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To achieve high measurement accuracy with less computational time in phase shifting interferometry, a random
phase retrieval approach based on difference map normalization and fast iterative algorithm (DN&FIA) is pro-
posed, it doesn’t need pre-filtering, and has the advantage of the iterative algorithms-high accuracy, moreover,
it also has the advantage of non-iterative algorithms-timesaving, it only needs three randomly phase shifted in-
terferograms, and the initial phase shifts of the iteration can be random, last but not least, it is effective for the

circular, straight or complex fringes. The simulations and experiments verify the correctness and feasibility of

DN&FIA.

1. Introduction

Since the optical phase distribution can be easily extracted by several
interferograms, the phase shifting interferometry (PSI) has been widely
used in optical measurement [1-3]. The accuracy of PSI mainly depends
on the interferometer, environment and phase shifting algorithm (PSA),
for the fixed interferometer and environment, the performance of PSA is
very important to the accuracy of PSI, outstanding PSA can be applied
to suppress the different kinds of errors, such as the miscalibration of
piezo-transducer (PZT), detector error, vibrational error, air turbulence
in the working environment, instability of the laser, and so on [4-6].

To date, the PSA can be divided into two types. The first type is
the fixed-step PSA which can obtain the phase distribution by a se-
ries of phase shifted interferograms with equal and known phase shifts.
This kind of algorithm needs at least three phase shifted interferograms,
moreover, it can work well only when the phase shift is equal to the
pre-set value, otherwise, a large error or deviation of phase retrieval
will appear. Hence, this kind of algorithm is suitable for the situation
with outstanding interferometer and stable environment. 3-step, 4-step,
5-step, and N-step PSAs etc. are all the outstanding fixed-step algorithms
[41.

The second type is the random PSA. This kind of algorithm is suitable
for the general interferometer and environment since it can overcome
the phase shift error due to the miscalibration of PZT, vibrational er-
ror, air turbulence, instability of the laser frequency. For the random
PSA, it can be divided into the iterative and non-iterative PSAs. Gen-
erally, the accuracy of the iterative PSA is relatively high, but it costs
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more time because of the iterative operation. In 2004, an advanced iter-
ative algorithm (AIA) based on a least-squares iterative procedure was
introduced to extract phase distribution from randomly phase shifted
interferograms [7]. It copes with the limitation of the existing iterative
algorithms by separating a frame-to-frame iteration from a pixel-to-pixel
iteration, and provides stable convergence and accurate phase extrac-
tion. In 2008, Xu et al. [8] presented an advance iterative algorithm
to extract phase distribution from randomly and spatially non-uniform
phase shifted interferograms, this algorithm divides the interferograms
into small blocks and retrieves local phase shifts accurately by iterations.
In 2013, an iterative PSA based on the least-squares principle was devel-
oped to overcome the random piston and tilt wavefront errors generated
from the phase shifter [9]. In general, for optical metrology, especially
for the in-situ metrology, the instantaneity of PSA is very important,
while the iterative PSA costs more time, hence, only a small number of
iterative PSAs have been developed.

The non-iterative PSA spends less time than the iterative PSA, but
the accuracy may be not as high as the iterative PSA. In 1992, Far-
rell and Player [10] utilized Lissajous figures and ellipse fitting to cal-
culate the phase difference between two interferograms, and in 2016,
Liu et al. [11] proposed a PSA which can simultaneously extract the
tested phase and phase shift from only two interferograms using Lis-
sajous figure and ellipse fitting technology, but these two algorithms
both need pre-filtering and the non-uniform intensity distribution will
affect the accuracy. From 2003 to 2014, Cai et al. [12-20] proposed a
series of statistical algorithms which can extract the phase shifts and
tested phase, however, most of these algorithms need to know the
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intensities of object and reference. From 2011 to 2017, [21-27] pro-
posed a series of PSAs based on principal component analysis (PCA)
which is an efficient technique for phase extraction by converting a set
of possibly correlated variables into a set of values of uncorrelated vari-
ables, but it cannot determine the global sign of the measured phase,
and it needs more than three interferograms because it need to subtract
relatively accurate mean. In 2012, [28] presented a two-step demodu-
lation based on the Gram-Schmidt orthonormalization method (GS2), it
requires subtracting the DC term by filtering before performing GS2. In
2014, Wang et al. [29] proposed an advanced GS method called GS3, the
major advantage of this method is that it performs well when the phase
shift is close to 7= as most two-step algorithms become invalid in this
situation. Although non-iterative PSA costs less time than the iterative
PSA, some non-iterative PSAs also spend more time on the pre-filtering
or the determination of the global sign of the measured phase (PCA),
hence, saving time is essential for both the iterative and non-iterative
PSAs.

To achieve the high measurement accuracy with less time, the PSA
is critical. For the non-iterative PSA with less than three phase shifted
interferograms, it is difficult to obtain the high accuracy. For the iter-
ative PSA, it can obtain the high accuracy, but it needs more time. To
balance the computational time and accuracy, the research of iterative
PSA with less time is essential.

In this paper, we will discuss the accurate and timesaving phase re-
trieval approach with unknown phase shifts. Section 2 presents the prin-
ciple and process of the proposed PSA based on difference map normal-
ization and fast iterative algorithm (DN&FIA). In Section 3 the simula-
tion of DN&FIA is discussed, and the comparison with AIA is performed.
Section 4 evaluates the novel PSA with the experimental data. The con-
clusion is finally drawn in Section 5.

2. Principles
2.1. Principle of the difference map normalization (DN)

In PSI, the intensity distribution of the phase shifted interferograms
can be expressed as:

I;j = a;; + by cos (@; +6;) ¢h)

where i=1,2,...,P represents the image index with P the total number
of phase shifted interferograms, P is set to 3, for simplicity, we use a
single symbol j=1,2,...,Q to denote the bidimensional pixel position
with Q the total number of pixels, a; and b; respectively represent
the background intensity and modulatlon amphtude, @; is the tested
phase, and 9; represents the phase shift between interferograms. Because
there is only a piston 6; between ¢; and ¢; + 6,, which doesn’t affect
the phase distribution, for simplicity, we define 6, = 0 in the following
discussion.

Firstly, we implement the subtraction between the three phase
shifted interferograms to filter the background intensity since the sub-
traction can cost less time than the filtering algorithm. Generally for
the background intensity and modulation amplitude distributions, both
the fluctuation between different interferograms and the non-uniformity
between different pixels exist due to the instability of the light source,
however, the subtraction can still filter most of the background inten-
sity, hence, for simplicity, we assume that a; and b; are irrelevant to
i, only relevant to j in the filtering process, so a;; = a,; = - = ap; = a;,
by; =by; = -+ =bp; = b;, and a best condition of this assumption can be
given that it is best to use the light source with high stability or apply
to the synchronous phase-shifting interferometer (SPSI).

Two difference maps between the 1st, 2nd, and 3rd interferograms
can be defined as:

(0 . 0,
Dy; = 1,; - I,; = 2b; sin 5 sin ¢j+7
0. 0.
= 2b; sin (é) cos (ij - %) = 2b; sin <72> cos (@'))

(@)
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(& 03
I3; =2b;sin > sin (pj+7

0 0
= 2b; sin (%) cos <CI)j +A-— %) = 2b; sin <?3> cos (@', +4) (3)

Dy =1 -

where ®; = ¢, + 2, A = 252 =0, - L

Since the phase shifts between the dlfferent interferograms are differ-
ent, 6, # 03 and 25, sin( 22) # 2by, s1n( 5 ), the amplitude of Dyjis different
from D,;. Hence, to eliminate the effect of the different amplitudes, the
normalization is introduced to cope with two difference maps. More-
over, whether the Euclidean 2-norm or infinity norm can normalize the
difference vectors D;; and Dy;, we will choose the Euclidean 2-norm
since we want to obtain the new phase shifted interference signals with-
out the background intensity in the following.

Generally, the normalization of the vector u can be expressed as

i=u/\{uu) =uf|ul

where i represents the normalized vector, ||| and (-,
represent the 2-norm and the inner product.
Normalizing the two difference vectors D,; and D,;, we can obtain

“

-} respectively

Dy; b; (ol
= 2 bt B
H U” ¥ 52,082 (®)
j=1
- D, b; cos (<I>’j+A)
AT Y (6)
H Zj” Y b2jcos? (@' + A)
=1

If we have more than one fringe in the interferograms, we have the
following approximation

Z b? jcos? (@) — 2 b?;cos? (@' + A)

Jj=1

= § b?; - [cos (@';) = cos (@', + A)] - [cos (@';) + cos (@', + A)]

- sin (—Z‘DU’A) - sin (i) - cos (—2¢’+A) - COos (i> ™
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I

Then we will have the approximation

4
Z b2j0052(<1>’j + A)
j=1

Qo
szjcosz(d>/j) ~ (8)
j=1

Then the above normalized difference vectors can be rewritten as
G ©®
D,; =c;jcos (?'; + A) (10

D,; =c;cos

b; b
where ¢ = g = L

0o o ’
J '21 b2 jcos?(@' ;) J '21 b2 jcos?(@' ;+A)
j= =

0, cannot be equal to 05 since the phase shift must exist between
different phase shifted interferogarms, hence, A is non-zero value, from
Egs. (9) and (10), we can see that f)lj and Dzj are just as two phase
shifted interference signals without the background intensity, A repre-
sents the phase shift between two new phase shifted interference signals,
and ¢; denotes the new modulation amplitude. Because of the fluctua-
tion, non-uniformity of the original modulation amplitude b; and the
approximation error of Eq. (8), the new modulation amplitude ¢; are
both relevant to the pixel positions and image index, hence Egs. (8) and
(9) are rewritten as

Cj c0s (' +4,,) (11)

mj =
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where m=1,2 denotes the index of the new phase shifted interference
signals, A; =0 and A, = A.

We know that there is only a piston between ¢; and CD;., which doesn’t
affect the phase distribution, hence we can use (D;. to express the tested
phase.

2.2. Principle of the fast iterative algorithm(FIA)

After the difference map normalization (DN), we design a fast it-
erative algorithm (FIA) which can accurately extract the tested phase
distribution with less computational time. In the following, we will in-
troduce the proposed method in detail:

Stepl: We select a limited number of samples at regular intervals
from Eq. (11), the phase shifted signal with the chosen samples
can be expressed as

D!, = cpycos (@, +A,) 12)
where n=1,2,...,N denotes the chosen pixel number with N the total
number of chosen pixels.

Step 2: Provided that c,, is irrelevant to m, only relevant to n,
thenc, , = ¢, , = c,. By setting 5, = ¢, cos @/, and &, = —c, sin®/,
Eq. (11) can be rewritten as

D! =n,cosA, +&, sinA, (13)
The sum of squared differences between the theoretical and actual
value of the phase shifted signal can be expressed as

2 2
~ ~ 2 . ~ 2
Sy =Y (D= Dypy)” = (m,c08A,, +&,sinA, - D,,) (14)
m=1
where D,,, is actual value of the difference phase shifted signal obtained
by the experimental data.
According to the least-squares theory [7-9], S,, should be minimum,
for the known A; and A,, 9.5,/0n, =0, 9S,/9&, = 0, so

X,=T7'R, (15)
2 2
> cos?A,, Y sinA,cosA,
T = ) m=1 m=1 ) (16)
Y sinA,, cos A, Y sin?A,,
m=1 m=1
T
Xy =n, &) amn
2 2 r
R, = [ Y, D,,cosA,, Y D,,sinA, (18)
m=1 m=1

n, and &, can be obtained by Eq. (15), and the tested phase can be
calculated by

_ 4
@ =tan™! (——”
My

To further save time, the unwrapped process is ignored, and we only
need to justify the quadrant of the phase @/

19)

Step 3: Provided that c,, is irrelevant to n, only relevant to m,
S0C,,| =Cyp =+ =C,,n = C,,. By setting ,, =c,, cosA,, and ¢, =
—c, sinA,,, Eq. (12) becomes

D!, =1, cos®] +¢&,sin® (20)

The squared sum of the differences between the theoretical and ac-
tual value of the difference phase shifted signal can be expressed as

N ) N
S = Z (Dinn - Dmn)
n=1

- 2 (A cos @', + &, sind®, — Dmn)z

n=1

@n

20
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For the known @/, the least-squares criterion yields

-1
X, =T"'R,. (22)
N N
3 cos?d, Y sin®’, cos @',
T = n=1 n=1 (23)
N N
> sin®’, cos @', Y sin?@,,
n=1 n=1
T
Xp =l &l (24)
N N T
R, = [2 D,,cos®, ¥ D,,sin®, (25)
n=1 n=1

N, and &, can be obtained by Eq. (22), and the phase shift of two
new phase shifted interference signals can be calculated by

A, = tan™! <—5—m>
M

Step 4: Repeat steps 2 and 3 until [(AX, — A¥)) — |AK—1, — AK-1 || <
¢, the iteration terminates, and the accurate phase shifts can be
obtained, where ¢ is the predefined converging threshold of iter-
ation, i.e., 105 rad, and k represents the number of iterations.

Step 5: Perform step 2 using the extracted phase shifts and the whole
samples of Eq. (11), then the accurate phase distribution can be
obtained, note that, the unwrapped process is needed in the fi-
nal step, and this is the only unwrapped process in the proposed
method.

(26)

Note that, the new parameter c,,, is relevant to both m and n, for
one pixel, there are five unknowns which are ¢y, ¢5,, A7, Ay and (I);,
but we have only two equations, we can’t calculate the phase distribu-
tion, hence, we assume that A;, A, are known and the new parameter
Cmn 18 irrelevant to m, only relevant to n to calculate the tested phase,
then we assume that ¢, is irrelevant to n, only relevant to m to calcu-
late the phase shift, then use the iterations to decrease the error of the
assumptions, and obtain the relatively accurate result.

The proposed method is an iterative algorithm, but it costs less time,
there are three reasons, firstly, the background intensity is filtered by
implementing the subtraction between the three phase shifted interfer-
ograms, this process costs less time than the filtering algorithm, more-
over, FIA doesn’t need to calculate the background intensity to further
save time, secondly, only a limited number of simples are chosen to
take part in the iterative process, this method saves most of time, lastly,
only one time of unwrapped process is used in the whole calculation,
this timesaving method is often used in the iterative algorithm. More-
over, the first two reasons are also the differences between the proposed
method and AIA.

3. Simulation

To verify the effectiveness of the method proposed above, we per-
form a series of numerical simulations, and compare it with the well-
evaluated method AIA. In the following, all computations are performed
with the CPU of Intel(R) Core(TM) i7-6700 and the 8 GB memory, and
we use the Matlab software for coding.

Firstly, we test the method with different kinds of fringes, including
circular, straight and complex fringes. The background intensity and
modulation amplitude are set as a;(x,y) = N, exp[—0.02(x*> + »?)] and
bi(x,y) = N, exp[—0.02(x> + y*)] respectively, where —1 <x<1,—1<
y < 1. Generally, the background intensity and modulation amplitude
have frame-to-frame fluctuation, hence, N, of the 1st, 2nd and 3rd in-
terferograms are set as 1, 0.95 and 0.9, Nj, of the 1st, 2nd and 3rd inter-
ferograms are set as 0.9, 0.85 and 0.8. For the circular fringes, the tested
phase is setas ¢ = N fn(xz + y?), in which N r=5is the fringe number
in the interferogram. The phase shifts of the three phase shifted interfer-
ograms are preset as Orad, 1.5rad and 3.5rad respectively. Moreover,
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Fig. 2. Simulated results of the circular fringes. (a) and (b) the phase distributions extracted by DN&FIA (PV = 31.929 rad, RMS = 6.663 rad) and AIA (PV =31.927 rad,
RMS =6.663rad), (c) and (d) the phase error distributions after using DN&FIA and AIA, (e) the difference between the extracted phase distributions by DN&FIA and

AIA, (f) and (g) the iterative curves of DN&FIA and AIA.

the Gaussian noise with a signal-to-noise ratio (SNR) of 20 dB generated
by the function awgn in Matlab is added to the interferograms. With the
above parameters setting, three simulated phase shifted interferograms
with the size of 401 x 401 are generated, as shown in Figs. 1(a)—(c),
and the background intensity and modulation amplitude distributions
of the first phase shifted interferogram are shown in Figs. 1(d) and (e),
the reference phase distribution is illustrated in Fig. 1(f).

Then we respectively use DN&FIA and AIA to extract the tested phase
distribution. For DN&FIA, the initial phase shifts of the iteration are re-
spectively set as O rad and 0.5 rad, and only 41 x 41 pixels are uniformly
selected to take part in the iterative process, it will highly save time.
And, the initial phase shifts of the iteration for AIA are respectively set
as Orad, 1rad and 3rad. In addition, the predefined converging thresh-
old of iteration for DN&FIA and AIA is 10~° rad. Fig. 2(a) and (b) show
the phase distributions extracted by DN&FIA and AIA, and the phase
error distributions are shown in Fig. 2(c) and (d). The RMS phase er-

21

rors of DN&FIA (0.1179rad) and AIA (0.1231 rad) are similar, and the
difference between the phase distributions extracted by two methods
is shown in Fig. 2(e), the RMS value is only 0.0427 rad, that is to say,
the accuracies of these two methods are similar. The iterative curves of
DN&FIA and AIA are plotted in Figs. 2(f) and (g).

For the straight fringes, the theoretical phase is set asp = N zx,
in which N, =5, and for the complex fringes, the phase is set as ¢ =
Nyzx + Nyzx + N peaks(401), in which N, = N, = N, =5, other pa-
rameters are same as the circular fringes. Fig. 3 shows one of the sim-
ulated interferograms with the straight fringes and reference phase dis-
tribution. Fig. 4 represents the simulated results of the straight fringes
using DN&FIA and AIA. For the complex fringes which are asymmetri-
cal, as shown in Fig. 5(a), the complex phase distribution is drawn in
Fig. 5(b), and the simulated results are shown in Fig. 6. For the straight
fringes, the RMS phase errors of DN&FIA and AIA are 0.1179rad and
0.1235rad, and the RMS value of the difference between the phase
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Fig. 3. Simulated interferogram with the straight fringes and reference phase
distribution. (a) One of the simulated interferograms, (b) reference phase distri-
bution (PV=31.416rad, RMS =9.092rad).

30rad
=100
] 20rad
5 200
>‘.’300 10rad
400 Orad

400

distributions extracted by two methods is 0.0347 rad. For the complex
fringes, the RMS phase errors of DN&FIA and AIA are 0.1182rad and
0.1232rad, and the RMS value of the difference is 0.0319 rad. From the
above simulations, we can get the conclusion as the circular fringes, the
accuracies of two methods are similar.

Moreover, we compare the computational time for DN&FIA and AIA,
the results are shown in Table 1. We can see that, the computational time
of DN&FIA is further less than that of AIA. Hence, we get the conclusions
that, DN&FIA is suitable for the circular, straight and complex fringes,
and it can obtain relatively accurate phase distribution as AIA with less
time.

Secondly, we perform the proposed method with different chosen
samples to compare the accuracy and computational time, the compu-
tational time and RMS phase errors of the circular, straight and complex
fringes with different chosen samples are shown in Table 2, where T and
P represent computational time and RMS phase error, and Cir, Str and
Com represent the circular, straight and complex fringes. For the differ-
ent fringes with the same number of chosen samples, the computational
time is similar because the processing time only depends on the num-
ber of chosen pixels, and the computational time is increasing with the
increase of chosen samples, however, the RMS phase errors are stable
when the chosen pixels are more than 41 x 41, hence, for the samples
with 401 x 401, the best chosen samples are 41 x 41, it can obtain high
accuracy and cost less computational time simultaneously. Moreover,
for different fringes, when the chosen samples are less than 41 x 41,
there are some differences, the results of the circular fringes are rela-
tively stable for different chosen pixels, but for the straight and com-

Optics and Lasers in Engineering 121 (2019) 18-28

2 80rad

o 60rad

! 5200 40rad

. > 300 20rad
400 Orad

Y(pixel)

200 400 400
X(pixel) X(p|xe|
(@) ()

Fig. 5. Simulated interferogram with the complex fringes and reference phase
distribution. (a) One of the simulated interferograms, (b) reference phase distri-
bution (PV =89.375rad, RMS = 18.359rad).

plex fringes, when the chosen samples are too few, the phase errors are
relatively large since the fringes are asymmetric, that is to say, when
the chosen samples are less than 41 x 41, for the straight and complex
fringes, different chosen samples will affect the accuracy, but for the
symmetric circular fringes, different chosen samples will slightly affect
the accuracy.

Thirdly, provided that the tested phase distribution ¢ =
N fzr(x2 + »%), which Ny represents the fringe number in one inter-
ferogram. In Section 2, in order to meet the approximation in Eq. (8),
we assume that there is more than one fringe in the interferogram,
in the following, we vary the fringe numbers while fixing the SNR to
20 dB to obtain the best range of the fringe numbers using DN&FIA. As
can be seen from Table 3, when the fringe number is less than 0.7, the
RMS phase error is relatively larger, and the ratio of RMS phase to RMS
phase error is also larger. For the range of fringe numbers between 0.8
and 2.0, the RMS phase error is unstable. When the fringe numbers
are more than 2, the RMS phase errors are similar, in this case, the
approximation error is nearly stable, hence, we can conclude that the
fringe numbers are best to be more than 2 if high accuracy is requested

Then, we study the proposed method with the different initial phase
shifts, the conditions are same as the above circular fringes. According
to the Egs. (9) and (10), we know that the relative phase shift between
two new interference signals is %% 5o the theoretical value of the
relative phase shift for the proposed method is 1rad. The number of
iterations and computational time of different initial phase shifts are
plotted in Fig. 7. Through the simulation, we found that the RMS phase
errors are same for the different initial phase shifts, they are 0.1179 rad.
From Fig. 7, we can see that, the closer the initial phase shift is to the
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200 400 12345678910 12345678910
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®
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Fig. 4. Simulated results of the straight fringes. (a) and (b) the phase distributions extracted by DN&FIA (PV = 32.108 rad, RMS =9.086 rad) and AIA (PV = 32.092rad,
RMS =9.087 rad), (c) and (d) the phase error distributions after using DN&FIA and AIA, (e) the difference between the extracted phase distributions by DN&FIA and

AIA, (f) and (g) the iterative curves of DN&FIA and AIA.
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Fig. 6. Simulated results of the complex fringes. (a) and (b) the phase distributions extracted by DN&FIA (PV=89.732rad, RMS=18.360rad) and AIA
(PV=89.716rad, RMS=18.360rad), (c) and (d) the phase error distributions after using DN&FIA and AIA, (e) the difference between the extracted phase dis-

tributions by DN&FIA and AIA, (f) and (g) the iterative curves of DN&FIA and AIA.

Table 1
Computational time of different methods with different fringes.

Time (s)  Circular fringes  Straight fringes ~ Complex fringes
DN&FIA 1.20 1.20 1.21
AIA 17.09 17.28 17.00

theoretical phase shift, the less the number of iterations is, and the com-
putational time is also least, however, the difference between the longest
time and shortest time is only 0.07 s, it will hardly affect the efficiency of
the proposed method, in addition, when the initial phase shift is equal to
the theoretical phase shift, 6 iterations are also needed since the fluctu-
ation between different interferograms and the non-uniformity between
different pixels exist, and large noise is added to the interferograms. For
most iterative algorithms, the initial value of iteration will affect the
effectiveness of the algorithm, but DN&FIA can remove this restriction
because different initial values will not affect the accuracy and the com-
putational time will be only less affected, hence, the initial phase shifts
of the iteration for DN&FIA can be set randomly.

We know that the phase shifts are important to the PSAs, hence,
it is necessary to discuss the phase error due to different phase shifts
for the proposed method. In order to get the general conclusion, we
study the phase error due to different phase shifts with different situ-
ations and fringes. The phase shifts of the 1st and 2nd frames are re-
spectively set as Orad and 1rad while the phase shift of the 3rd frame
is uniformly changed from 2.0rad to 5.21rad (the range of relative
phase shift between the 2nd and 3rd interferograms is from 1rad to
4.21rad). In situation 1, only 20 dB noise is added to the phase shifted
interferograms, and for the situation 2, except for the 20 dB noise, the
background intensity and modulation amplitude are non-uniform, N,

Table 2

and Nj, of the three interferograms are set as 1 and 0.9. In situation 3,
except for the 20dB noise, for the background intensity and modula-
tion amplitude, only the fluctuation between different interferograms
exists,a; = 1,a, =0.95,a3 =0.9,b; = 0.9, b, = 0.85,b; = 0.8. In situation
4, except for the 20 dB noise, both the fluctuation and non-uniformity of
the background intensity and modulation amplitude exist, N, of the 1st,
2nd and 3rd interferograms are set as 1, 0.95 and 0.9, Nj, of the 1st, 2nd
and 3rd interferograms are set as 0.9, 0.85 and 0.8. The simulated results
are plotted in Fig. 8. From Fig. 8, we can come to the following conclu-
sions: (1) for all the fringes, the RMS phase error in situation 4 is largest
because situation 4 is most complex, the mixed errors cause the largest
phase error, and situation 1 has the smallest error since it is simplest,
moreover, the phase error in situation 3 is larger than that in situation
2, that is to say, the effect of the fluctuation between different inter-
ferograms is larger than that of the non-uniformity between different
pixels for DN&FIA; (2) the RMS phase errors are different due to differ-
ent phase shifts, while the phase shift is close to 2.0 rad, the RMS phase
error is significantly large since small practical phase shift (8; —6,)/2
will introduce large phase error; (3) the corresponding phase shifts of
the minimum RMS phase errors for different fringes and situations are
same, it is 3.606 rad, the relative phase shift between 2nd and 3rd inter-
ferograms is 2.606 rad; (4) the curves of RMS phase errors are relatively
smooth when the range of phase shift between the 1st and 3rd interfero-
grams is from 2.64 rad to 4.57 rad, hence the above range of phase shift
can be considered when the relatively high accuracy is demanded.

To study whether the correspondingly relative phase shift between
the 2nd and 3rd interferograms of the minimum RMS phase errors is a
constant, the phase shifts of the 1st and 2nd frames are respectively reset
as Orad and 1.5rad while the phase shift of the 3rd frame is uniformly
changed from 2.5rad to 5.71rad, the range of relative phase shift be-

Computational time and RMS phase errors of different fringes with different chosen samples.

Samples 6x6 11x11 21x21 41 x 41 81x81 101 x 101 201 x201 401 x 401
Cir T (s) 1.10 1.12 1.16 1.20 1.57 1.82 3.97 13.38

P (rad) 0.1179 0.1181 0.1182 0.1179 0.1179 0.1179 0.1179 0.1179
Str T (s) 1.11 1.12 1.15 1.20 1.57 1.83 3.97 13.20

P (rad) 0.1414 0.1563 0.1181 0.1179 0.1179 0.1179 0.1179 0.1179
ConT (s) 1.12 1.13 1.17 1.21 1.59 1.85 4.00 13.05

P (rad) 0.1187 0.1205 0.1184 0.1182 0.1182 0.1182 0.1182 0.1182
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Table 3
RMS phase and RMS phase errors with different fringe numbers using DN&FIA.

Fringe numbers 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
RMS phase (rad) 0.7822 0.8710 0.9728 1.0980 1.2323 1.3673 1.4643 1.5975
RMS phase error (rad) 0.1693 0.1472 0.1251 0.1176 0.1170 0.1176 0.1183 0.1195
Fringe numbers 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
RMS phase (rad) 1.7306 1.8637 1.9968 2.1300 2.2631 2.3962 2.5293 2.6625
RMS phase error (rad) 0.1219 0.1237 0.1237 0.1222 0.1199 0.1179 0.1184 0.1177
Fringe numbers 3.0 4.0 5.0 15 25 35 45
RMS phase (rad) 3.9937 5.3249 6.6561 19.9684 33.2807 46.5929 59.9052
RMS phase error (rad) 0.1175 0.1179 0.1179 0.1176 0.1175 0.1175 0.1177

8 114 0D 124 Fig. 7. The results of different initial phase shifts. (a) and (b) the
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Fig. 8. The RMS phase errors of different phase shifts using DN&FIA (6, = 0,60, = 1). (a), (b) and (c) RMS phase errors of the circular, straight and complex fringes

with different phase shifts and situations.

tween the 2nd and 3rd interferograms is same as the above simulations,
the results of the circular fringes are shown in Fig. 9(a), we can see that,
the curves are similar to the above simulations, but the best phase shift
of the 3rd interferogram is 3.892rad, that is to say, the relative phase
shift between the 2nd and 3rd interferograms is 2.392rad, which is not
equal to the above simulations, hence, the best relative phase shift be-
tween 2nd and 3rd interferograms is a variable value due to different
relative phase shifts between 1st and 2nd interferograms, the best phase
shift between 2nd and 3rd interferograms with the different phase shifts

24

between 1st and 2nd interferograms is plotted in Fig. 9(b), and for sit-
uation 4, the minimum RMS phase errors which are corresponding to
the best phase shifts between 2nd and 3rd interferograms is plotted in
Fig. 9(c). From Fig. 9(b) and (c), we can see that, for the simulated condi-
tions, when the phase shift between 1st and 2nd interferograms is 2 rad,
and the phase shift between 2nd and 3rd interferograms is 2.071 rad,
the RMS phase error is minimum, it is 0.1095 rad.

In addition, the relationship between the best phase shift and fringe
numbers is studied, we simulate the circular fringes when the fringe
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Fig. 10. The RMS phase errors of the circular fringes with different phase shifts
using DN&FIA when the fringe number is 2.

number is 2, and other conditions are same as Fig. 8(a), the result is
plotted in Fig. 10. From Fig. 10, we can see that, the best phase shift
is same as the circular fringes when the fringe number is 5, so we can
conclude that the fringe number will not affect the best relative phase
shift.

Based on the above different simulations, the conclusions of the
proposed DN&FIA can be summarized as: (1) It can achieve the high
accuracy as AIA with less computational time by only three interfre-
ograms; (2) whether the circular, straight or complex fringes, the pro-
posed method is valid; (3) the fringe numbers are best to be more than
2 if the high accuracy is requested; (4) the initial phase shifts of the iter-
ation can be set randomly because different initial values will not affect
the accuracy, and slightly affect the computational time; (5) the phase
shift can be random except for the small practical phase shift (6; — 6,)/2,
and the best relative phase shift between 2nd and 3rd interferograms is
a variable value due to different relative phase shifts between 1st and
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2nd interferograms, moreover, the fringe number will not affect the best
relative phase shift.

4. Demonstration with experimental data

In order to verify the performance of the proposed method, three
groups of experiments are performed to do the phase retrieval by the
proposed method and AIA. The experimental setup is Twyman-Green
interferometer with 4D camera which is a kind of synchronous phase-
shifting interferometer (SPSI) [30], four phase-shifted interferograms
with the phase shifts 0, #/2, = and 3z/2 can be extracted from a sin-
gle image snapshotted by the 12 bit polarization camera PolarCam with
the pixel number of 1208 x 1348 and the pixel size of 7.4 um from 4D
Technology, Inc. [31-33], hence, the background intensity and modula-
tion amplitude will be relatively stable between different phase shifted
interferograms, that is to say, the experiment meets the condition of the
assumption before Eq. (2). Moreover, we test different objects to cap-
ture the circular, straight and complex fringes, the objects are placed in
the test arm. For the first experiment, three phase shifted interferograms
with the circular fringes are collected, the size of the interferograms is
401 x 401, and the phase shifts are 0, z/2 and z. For DN&FIA, the ini-
tial phase shifts are respectively set as Orad and 1rad, and only 40 x 40
pixels are uniformly selected to take part in the iterative process. And,
the initial phase shifts of AIA are respectively set as Orad, 1rad and
3rad. One of the interferograms is shown in Fig. 11(a), the extracted
phase distributions using DN&FIA and AIA are shown in Fig. 11(b) and
(c), Fig. 11(d) shows the difference between the phase distributions ex-
tracted by DN&FIA and AIA, the RMS value of the difference is only
0.0165rad, we can get the same conclusion as the simulations, the ac-
curacies of DN&FIA and AIA are similar. In addition, they both need
10 iterations, the iterative curves are plotted in Fig. 11(e) and (f), and
the computational time of DN&FIA and AIA are respectively 1.8s and
18.48s, we can see that DN&FIA spends less time than AIA.
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Fig. 11. Experimental results of the circular fringes. (a) One of the phase shifted interferograms, (b) and (c) the phase distributions extracted by DN&FIA
(PV=68.9120rad, RMS =14.2523rad) and AIA (PV =68.9074rad, RMS=14.2519rad), (d) the difference between the phase distributions extracted by DN&FIA
and AIA (RMS =0.0165rad), (e) and (f) the iterative curves of DN&FIA and AIA.
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Fig. 12. Experimental results of the straight fringes. (a) One of the phase shifted interferograms, (b) and (c) the phase distributions extracted by DN&FIA
(PV=22.2001 rad, RMS =6.0484 rad) and AIA (PV=22.2026rad, RMS =6.0503rad), (d) the difference between the phase distributions extracted by DN&FIA and
AIA (RMS =0.0564rad), (e) and (f) the iterative curves of DN&FIA and AIA.

Then, the second and third experiments with the straight and com- 1.7s and 18.30s respectively. And, for the complex fringes, the RMS
plex fringes are performed, and the complex fringes are randomly ob- value of the difference between the phase distributions extracted by
tained by the deformable mirror, the size of the interferograms with the DN&FIA and AIA is 0.0507 rad, and the computational time for DN&FIA
straight fringes is also 401 x 401, and the size of the interferograms with and AIA are 0.58s and 4.15s. For these two kinds of fringes, the ac-

the complex fringes is 201 x 201, other conditions are same as the above curacies are also similar for two methods, and for the computational
circular fringes. Figs. 12 and 13 show the results of the straight and com- time, we get the conclusion the same as the circular fringes. Through the
plex fringes, we can see that, both DN&FIA and AIA are effective for the above experiments, we verify that, for the circular, straight and complex
different fringes. Moreover, for the straight fringes, the RMS value of fringes, the proposed DN&FIA can obtain relatively high measurement
the difference between the phase distributions extracted by DN&FIA and accuracy as AIA with less computational time by only three interfero-

AlIA is 0.0564 rad, and the computational time for DN&FIA and AIA are grams.
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Fig. 13. Experimental results of the complex fringes. (a) One of the phase shifted interferograms, (b) and (c) the phase distributions extracted by DN&FIA
(PV = 30.2191 rad, RMS = 4.3279rad) and AIA (PV = 30.0985rad, RMS = 4.3262rad), (d) the difference between the phase distributions extracted by DN&FIA and

AIA (RMS = 0.0507 rad), (e) and (f) the iterative curves of DN&FIA and AIA.

5. Conclusion

In this paper, we present a PSA based on difference map normal-
ization and fast iterative algorithm, the difference maps are obtained
by three phase shifted interferomgrams firstly, and then normalization
is performed for the difference maps, the results are just as two phase
shifted interference signals without the background intensity. Next the
least-squares algorithm is applied to extract the phase distribution, and
only a limited number of samples are chosen to take part in the iterative
process to save time. We have compared DN&FIA with AIA by the simu-
lated data and experimental data. The proposed algorithm can achieve
high measurement accuracy as AIA, and cost less time than AIA, and
the fringe numbers are best to be more than 2 if the high accuracy is
requested. In addition, the initial phase shifts of the iteration can be
random, and the phase shifts can be random except for the small prac-
tical phase shift (§; — 6,)/2. Finally, the proposed algorithm is effective
for the circular, straight or complex fringes. The simulations and exper-
iments demonstrate the validity of the proposed method. In summary,
this proposed method is a power tool for the phase retrieval with ran-
dom phase shift.
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