity (nm/◦C) Temperature Range (◦C) Ref.

Fabry-Pérot cavity 0.0846 20–100 [17]
Fiber Bragg grating 0.172 30–65 [18]

Mach-Zehnder interferometer 0.014 10–70 [19]
Liquid sealed PCF 0.166 23.7–66.1 [20]

Modal interferometer 0.0926 28–51 [21]
FFPI 0.014 −79–70 [22]

MOF-SPR 0.72 0–50 [13]
Side opening hollow fiber-SPR 4.98 14.55–51.19 This work

3.2. Fabrication Tolerance

For the nanowire filled MOF-SPR temperature sensor in this paper, some fabrication tolerances
that occur in actual manufacturing may have an impact on the sensing performance. Therefore, in the
next section, we discuss the effect of fabrication tolerances in the range of ±10%.

The first fabrication tolerance to be considered is the effect of gold nanowire positions on the
SPR spectra. This manufacturing method of filling the nanowire directly into the MOF hollow core
simplifies the manufacturing process compared to the previously mentioned coating process [9–13].
However, it is hard to keep the position of the nanowire in the MOF hole stationary. Here, we only
consider the effect of the nanowire at the bottom region of the hole under gravity, as shown in Figure 5.
The rotation angle (θ) is used to describe the position of the nanowire, and the case where θ is positive
indicates that the nanowire is deflected to the right. Because of symmetry, only the case where θ is
positive is considered. When θ changes from 0◦ to 20◦ in Figure 6, the x- and y-polarized resonance
peaks move to shorter wavelengths and the moving distance is very small, which has a smaller effect
on the corresponding sensitivity, especially in the range of 0◦ to 10◦.Sensors 2019, 19, x FOR PEER REVIEW 6 of 10 
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For other fabrication tolerances, the effect of the parameters w = 0.4 Λ, dc = 2.6 Λ and dg = 200 nm
on the SPR spectra at n = 1.47 are shown in Figures 7–9. As shown in Figure 7, the position of the
resonance peak is less affected by w, indicating that the sensor has good stability in the range of ±10%
fabrication tolerance of w. However, as the dc increases in Figure 8, the resonance peak shifts toward
the short wavelength direction, which is because the increase in dc causes the Re(neff) of the core mode
to become larger, as shown in Figure 8a,b, resulting in the intersection of the Re(neff) curves of the core
mode and the SPP mode, that is, the peak shifts to the short wavelength direction. The increase in dc

also reduces the loss of the core mode, which can make the resonance peak width narrower, as seen
from Figure 8c,d, and leads to a better resolution. Figure 9 shows the effect of dg on the loss spectra of
the proposed sensor, where dg changes in the range of –10% to 10%, and the resonance peak shifts
toward the long wavelength direction as dg increases. This is because the increases in dg increases the
Re(neff) of the SPP mode, as shown in Figure 9a,b, and thus leads to the intersection (the peak) which
moves toward the long wavelength, as seen from Figure 9c,d. In general, when the gold nanowire is
within ±20◦ deflection range and the sensor parameters (w, dc, and dg) are within ± 10% tolerances,
the SPR phenomenon is relatively stable, indicating that the sensor can work normally.Sensors 2019, 19, x FOR PEER REVIEW 7 of 10 
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media and need complex coating and filling processes. Taking benzene as the sensing medium for
an example, the maximum sensitivity of the sensor is 4.98 nm/◦C for the y-polarized core mode in
the temperature range of 14.55–51.19 ◦C, while maximum sensitivity and temperature range can be
adjusted by changing the sensing medium. In addition, the sensor also shows good stability in the
range of ± 10% fabrication tolerances. This sensor design can be used not only for temperature sensing
with the high RI sensing media, but also for the real-time sensing of high RI samples.
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