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Abstract: To achieve high measurement accuracy with less computational time-in-phase 
shifting interferometry, a random phase-shifting algorithm based on principal component 
analysis and Lissajous ellipse fitting (PCA&LEF) is proposed. It doesn’t need pre-filtering 
and can obtain relatively accurate phase distribution with only two phase shifted 
interferograms and less computational time and is suitable for different background intensity, 
modulation amplitude distributions and noises. Moreover, it can obtain absolutely accurate 
result when the background intensity and modulation amplitude are perfect and can partly 
suppress the effect of imperfect background intensity and modulation amplitude. Last but not 
least, it removes the restriction that PCA needs more than three interferograms with well-
distributed phase shifts to subtract relatively accurate mean. The simulations and experiments 
verify the correctness and feasibility of PCA&LEF. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

With the development of advanced optical manufacturing technology, the advanced optical 
testing technology has also been developed, and the interferometry is an easy and effective 
optical testing tool which is always seen as a testing standard. Since the optical phase 
distribution can be easily extracted by several interferograms, the phase shifting 
interferometry (PSI) has been widely used in optical measurement [1–3]. The performance of 
PSI mainly depends on the interferometer, environment and phase shifting algorithm (PSA), 
for the fixed interferometer and environment, outstanding PSA can improve the performance 
of PSI. An outstanding PSA should have two advantages which are high accuracy and 
timesaving feature, outstanding PSA could suppress the different kinds of errors to improve 
the accuracy, such as the miscalibration of piezo-transducer (PZT), detector error, vibrational 
error, air turbulence in the working environment, instability of the laser, etc., moreover, if it is 
easy to implement and only needs less phase shifted interferograms, it will save time, lastly, 
the PSA with random phase shift will be insensitive to the phase shift error due to the 
miscalibration of PZT, vibrational error, air turbulence, instability of the laser frequency, 
hence, a fast and accurate random PSA is essential for the high-quality optical testing with 
interferometry. 

In recent years, many random PSAs have been developed, it can be divided into the 
iterative and non-iterative PSAs. Generally, the accuracy of the iterative PSA is relatively 
high, but it costs more time because of the iterative operation, and the non-iterative PSA 
spends less time than the iterative PSA, but the accuracy may be not as high as the iterative 
PSA. For the optical metrology, especially for the in situ metrology, the instantaneity of PSA 
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is very important, hence, only a small number of iterative PSAs have been developed [4–6], 
most scientists were committed to research the non-iterative random PSA with high accuracy. 

In 1992, Farrell and Player [7] utilized Lissajous figures and ellipse fitting to calculate the 
phase difference between two interferograms, and in 2016, Liu et al. [8] proposed a PSA 
which can simultaneously extract the tested phase and phase shift from only two 
interferograms using Lissajous figure and ellipse fitting technology, but these two algorithms 
both need pre-filtering and the non-uniform intensity distribution will affect the accuracy. 
From 2003 to 2014, Cai et al. [9–17] proposed a series of statistical algorithms which can 
extract the phase shifts and tested phase, however, most of these algorithms need to know the 
intensities of object and reference, and many approximations in the PSAs will affect the 
accuracy. From 2011 to 2017 [18–24], proposed a series of PSAs based on principal 
component analysis (PCA) which is an efficient technique for phase extraction by converting 
a set of possibly correlated variables into a set of values of uncorrelated variables, but it needs 
more than three interferograms with the phase shift well distributed between 0 and 2π because 
it needs to subtract relatively accurate mean-background intensity, hence, the more the 
interferograms, the higher the accuracy is, but more interferograms will cost more acquisition 
time and computational time, it is difficult to obtain the high accuracy and high speed 
simultaneously. In 2012 [25], presented a two-step demodulation based on the Gram-Schmidt 
orthonormalization method (GS2), it requires subtracting the DC term by filtering before 
performing GS2. In 2014 [26], proposed an advanced GS method called GS3, it needs three 
phase shifted interferograms, and the major advantage of this method is that it performs well 
when the phase shift is close to π as most two-step algorithms become invalid in this 
situation. 

From the above literatures, we found a phenomenon that many PSAs need pre-filtering 
before the phase extraction, the pre-filtering process will cost more time, and it may affect the 
accuracy, in addition, some PSAs which don’t need pre-filtering may need more than three 
interferograms, they will also spend more time. Generally, the PSA with more interferograms 
has high accuracy and low speed, and the PSA with less interferograms has high speed and 
low accuracy, it is difficult to obtain the high accuracy and speed simultaneously. To balance 
the computational time and accuracy, the research of non-iterative random PSA with less 
interferograms and no pre-filtering is essential. 

In this paper, we will discuss a fast and accurate two-step PSA with random phase shift. 
Section 2 presents the principle and process of the proposed PSA based on principal 
component analysis and Lissajous ellipse fitting (PCA&LEF). In Section 3 the simulation of 
PCA&LEF is discussed, and the comparison of PCA&LEF with GS is performed. Section 4 
evaluates the novel PCA&LEF with the experimental data. The conclusion is finally drawn in 
Section 5. 

2. Principles 

The intensity expressions of the phase shifted interferograms are 

 ( )( , ) ( , ) ( , ) cos ( , ) ( , ).n n n n nI x y a x y b x y x y x yϕ δ ξ= + + +  (1) 

where ( , )nI x y  is the nth phase shifted interferogram with size of x yN N× , n = 1,2,...,N 

represents the image index with N the total number of phase shifted interferograms, N is set to 
2, ( ),na x y  and ( ),nb x y  respectively represent the background intensity and modulation 

amplitude of the phase shifted interferograms, ( ),x yϕ  is the tested phase, ( ),n x yξ  is the 

noise, and nδ  is the phase shift. For convenience, the spatial coordinate has been omitted in 

the following. 
Equation (1) can be rewritten as 
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 n n c n s nI I Iα β κ= + +  (2) 

where ( )cosn nα δ= , ( )sinn nβ δ= − , ( )cosc nI b ϕ= , ( )sins nI b ϕ=  and n n naκ ξ= + . 

For PCA, the first step is filtering the background intensity na  by subtracting the average 

of all the phase shifted interferograms, however, the background intensity can be well 
eliminated only when the phase shift is well distributed between 0 and 2π and the number of 
the phase shifted interferograms is large enough, when the phase shift is “randomly” 
distributed and the number of phase shifted interferograms is small, the phase extracted by 
PCA will be not accurate, and especially when there are only two phase shifted 
interferograms, the real phase can't be extracted by PCA since the background intensity can’ 
be eliminated in this situation. Hence, we design a new method which can extract the accurate 
phase without the background intensity filtering by PCA, and it only needs two randomly 
phase shifted interferograms. 

From Eq. (2), we can see that the intensity of the phase shifted interferogram can be 
expressed as a linear combination of two signals, the background intensity and noise term. 
Then, we can rewrite Eq. (2) as 

 .I Q= Γ + ℜ  (3) 

where [ ],Q p q= with size of 2x yN N × , p and q are column vectors with size of 1x yN N ×

whose elements are taken columnwise from cI and sI , [ ],
Tα βΓ =  with size of 2 N× , α and

β are the column vectors with size of 1N ×  whose elements are taken columnwise from nα
and nβ , ℜ  is the background intensity and noise matrix with size of x yN N N× ,where the nth 

column is taken columnwise from nκ , lastly, I  is a matrix with size of x yN N N× ,where the 

nth column is taken columnwise from nI . 

The covariance matrix C can be expressed as 

 ( ) ( )TT T T T T T T T T TC I I Q Q Q Q Q Q Q Q= = Γ + ℜ Γ + ℜ = Γ Γ + Γ ℜ + ℜ Γ + ℜ ℜ ≈ Γ Γ + ℜ ℜ
 (4) 

The product of two uncorrelated matrixes- T TQΓ ℜ  and T Qℜ Γ can be ignored because they 

are significantly smaller than T TQ QΓ Γ  and Tℜ ℜ . 

 [ ]
2

2

,
.

,

T
α α βα

α β
β α β β

    ΓΓ = =      
 (5) 

where ⋅ and ,⋅ ⋅ represent the norm and inner product, ( )2 2

1

cos
N

n
n

α δ
=

= ,

( )2 2

1

sin
N

n
n

β δ
=

= , and ( ) ( )
1

, cos sin
N

n n
n

α β δ δ
=

= − . 

Note that, TΓΓ  is real and symmetric matrix, it can be diagonalized as T TP D PΓ Γ ΓΓΓ = , 

where DΓ and PΓ are diagonal and orthogonal matrices. 

 ( ) ( )( )1 2 1 2ˆ ˆ .
TTT T T TP D P P D D PΓ Γ Γ Γ Γ Γ ΓΓΓ = = Γ Γ  (6) 
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Γ̂ is a new matrix that ˆ ˆ T EΓΓ = , where E is unit matrix. Hence, according to Eq. (6), we can 
get the expression of Γ as 

 1 2 ˆ .TP DΓ ΓΓ = Γ  (7) 

The new matrix Γ̂  can be expressed as 

 1 2ˆ .D P−
Γ ΓΓ = Γ  (8) 

The DΓ is given by 

 1

2

0
.

0
D

λ
λΓ

 
=  
 

 (9) 

with 

 
( ) ( )22 2 2 2 2

1,2

4
.

2

α β α β α β
λ

+ ± − + ⋅
=  (10) 

and PΓ is given by 

 

( )
( ) ( )

( )
( )

( )

2

1

2 22 2 2 2

1 2

2

2

2 22 2 2 2

1 2

.P

λ α α β

α β λ α α β λ β

λ βα β

α β λ α α β λ β

Γ

 − ⋅ 
 

⋅ + − ⋅ + − 
 =
 −⋅ 
 

⋅ + − ⋅ + − 
 

 (11) 

Additionally, TQ Q  can be expressed as 

 ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2

2 2 22

cos cos sin
.

cos sin sin
x y

T

N N

p p qp b b
Q Q p q

q b bp q q

ϕ ϕ ϕ
ϕ ϕ ϕ×

 ⋅     = = =      ⋅    


 (12) 

If we have more than one fringe in the interferograms, we can use the approximation 

 ( ) ( )2 cos sin 0.
x yN N

b ϕ ϕ
×

≈  (13) 

and 

 ( ) ( )2 2 2 2cos sin .
x y x yN N N N

b bϕ ϕ σ
× ×

≈ ≈   (14) 

Hence, Eq. (12) can be rewritten as 

 
1 0

.
0 1

T
QQ Q D σ  

= ≈  
 

 (15) 

According to Eqs. (4), (7) and (15), we have 
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 1 2 1 2ˆ ˆ .T T T
QC D P D P DΓ Γ Γ Γ≈ Γ Γ + ℜ ℜ  (16) 

Since QD is an approximate diagonal matrix, and T TP P P P EΓ Γ Γ Γ= = , Eq. (16) can be rewritten 

as 

 ( )ˆ ˆ .T
QC D D DΓ ℜ≈ Γ + Γ  (17) 

where 

 ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ .
T

T T T T T Dℜℜ ℜ = Γ ℜΓ ℜΓ Γ = Γ Γ  (18) 

According to Eq. (7), Eq. (3) can be rewritten as 

 ( ) ( )1 2 1 2ˆ ˆ .T TI Q P D QP DΓ Γ Γ Γ≈ Γ + ℜ = Γ + ℜ  (19) 

PCA is a technique from statistics for reducing an image or data set that transforms a number 
of uncorrelated images into the smallest number uncorrelated images called the principle 
components. Since the covariance matrix C is a real and symmetric matrix, it can be 
diagonalized as 

 .TC U DU=  (20) 

where U and D are orthogonal and diagonal matrices. 
The principle components of the interferograms are given by 

 .TZ IU=  (21) 

where Z is matrix with size of x yN N N× , and its column vectors zn are the principle 

components. 
The phase will be extracted by PCA using the first and second components (z1 and z2), that 

corresponds to the highest eigenvalues, as Eq. (22). 

 2

1

arc tan arc tan .s

c

I z

I z
ϕ

   
= =   

  
 (22) 

According to Eqs. (17) and (20), we can state that U and D correspond to Γ̂ and QD D DΓ ℜ+  

respectively. Then, we can rewrite Eq. (21) as 

 ( )( ) ( )1 2 1 2ˆˆ ˆ ˆ , 1, 2.T T
i

i i
z I QP D QD iΓ Γ Γ= Γ = + ℜΓ = + ℜΓ =  (23) 

where ˆ TQ QPΓ= . 

We know that TPΓ is a 2 × 2 orthogonal matrix, so it can be expressed as 

 
( ) ( )
( ) ( )

cos sin
.

sin cos
TP

θ θ
θ θΓ

 
=  − 

 (24) 

Then 
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( ) ( )( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

cos sinˆ cos sin .
sin cos

cos cos sin sin cos sin sin cos

ˆ ˆcos sin

TQ QP b b

b b b b

b b p q

θ θ
ϕ ϕ

θ θ

ϕ θ ϕ θ ϕ θ ϕ θ

ϕ θ ϕ θ

Γ

 
= =  − 

= − +

= + + =

 (25) 

Then, 

 
( ) ( ) ( )
( ) ( ) ( )

1 2 1 2
1 1 1

1 1

1 2 1 2
2 2 22 2

ˆ ˆˆ cos .

ˆ ˆˆ sin

z p b

z q b

λ ϕ θ λ

λ ϕ θ λ

= + ℜΓ = + + ℜΓ

= + ℜΓ = + + ℜΓ
 (26) 

Then we can obtain 

 

( )
( )

( )
( )

1
1

1 2
1

2
2

1 2
2

ˆ
cos .

ˆ
sin

z

b

z

b

ϕ θ
λ

ϕ θ
λ

− ℜΓ
+ =

− ℜΓ
+ =

 (27) 

Because ( ) ( )2 2sin cos 1ϕ θ ϕ θ+ + + = , and we use X and Y instead of z2 and z1, then Eq. (27) 

can be rewritten as 

 

22

0 0 1.
x y

X x Y y

a a

  − −
+ =       

 (28) 

Note that Eq. (28) is just an ellipse equation, 

 ( ) ( )1 2 1 2
2 2 0 02 1

ˆ ˆ, , , .x ya b a b x yλ λ= = = ℜΓ = ℜΓ  (29) 

Equation (28) can be expanded as a general conic function: 

 
2 2

2 2 0 0 0 0
2 2 2 2 2 2

1 1
2 2 1 0.

x y x y x y

x y x y
X Y X Y

a a a a a a
+ − − + + − =  (30) 

A general conic function can be also expressed by the following second order polynomial: 

 2 2 .F cx dxy ey fx gy h= + + + + +  (31) 

For an ellipse, Eq. (31) needs to meet the conditions of 0F =  and 2 4 0d ce− < . In the 
following, the real phase distribution will be obtained by the Lissajous ellipse fitting (LEF) 
method. Firstly, by plotting z2 against z1 in a Cartesian coordinate, a Lissajous ellipse which is 
just the representation of Eq. (28) will be created, and it will be easy to calculate the conic 
coefficients of Eq. (31) by the least squares algorithm, then, the semi-major amplitude xa , 

semi-minor amplitude ya , the center offset 0x and 0y  can be calculated as 
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 ( ) ( ) ( )( ) ( ) ( ) ( )( )
2 2 2 2 2 2

2 22 2 2 2

0 02 2

4 4
2 , 2 .

4 4

2 2
,

4 4

x y

cg ef hd dfg ceh cg ef hd dfg ceh
a a

d ce c e d c e d ce c e d c e

ef dg cg df
x y

d ce d ce

+ + − − + + − −= =
− − + − + − − − + − +

− −= =
− −

 (32) 

Lastly, according to Eqs. (27) and (28), the phase Φ  can be easily calculated as 

 1 0

0

tan .y

x

aX x

Y y a
ϕ θ −  −

Φ = + = ⋅ − 
 (33) 

We know that there is only a constant θ  between betweenϕ and Φ , which doesn’t affect the 

whole phase distribution, hence we can use Φ  to express the tested phase distribution. 
Based on the principles of PCA and LEF, we propose a novel method called principle 

components analysis and Lissajous ellipse fitting algorithm (PCA&LEF), it can extract the 
phase distribution from two randomly phase shifted interferograms without background 
intensity filtering, it removes the restriction that PCA needs more than three interferograms 
with well distributed phase shifts to subtract relatively accurate mean-background intensity. 
In the following, we will introduce the process of the proposed method in detail: 

1) Generate a matrix I with size of x yN N N× , where the nth column is taken columnwise 

from the intensity of nth phase shifted interferograms nI ; 

2) calculate the covariance matrix C by equation TC I I= ; 

3) calculate the orthogonal matrix Γ̂  including the eigenvectors of the covariance matrix 
C; 

4) obtain the first and second principle components (z1 and z2) which corresponds to the 

highest eigenvalues by ˆ T
iz I= Γ ; 

5) plot an approximate ellipse with z2 as the x coordinate and z1 as the y coordinate; 

6) calculate the semi-major amplitude xa , semi-minor amplitude ya , the center offset 

0x and 0y  of the Lissajous ellipse using LEF by Eq. (32); 

7) calculate the phase distribution using Eq. (33). 
The whole procedure of the PCA&LEF is illustrated in Fig. 1. 
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From Table1, we can see that the accuracy of PCA&LEF is higher than that of GS in 
different situations since there is no filtering in PCA&LEF and LEF can suppress some errors 
to extract the accurate phase distribution. Moreover, the computational time of PCA& LEF is 
less than that of GS because the filtering before performing GS costs more time. Through the 
three situations, we found that the RMS phase errors are similar for GS because the main 
error of GS is filtering error, however, for the RMS phase errors of PCA&LEF, there are big 
differences in different situations, the RMS phase error is close to zero in situation 1, it means 
that PCA&LEF can obtain absolutely accurate result when the background intensity and 
modulation amplitude are perfect, and the RMS phase error of PCA&LEF in situation 2 is 
larger than that in situation 1, but it is only 0.0127 rad, that is to say, PCA&LEF can partly 
suppress the effect of the background intensity and modulation amplitude fluctuation and 
non-uniformity, lastly, situation 3 is most complex, the non-uniformity between different 
pixels, fluctuation error between different interferograms and noise are all added to the 
interferograms, the mixed errors cause the largest phase error, the RMS phase error which is 
0.1307 rad is more than 10 times of situation 2, that is to say, LEF can’t suppress the effect of 
noise. 

From Fig. 1, we know that there are 7 steps for PCA&LEF, to further study the 
computational time of PCA&LEF, we respectively calculate the computational time of every 
step in three different situations, as shown in Table 2. We found that the computational time 
of the front five steps are relatively small, especially the front four steps, the computational 
time can be ignored. Step 6 which is the LEF process costs most time, although LEF process 
spends many time, it increases the accuracy and avoids the pre-filtering, if the pre-filtering is 
used, it will cost more time, and the accuracy will be decreased, GS is an example. Moreover, 
step 7 costs more time because the unwrapped process is the main part of the phase 
calculation, and the unwrapped process is unavoidable for every PSA. From the above study, 
we can conclude that PCA hardly costs time, LEF process and phase calculation cost more 
time in PCA&LEF. 

Figure 4 shows the ellipses before and after using LEF for PCA&LEF in different 
situations, we can see that, before using LEF, the approximate ellipse with X as the x 
coordinate and Y as the y coordinate is not centered at the origin, after using LEF, the ellipse 
was transformed an approximate circle with ( )0 xX x a− as the x coordinate and ( )0 yY y a−
as the y coordinate centered at the origin. For situations 1 and 2, whether the ellipse before 
using LEF or the circle after using LEF, the curve is smooth, but the curve is not smooth for 
the last situation since the noise exists, and LEF cannot remove this effect. 

 
Fig. 2. Simulated phase distribution and two phase shifted interferograms. (a) The theoretical 
phase distribution (PV = 31.4159 rad, RMS = 6.6561 rad), (b) and (c) the first interferogram 
and the second interferogram. 
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Fig. 3. The phase distributions and phase error distributions calculated by PCA&LEF and GS 
in different situations. 

Table 1. The RMS phase errors and computational time of PCA&LEF and GS in 
different situations 

 N 1 2 3 

RMS Phase error (rad) 
PCA&LEF 

3.4949 × 
10−6 

0.0
127 

0.1
370 

GS 0.1471 
0.1

491 
0.1

449 

Computational time (s) 
PCA&LEF 1.6307 1.6116 1.6058 

GS 3.1117 
3.0

439 
3.1

555 

Table 2. The computational time of every step for PCA&LEF in different situations 
Time (s) Situation 1 Situation 2 Situation 3 
Step 1 0.003110 0.002576 0.003138 
Step 2 0.000586 0.000558 0.000563 
Step 3 0.000633 0.000558 0.000581 
Step 4 0.007928 0.005904 0.005288 
Step 5 0.074457 0.074653 0.073545 
Step 6 1.017182 1.002472 1.001089 
Step 7 0.526767 0.524898 0.521588 
Total 1.6307 1.6116 1.6058 
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Fig. 4. The ellipses before and after using LEF for PCA&LEF in different situations. 

In order to analyze the effect of different phase shifts and different levels of noises for two 
methods, we calculate the RMS phase errors of PCA&LEF and GS with different phase shifts 
in 6 different situations, the range of phase shift is between 0.2 rad and 6.2 rad, and the 
situations 1, 2 and 3 are same as the above simulation, we additionally discuss the different 
levels of noises in situation 3, such as 30 dB, 40 dB and 50 dB. The results are presented in 
Fig. 5. Figure 5(a) shows the results of PCA&LEF, we can see that, the more complex the 
situation, the larger the RMS phase error is, for situation 1, the RMS phase errors 
approximate to zero for most different phase shifts except for 3.2 rad which is close to π rad, 
for situation 2, the RMS phase errors are larger than that in situation 1 due to the fluctuation 
and non-uniformity of the background intensity and modulation amplitude, for situation 3, the 
RMS phase error is increasing with the increase of the SNR of noise since LEF can’t suppress 
the noise, moreover, for situation1, 2 and 3 (50dB), PCA&LEF is workable for the different 
phase shifts, however, for situation 3 with larger noise, PCA&LEF sometimes doesn’t work 
in some special phase shifts which is close to 0 rad, π rad and 2π rad since PCA&LEF can’t 
suppress the noise, and the noise affect the fitting of Lissajous ellipse, the larger the noise, the 
smaller the working range of phase shift is, for situation 3 (20dB), 0 rad to 0.6 rad, 2.8rad to 
3.4 rad, and 5.8 rad to 6.2 rad are invalid range, we found a common feature that the nearer 
the phase shift to 0 rad, π rad and 2π rad, the larger the RMS phase error is. Figure 5(b) shows 
the results of GS, the RMS phase errors of GS have no concern with the different situations 
because the filtering error is the largest error, and for different situations, they have the 
common invalid range of phase shift, they are 2.8 rad to 3.8 rad, 6.0 rad to 6.2 rad, hence, GS 
is not always valid with random phase shift even through the experimental environment and 
interferometer are perfect. 

Moreover, we also compare PCA&LEF and GS in the above 6 situations, the compared 
results are shown in Fig. 6, we can see that, in situation 1, the RMS phase errors with random 
phase shift are far smaller than that of GS, and in situations 2 and 3, the results are similar as 
situation 1 except 3.2 rad, in situations 4 and 5, most RMS phase errors of PCA&LEF are also 
smaller than that of GS except the phase shifts which is close to 0 rad, π rad and 2π rad, lastly, 
in situation 6, the orders of magnitudes for two methods are similar, that is to say, the effect 
of the noise for PCA&LEF and the effect of the filtering error for GS are similar. If the 
relatively high accuracy is demanded, it would be best to suppress the noise before using the 
proposed method, and it's best to choose a phase shift which is far away from 0 rad, π rad and 
2π rad to further increase the accuracy. 
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Fig. 5. RMS phase errors of PCA&LEF and GS with different phase shifts in different 
situations. 
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Fig. 6. The compared results of PCA&LEF and GS in different situations. 

4. Demonstration with experimental data 

In order to verify the performance of the proposed method, three groups of experiments are 
performed to do the phase retrieval by the proposed method and GS. The experimental setup 
is Twyman-Green interferometer with 4D camera which is a kind of synchronous phase-
shifting interferometer (SPSI) [27], four phase-shifted interferograms with the phase shifts 0, 
π/2, π and 3π/2 can be extracted from a single image snapshotted by the 12 bit polarization 
camera PolarCam with the pixel number of 1208 × 1348 and the pixel size of 7.4 µm from 4D 
Technology, Inc [28–30]. Moreover, we test different objects to capture the circular, straight 
and complex fringes. For the first experiment, the phase shifted interferograms with the 
circular fringes are collected, the size of the interferograms is 301 × 301, and the phase 
extracted by standard 4-step PSA is set as the reference phase due to its high accuracy. One of 
the interferograms is shown in Fig. 7(a), Fig. 7(b) shows the reference phase distribution, and 
the phase distributions extracted by PCA&LEF and GS are drawn in Figs. 7(c) and 7(d). The 
differences between the reference phase and the phase extracted by PCA&LEF and GS are 
shown in Figs. 7(e) and 7(f), the RMS values of the differences are respectively 0.0581 rad 
and 0.1805 rad, further verifying the accuracy of PCA&LEF is higher than that of GS. 
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Moreover, the computational time of PCA&LEF (1.2458 s) is less than that of GS (1.8681 s), 
actually, the computational time of GS is only 1s, but the Hilbert-Huang pre-filtering before 
performing GS costs long time which is 1.40s, and the filtering process introduces the extra 
phase error to the result. For PCA&LEF, the ellipses before and after using LEF are plotted in 
Figs. 7(g) and 9(h). 

Then, the second and third experiments with the straight and relatively complex fringes 
are performed, the size of the interferograms with the straight fringes is 401 × 401, and the 
size of the interferograms with the complex fringes is 201 × 201, other conditions are same as 
the above circular fringes. Figures 8 and 9 show the results of the straight and complex 
fringes, we can see that, both PCA&LEF and GS are effective for the different fringes. 
Moreover, for the straight fringes, the RMS values of the differences between the reference 
phase and the phase extracted by PCA&LEF and GS are 0.0453 rad and 0.2392 rad, and the 
computational time of PCA&LEF and GS are 1.6769 s and 3.2142 s respectively. And, for the 
complex fringes, the RMS values of the differences for PCA&LEF and GS are 0.0832 rad and 
0.1116 rad, and the computational time are 0.9674 s and 1.2804 s. For these two kinds of 
fringes, we get the same conclusion as the circular fringes in regard to the accuracy and 
computational time. Through the above experiments, we verify that, both PCA&LEF and GS 
are suitable for the circular, straight and complex fringes, and the proposed PCA&LEF 
without pre-filtering can obtain relatively accurate result with less computational time by only 
two interferograms. 

Finally, we study the computational time of every step for PCA&LEF with the different 
fringes, as shown in Table 3. The conclusions are same as the simulation, for the different 
fringes, steps 6 and 7 also cost more time than other steps, and the computational time of 
every step are different for the different fringes because the sizes of the interferograms are 
different. 

 

Fig. 7. Experimental results of the circular fringes . (a) One of the phase shifted 
interferograms, (b) the reference phase distribution extracted by 4-step PSA (PV = 24.9105rad, 
RMS = 5.0283 rad), (c) and (d) the phase distributions extracted by PCA&LEF (PV = 25.1416 
rad, RMS = 5.0314 rad) and GS (PV = 25.1539 rad, RMS = 4.9495 rad), (e) and (f) the 
differences between the reference and phase distributions extracted by PCA&LEF and GS, (g) 
and (h) the ellipses before and after using LEF. 
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Fig. 8. Experimental results of the straight fringes. (a) One of the phase shifted interferograms, 
(b) the reference phase distribution extracted by 4-step PSA (PV = 22.2217rad, RMS = 6.0449 
rad), (c) and (d) the phase distributions extracted by PCA&LEF (PV = 22.1837 rad, RMS = 
6.0488 rad) and GS (PV = 24.0806 rad, RMS = 6.0492 rad), (e) and (f) the differences between 
the reference and phase distributions extracted by PCA&LEF and GS, (g) and (h) the ellipses 
before and after using LEF. 

 

Fig. 9. Experimental results of the complex fringes . (a) One of the phase shifted 
interferograms, (b) the reference phase distribution extracted by 4-step PSA (PV = 40.4129rad, 
RMS = 8.4209 rad), (c) and (d) the phase distributions extracted by PCA&LEF (PV = 40.7467 
rad, RMS = 8.4380 rad) and GS (PV = 24.0806 rad, RMS = 6.0492 rad), (e) and (f) the 
differences between the reference and phase distributions extracted by PCA&LEF and GS, (g) 
and (h) the ellipses before and after using LEF. 
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Table 3. The computational time of every step for PCA&LEF with the different fringes 

Time (s) Circular fringes Straight fringes Complex fringes 
Step 1 0.001714 0.004360 0.002139 
Step 2 0.000477 0.000651 0.000354 
Step 3 0.000663 0.000648 0.000749 
Step 4 0.004215 0.008880 0.003593 
Step 5 0.051740 0.050191 0.050170 
Step 6 0.768652 0.915817 0.504136 
Step 7 0.418376 0.696384 0.406307 
Total 1.2458 1.6769 0.9674 

5. Conclusion 

In this paper, we present a PSA based on principal component analysis and Lissajous ellipse 
fitting, PCA is firstly used without subtracting the mean-background intensity, then the LEF 
process is performed to extract the real phase distribution. We have compared PCA&LEF and 
well-evaluated GS by the simulated and experimental data. The proposed method can achieve 
high accuracy with only two randomly phase shifted interferograms and no pre-filtering, and 
it can directly obtain the tested phase with less computational time. Then, it removes the 
restriction that PCA needs more than three interferograms with well distributed phase shifts to 
subtract relatively accurate mean-background intensity. In addition, it is suitable for different 
background intensity, modulation amplitude distributions and noises, and it can obtain 
absolutely accurate phase distribution when the background intensity and modulation 
amplitude are perfect, also, it can partly suppress the effect of the imperfect background 
intensity and modulation amplitude. Lastly, if the higher accuracy is requested, the noise is 
best to be suppressed, and it's best to choose a phase shift which is far away from 0 rad, π rad 
and 2π rad. The simulations and experiments demonstrate the validity of the proposed 
method. In summary, this proposed method is a power tool for the phase retrieval with 
random phase shift. 
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