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Abstract: The image super-resolution (SR) reconstruction technology based on the micro-
scanning system is one of the best methods for realizing high-resolution infrared imaging.
Thus, in this work, we first present a frequency domain phase-based projection onto convex
sets SR reconstruction algorithm. This method takes advantage of the texture details and
contrast-independent feature of the phase information in the frequency domain and can be
used to realize image denoising and SR reconstruction for the infrared image simultaneously.
We also propose the use of an image quality assessment metric based on the frequency
domain phase spectrum. Second, we design and realize an infrared micro-scanning optical
system to obtain sub-pixel low-resolution images for SR reconstruction. The infrared micro-
scanning optical system we constructed can realize controllable sub-pixel micro-scanning of
an arbitrary step size. Furthermore, we can realize sub-pixel low-resolution image collection
by moving two light and compact pieces instead of moving the entire lens, sensor array, or
sample—as in the traditional method. Thus, the precision of the sub-pixel movements can be
greatly improved. Using our proposed algorithm and infrared micro-scanning optical system,
we realize infrared SR imaging in both simulations and experiments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Infrared imaging is a technology used for detecting the infrared radiation energy of objects.
Owing to the advantages of infrared imaging such as its real-time, non-contact, non-invasive,
and simple operation, it has been an effective technology in military affairs, industrial
inspection, monitoring systems, medical diagnosis, etc [1-4]. Because of the limitations of
semiconductor materials and manufacturing techniques, there is a lower limit to the pixel size
of the infrared focal plane array, which results in infrared images with low resolution, low
contrast, less detail, and much noise. Therefore, it is necessary to develop an effective method
for overcoming these disadvantages.

The super-resolution (SR) reconstruction method can be used to obtain a high-resolution
(HR) image from one or more frames of low-resolution (LR) images of the same scene, and
the resolution of the resulting image thus obtained can overcome the diffraction limit of the
imaging sensor [5]. Furthermore, the multi-frame SR algorithm can perform better than the
single-frame ones because the use of a greater number of frames implies, to some extent, that
more information is being captured. SR reconstruction can be realized in both the frequency
and spatial domains [6-9]. The SR algorithm in the frequency domain has limitations in
applications owing to its global-translation property. While the spatial domain SR algorithm
is more flexible because the spatial observation model used in the algorithm can take
advantage of various types of previously obtained information [10,11]. Scholars have put
forward various spatial-domain algorithms such as interpolation, iterative back-projection
(IBP), and projection onto convex sets (POCS) algorithms [12], each with its own pros and
cons. Furthermore, the super-resolution convolutional neural network (SRCNN) [13] has
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become a popular method in recent years. Our study is focused on the POCS-based method in
the spatial domain.

Various SR techniques have been implemented to mitigate resolution loss by utilizing
sub-pixel displacements in the imaging system, which is achieved, for example, by shifting
the illumination source, sensor array, and/or sample, followed by a digital synthesis of a
smaller effective pixel by merging these sub-pixel-shifted LR images [14]. A micro-scanning
imaging system can acquire multiple images with sub-pixel displacements in the horizontal or
vertical direction by controlling the micro-scanning platform, while just satisfying the low-
resolution images requirements of multi-frame SR methods [15-17]. The micro-scanning
imaging system enforces the sub-pixel displacements using an electric motor or piezoelectric
actuator, and it can be operated in the controllable mode and non-controllable mode.
Currently, the majority of the SR algorithms have great computation complexity. By using the
controllable micro-scanning method, the image registration step can be simplified and the
accuracy of the reconstruction results can be increased. Therefore, we design a medium-wave
infrared micro-scanning lens and construct a controllable infrared micro-scanning optical
system for infrared image SR reconstruction.

In this article, we propose a frequency domain phase-based projection onto convex sets
(FPPOCS) SR algorithm, which takes advantage of the phase information in the frequency
domain to obtain further details of the infrared image. The FPPOCS method can realize image
SR reconstruction while performing denoising and retaining the details of the infrared image
simultaneously. Accordingly, we design an infrared micro-scanning lens, construct an
infrared micro-scanning optical system, and realize infrared image SR reconstruction using
our proposed algorithm. The infrared micro-scanning optical lens comprises a decentered
system in the medium-infrared range of 3—5 um. It can guarantee both the displacements
uniformity of the entire field of view (FOV) and the ideal image quality in the image plane
when the micro-scanning system is in use. The infrared micro-scanning optical system
realizes controllable sub-pixel micro-scanning of an arbitrary step size, which means that the
registration procedure in the SR algorithm can be simplified. We also propose an image
quality assessment (IQA) method based on the frequency domain phase spectrum. Using our
proposed algorithm and our infrared micro-scanning optical system, we practically realize
infrared SR imaging.

The remainder of this paper is organized as follows. In Section 2, the micro-scanning SR
imaging theory is presented. Section 3 presents the simulation results and the discussions. In
Section 4, we illustrate our infrared micro-scanning optical system and the results of our
method for obtaining LR infrared images. Finally, Section 5 presents the conclusion of our
study.

2. Micro-scanning SR imaging theory

Our infrared micro-scanning SR imaging theoretical system comprises two crucial
technologies. The first is our presented FPPOCS approach, which takes advantage of the
phase information in the frequency domain to realize image SR reconstruction. The second is
the design of our infrared micro-scanning system, which can capture multiple frames of sub-
pixel images for the image SR reconstruction.

2.1 FPPOCS algorithm
2.1.1 Conventional POCS theory

SR reconstruction is an ill-posed inverse problem, the process of which is based on the image
degradation model as described in the following Eq. (1):

fi=DBMX+n,k=1,..,p €]
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where X is the ground truth HR image, f, is the kth LR image, and M, , B,, and D, denote

the shift matrix, blurring matrix, and down-sampling matrix of the kth LR image,
respectively. n, is a Gaussian noise vector, and p denotes the number of frames.

Original HR l
image(X) _ .y
_.[ ]-.[]——[ o R

Fig. 1. Image degradation model.

The image degradation model is illustrated in Fig. 1.

The POCS-based SR algorithm regards prior knowledge as closed convex sets C, and
incorporates it into the reconstruction process iteratively as follows:

fn+1 — PmP

m-1°

PPf".n=012,..n )

where n is the number of iterations, and m is the number of prior knowledge sets. " denotes
the result of the nth iteration. P denotes the mapping operator of the convex set
C(i=12,...m).

As described above, the solution space of POCS is the intersection of all the prior
knowledge sets. It can be represented graphically as shown in Fig. 2, where f° denotes the

initial point, which can be an arbitrary vector, and sets A and B denote two prior knowledge
convex sets.

Fig. 2. POCS theory.

The POCS algorithm is intuitive and code implementation in it is simple. Moreover, it can
build a complex image degradation model and introduce various prior knowledge. Therefore,
we propose an improved FPPOCS SR algorithm based on the conventional POCS theory for
performing denoising and obtaining details for the infrared image SR reconstruction.

2.1.2 FPPOCS theory

In the Fourier representation of the signals, the spectral amplitude and phase tend to play
different roles [18]. We can reasonably consider that the amplitude spectrum contains
information of the luminance contrast, and the phase spectrum contains the texture details of
the image. It is generally plausible that the phase reflects the location of “events” such as
lines and points. Furthermore, the phase spectrum can represent the texture and structure
information despite the low illuminance and low contrast [19]. This is an important feature
that can be utilized for the low-contrast infrared images.

The phase spectrum of an image in the frequency domain can be obtained using the
discrete Fourier transform (DFT):
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F(u,v)= sz(x’y)e’fZ”(uX/MJrvy/N) )

x=0 y=0
F(u,v)=A(u,v)e”™) 4)

where u=0, 1, 2..., M-1 and v = 0, 1, 2..., N-1 denote the frequency variables. M and N
denote the number of rows and columns of the image, respectively. F(u, v) is the Fourier

transform for f(x, y), A(u, v) denotes the amplitude spectrum, and (p(u,V) denotes the phase

spectrum of F(u, v).

Therefore, the proposed algorithm is an attempt to integrate the phase spectrum advantage
into the process of the conventional POCS method. The phase information employed in the
proposed algorithm takes full advantage of the phase-spectrum texture details and contrast-
independent feature and can obtain more details of the infrared image in the SR
reconstruction result.

In our method, we extract the frequency domain phase spectrum @(u,v) from the given

LR images and then update the preliminary HR result with ¢(u,v). When we obtain the DFT

of an image, the image and the transformation are periodic. The convolution for the periodic
function causes adjacent period crosstalk called a folding error [20]. Consequently, in the
DFT process, we should perform an adding-zero operation to pad the image size in order to
prevent the occurrence of the folding error. The padded zero DFT operation is abbreviated as
pDFT in the rest of the paper. Furthermore, the phase spectrum information cannot only
provide more details but also result in additional noise. Therefore, we should also perform
denoising in the process. In the majority of the existing SR denoising methods, the SR
process and denoising operation are separated—either the denoising is followed by the SR
reconstruction, or the SR reconstruction is followed by image denoising [21]. This type of
image denoising method may result in the loss of details from the image. Therefore, we
perform Wiener denoising [22] and phase spectrum updating jointly in our algorithm. The
Wiener filter is a famous denoising method, which can aid in reducing the ringing effect
introduced by the Fourier transform [20]. Therefore, we use the Wiener filter as our denoising
method.
The proposed FPPOCS method can be summarized as follows:

1) Reconstructed HR image initialization: For the purpose of simplification, we choose
the first frame of the LR images f, as the reference image and then resize it to the

ideal HR gridding size using linear interpolation to obtain the initial estimated HR
image X, .

X, =interp( f,) (5)

2) Motion estimation: We estimate the relative displacements M, between the LR
frames and the reference image based on the affine transformation theory.

Mk:afﬁne(ﬁnﬁ)ﬂk:z"“’p (6)
where f, is the kth LR image, M, denotes the shift matrix, and p is the number of
frames.

3) Phase spectrum extraction: In order to extract phase spectrum information from the LR
frames, we perform image registration according to the motion estimation result and
then perform bicubic interpolation for the LR frames. We can then obtain the
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frequency domain phase spectrum ¢@(u,v) after performing the pDFT for the

interpolation result.

F (u,v) = pDFT (bicubic (f,. f;..... 1, )

(7
F(u,v)=A(u,v)e”™

4) HR image reconstruction: We define appropriate constraint convex sets and the
corresponding mapping operators, and then correct the pixel value in the HR
gridding X, iteratively based on the motion estimation and mapping operators to

obtain the preliminary HR result X, . The iteration details are described in Eq. (2).

5) Wiener filtering: As the infrared images have a great amount of noise, and the phase
spectrum updating process can retain more details but may also bring in some noise,
we first perform Wiener filtering on the preliminary HR image X, .

X, = wiener(X,) ®)
where X, is the HR image obtained after the Wiener denoising.

6) HR image renewal based on phase spectrum: We perform the pDFT for the
preliminary HR result X, and then update it with the phase spectrum information as

in Eq. (10). Finally, we acquire the SR result X after performing the inverse
discrete Fourier transformation (IDFT) for the above result.

F, =pDFT(X,)
ipy, (9)
FXd =AXde a
A(p:|(p(u,v)—(de|
1 M N
m=—>3SA¢ (10)
2
d iy
e else
X = IDFT(F,) (11)

where F) is the pDFT result for X,, 4, denotes the amplitude spectrum, and
@y, denotes the phase spectrum of F, . A¢ is the absolute difference of the phase
spectrum between ¢(u,v) and @y, and m is the mean value of Ap. F, is the

pDFT for X.
The aforementioned workflow of our method is illustrated in Fig. 3.
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Fig. 3. Workflow of our FPPOCS algorithm.
2.1.3 Image quality assessment

The IQA method can be divided into the subjective observation method and objective image
quality index method. The objective method can further include full reference method [23]

and no reference method [24].

In this paper, we propose an IQA metric based on the frequency domain phase spectrum.
In order to make the information acquisition more intuitive, we calculate the phase spectrum
error (PSE) between the SR result and the ground truth HR image as shown in Eq. (12).

PSE =$ii[g{ (i.J) =Py (i.]) ] (12)

i=l j=1

where M and N denote the number of rows and columns of the image, respectively, X (i, /)

is the ground truth HR image, and X (i,j) is the restored image. P denotes the phase

spectrum. The smaller the PSE value, the better the image quality.
We also utilize the classical mean square error (MSE), peak signal-to-noise ratio (PSNR),
and structure simulation (SSIM) as the full reference IQA [25,26]. The indices are defined in

Egs. (13)~(15).

L & o AT
MSE—M_N;;[X(I»J)_X(Z,J)] (13)
PSNR =101log L =10log ! (14)
- " MSE o . -
sy S [K )= X )]
i 2uju,+C)(20 . +C
SSIM (X, X)= (2uyi; +C ) (20,5 +C,) (15)

(0, +uy? +C1)(O'X2 +0. +C2)

where u, , 0., and o, denote the mean, standard deviation, and covariance, respectively.
C,=(K,L)* and C, = (K,L)*, where K, = 0.01, K, = 0.03, and L = 255 for gray images of

unit 8. The smaller the MSE value, the better the image quality, and the larger the PSNR and
SSIM values, the better the image quality.

For the practical results obtained from the experiment without a reference, we use a
“completely blind” IQA method called natural image quality evaluator that was proposed in
[27]. The quality of the distorted image is expressed as the distance between the quality aware
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natural scene statistic feature model [28] and the multivariate Gaussian (MVG) fit to the
features extracted from the distorted image:

PINE DR

D(vlwvz)ELEz):\/(vl—vz)r( > ]_l(vl—vz) (16)

where v,, v,, £, and Z, are the mean vectors and covariance matrices of the natural MVG

model and the distorted image’s MVG model, respectively. The smaller the D value, the
better the image quality.

2.2 Design of infrared micro-scanning optical system
2.2.1 Technical design principles

In this work, we design a medium-wave infrared micro-scanning lens and construct a
controllable infrared micro-scanning optical system. To achieve the objective of realizing
accurate micro-scanning in the horizontal and vertical directions, we designed a decentered
infrared micro-scanning lens system.

A successful design of an optical system should take into consideration both the system
performance and engineering facilities. In the design and optimization process, we have
designed a program to simultaneously evaluate the micro-scanning displacements of the
entire FOV and the diffraction modulation transfer function (MTF) of the image after
performing the micro-scanning in the image plane, and we optimize our system according to
the evaluation results. Thus, the infrared micro-scanning lens we designed can guarantee both
displacements uniformity of the entire FOV and ideal image quality in the image plane using
the micro-scanning system. The infrared micro-scanning optical system we constructed can
be used to realize controllable sub-pixel micro-scanning of an arbitrary step size.
Furthermore, we can realize sub-pixel LR image collection by just moving two light and
compact pieces instead of moving the entire lens, sensor array, or sample as in the traditional
method. Thus, the precision of the sub-pixel movements can be improved greatly.

The details of our technical design principles for realizing the function mentioned above
are as follows:

1) Guarantee displacements uniformity of the entire FOV in the image plane: When using
the micro-scanning system, the displacements of all the points in the image plane
must be consistent with the center point. Therefore, we design a program to evaluate
the micro-scanning displacements of the entire FOV in the image plane and optimize
our system according to the evaluation results.

2) Guarantee ideal image quality in the image plane: When using the micro-scanning
system, the image quality should be guaranteed every time the decentered lens is
moving. Thus, in the evaluation program we mentioned in the first principle, we also
evaluate the diffraction MTF of the image simultaneously with the evaluation of the
displacements. Furthermore, by optimizing our system according to the evaluation
results, we can guarantee the image quality when the micro-scanning is performed.

3) Ensure practical effectiveness: An idea or design should not be significative unless it
can be realized in practice; therefore, our design results should be effective not only
for the ideal designed system but also practical devices. Therefore, in order to ensure
the practical effectiveness of our final result, we add a random disturbance tolerance
and set the best focus at the beginning of the evaluation process.

4) Select appropriate decentered lens: The decentered lens used for realizing micro-
scanning is especially crucial because it plays a decisive role in both the engineering
facilities and sub-pixel micro-scanning accuracy of the system. First, the scanning of
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the FOV surface can be realized using either a tilted plate or motive lens.
Considering the manufacture facility, we choose to realize micro-scanning by
moving the decentered lens in the horizontal and vertical directions. Thus, it can be
both handy and intuitive during the micro-scanning. Second, from the packaging
point of view, the position we choose for the decentered lens should be convenient
for maintaining the concentricity during the assembly. Lastly, the decentered lens
connected with the micro-scanning platform should be easy to control when the
micro-scanning system is being used. Thus, we can realize sub-pixel LR image
collection by simply moving two light and compact pieces instead of moving the
entire lens, sensor array, or sample as in the traditional method. Therefore, we finally
choose the last two pieces from surface 12 to surface 15 as the decentered lens to
ensure the accuracy of the sub-pixel micro-scanning displacements.

2.2.2 Design results

The infrared micro-scanning system we designed operates in a medium infrared band between
3 um and 5 pm with a focal length of 223.5 mm and total length of 338 mm. The aperture of
the system is f/2. There are two aspheric surfaces and four decentered surfaces in our system.
As shown in Fig. 4, the third and fifth surfaces are aspheric, and the decentered lens is
positioned at four surface positions from surface 12 to surface 15.

Aspheric

Aspheric ~ Decentered lens

Fig. 4. Layout of the infrared micro-scanning lens.

To ensure both the accuracy and conciseness of the results, we should sample suitable
FOV points in the image plane for evaluation. As shown in Fig. 5, in our evaluation process
we sample 11 x 12 points, which are uniformly distributed in the entire image plane. As we
have added a random disturbance tolerance at the beginning of the process, the system may
no longer be rotationally symmetric. For comprehensiveness and practicability, we simulate
four integral half-pixel displacements of (0, —0.0075), (0, 0.0075), (-0.0075, 0), and (0.0075,
0) for the evaluation. As the infrared detector we used in our experiments is 640 x 512 pixles
with a pixel size of 15 x 15 pum, the half-pixel displacement should be 7.5 um. In addition, the
default unit in CODE V is millimeter (mm), i.e., 0.0075 mm for a half-pixel displacement.

. . -

. . .

Fig. 5. Sampling points for the micro-scanning displacements evaluation.
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To clarify our results, we draw the graph of the displacements for all the 11 x 12 FOV
points in Fig. 6, where Figs. 6(a)-6(d) shows the displacements of (0, —0.0075), (0, 0.0075),
(-0.0075, 0), and (0.0075, 0), respectively. The black line denotes the ideal half-pixel micro-
scanning displacement, and the red circle, blue upper triangle, purple lower triangle, and
green diamond denote the sampling points after the integral half-pixel displacements of (0,
—0.0075), (0, 0.0075), (—=0.0075, 0), and (0.0075, 0), respectively. The abbreviation MS in the
graph denotes micro-scanning.
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Fig. 6. Displacements for all the 11 x 12 FOV points: (a) (0, —0.0075), (b) (0, 0.0075), (c)
(=0.0075, 0), (d) (0.0075, 0).

From the results in Fig. 6, it can be observed that the micro-scanning displacements of all
the sampling points in the entire image plane are synchronized with an error of less than 0.01
pum, which is 0.13% as compared with the ideal displacements of 7.5 um. Therefore, we can
draw the conclusion that our system satisfies the uniformity of the image displacements of the
entire FOV for a practical system. Furthermore, our algorithm has the correction ability for
the displacement error in the registration step. Therefore, the effect of the displacement error
on our reconstruction result is negligible, and the simulation and experiment results in
sections 3 and 4 also demonstrate this.

Figure 7 shows the diffraction MTF of the image after the micro-scanning is performed.
As mentioned above, there are 11 x 12 evaluation results for each micro-scanning step. In
Fig. 7, we particularize the MTF of five representative FOVs for one micro-scanning step to
illustrate the effectiveness of our work. As shown in Fig. 7, the MTF of the system is greater
than 0.36 at 32 Ip/mm. Therefore, we can conclude from the results that our system can still
get good image quality when performing micro-scanning in a practical system.



Vol. 27, No. 5 | 4 Mar 2019 | OPTICS EXPRESS 7728 |

SN

Research Article

Optics EXPRESS

,,,,,,,,,, DIFFRACTION LIMIT
MS T _— __— % (1.182,0.946) DEG
x WAVELENGTH WEIGHT
- = i (0.946,0.946) DEG 5000.0 NM 1
DIFFRACTION MTF = = — % (0.709,0.946) DEG | 4400 0 NM 1
T =T} (0.473,0.946) DEG | 3000.0 NM 1
POSITION 2 30-Aug-18| — ! (0.236,0.946) DEG
DEFOCUSING 0.00000
1.0
RIS
0.9
N
0.8
= —
0.7 = > —
N = —
M ~ \: T N
Q0.6 < B
D -
U —|
L -
205
T
1 -
50.4
N
0.3
0.2
0.1
4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0
SPATIAL FREQUENCY (CYCLES/MM)

Fig. 7. Diffraction MTF of the image after micro-scanning.

Figure 8 shows the schematic of our infrared micro-scanning optical system. The system
mainly comprises four parts: the infrared lens, micro-scanning controller, cooled infrared
detector, and computer. The last two decentered pieces of the infrared lens is connected with
the micro-scanning controller, and we can realize sub-pixel micro-scanning by operating the
software on the computer.

| Move surface 7

Infrared ‘} (T—~z l
Detector | I

Refrigerator
Controller
interface

Fig. 8. Schematic of the infrared micro-scanning optical system.

Micro-scanning controller

3. Simulation results and discussion

In the simulation experiments, we choose the “baboon” and “monarch” from data set Set14
[29] as the ground truth HR images and then perform a sub-pixel shift, blurring, down-
sampling, and adding of noise to obtain the degraded LR images.

To demonstrate the reconstruction effectiveness of our method, we use the IBP algorithm,
bicubic interpolation algorithm, SRCNN, traditional POCS algorithm, and POCS and
denoising separated method for the comparison. As for the POCS and denoising separated
method, we have abbreviated the method in which the Wiener filter is applied first followed
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by the POCS method as wPOCS, and the method in which POCS is applied first followed by
the Wiener filter as POCSw. In order to ensure that we are making an appropriate comparison
of the results, we use the same parameters and prior knowledge for the traditional POCS
algorithm, wPOCS, POCSw, and our FPPOCS method.

We discuss the results from the three perspectives of resolution performance, noise
robustness, and the computation cost of our method.

3.1 Resolution performance

In this section, we have employed the 2 x 2, 3 x 3, and 4 x 4 micro-scanning modes to obtain
multi-level sub-pixel LR frames. The noise added for the simulation is a Gaussian distribution
with a mean value equal to 0 and variance equal to 0.01. We then perform an SR
reconstruction for them using our algorithm and assess the final result using the IQA index.

Figure 9 shows the SR results of 2 x 2 magnification for “baboon”, where Fig. 9(a) shows
the reference image, Fig. 9(b) shows the ground truth HR image, Figs. 9(c)-9(i) show the SR
results of the IBP, bicubic interpolation, SRCNN, traditional POCS, wPOCS, POCSw, and
FPPOCS algorithm, respectively. The ground truth HR image is 480 x 500 pixels and 256
grayscale. The simulated reference image is 240 x 250 pixels, and the SR result is 480 x 500
pixels. The value of m is equal to 1.078134 for “baboon”.

Fig. 9. SR results of 2 x 2 magnification for “baboon”: (a) reference image, (b) ground truth
HR image, (c) IBP, (d) bicubic interpolation, (¢) SRCNN, (f) POCS, (g) wPOCS, (h) POCSw,
(i) FPPOCS.

It can be observed from Fig. 9 that the IBP method brings in too much noise on the face,
while the bicubic interpolation result shows less noise but also causes a loss of some details—
the whiskers are nearly indistinguishable. The SRCNN can restore more details of the
whiskers but also introduce more noise on the face. The traditional POCS result shows clearer
whiskers but there still exists redundant noise on the face. The wPOCS and POCSw results
have been over-smoothed because of the rough denoising process. The FPPOCS method can
provide both a smooth face and distinguishable whiskers, which is a significantly improved
result with less noise and more details.

The image quality of Fig. 9 can be assessed using Egs. (12)—(16). The corresponding IQA
results for “baboon” are shown in Table 1.

Table 1. IQA results for “baboon”.

IBP Bicubic SNCNN POCS wPOCS POCSw FPPOCS

PSE 1.844484 1.828542 1.838987 1.827867 1.845019 1.840654 1.819197
MSE 537.840322  288.015333  268.408306  287.979036  315.645202  298.4579 232.897521
PSNR  18.891484 21.241493 21.867169 21.251758 21.276992 21.048990  22.759829
SSIM  0.314292 0.561205 0.571784 0.572358 0.503604 0.544408 0.716952
D 11.8111 9.1973 7.0764 9.1762 6.1681 49314 4.4488
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The IQA results in Table 1 show that the FPPOCS method can provide the best
assessment value as compared with the other algorithms, which means that the FPPOCS
method can provide the SR result with less noise and more details, and the result has more
similarities with the ground truth HR image.

Figure 10 shows the SR results of 2 x 2 magnification for "monarch”, where Fig. 10(a) is
the reference image, Fig. 10(b) is the ground truth HR image, Figs. 10(c)-10(i) show the SR
results of IBP, bicubic interpolation, SRCNN, traditional POCS, wPOCS, POCSw, and
FPPOCS algorithm, respectively. The ground truth HR image is 512 x 512 pixels and 256
grayscale. The simulated reference image is 256 x 256 pixels, and the SR result is 512 x 512
pixels. The value of m is equal to 1.146757 for “monarch”.

Fig. 10. SR results of 2 x 2 magnification for “monarch”: (a) reference image, (b) ground truth
HR image, (c) IBP, (d) bicubic interpolation, (¢) SRCNN, (f) POCS, (g) wPOCS, (h) POCSw,
(i) FPPOCS.

It can be observed from Fig. 10 that the IBP method brings in too much noise into the
entire picture, while the bicubic interpolation result has less noise but also causes some loss in
details, which makes the image fuzzy. The SRCNN can restore more details but also
introduces a lot of noise in the background. The traditional POCS result is clearer for the edge
information, but also has some redundant noise in the smooth area. The wPOCS and POCSw
results are over-smoothed at the edges because of the rough denoising process. The FPPOCS
method can provide a significantly improved result with less noise and more details, which
conforms greatly to the ground truth HR image.

The corresponding IQA results for “monarch” are shown in Table 2.

Table 2. IQA results for “monarch”.

IBP Bicubic SRCNN POCS wPOCS POCSw FPPOCS

PSE 1.862878 1.855213 1.678952 1.841352 1.802255 1.855750 1.829220
MSE 508.756645  227.214325  168.408306  217.562123  217.781099  279.334974  166.282285
PSNR  21.065703 23.566447 25.867169 24.815327 24.750602 23.669550 25.922344
SSIM  0.343766 0.591413 0.771784 0.623587 0.7803527 0.744293 0.837680
D 11.9162 10.1922 6.3591 9.9325 4.8002 4.3690 4.2684

The IQA result in Table 2 shows that the FPPOCS method obtains the best assessment
value as compared with the other algorithms, which is identical with the result shown in Fig.
10.

Figure 11 shows the IQA charts for “baboon” for various algorithms under various
magnifications, where Figs. 11(a) and 11(b) represent the PSNR and SSIM results of
“baboon,” respectively. Figure 12 shows the IQA charts of “monarch” for various algorithms
under various magnifications, wherein Figs. 12(a) and 12(b) represent the PSNR and SSIM
results of “monarch,” respectively. The horizontal axis represents the various magnifications,
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and the vertical axis represents the IQA. The red dot denotes the result of FPPOCS, the blue
square denotes the result of SRCNN, the green diamond denotes the result of bicubic
interpolation, the pink star denotes the result of wPOCS, the caramel upper triangle denotes
the result of POCSw, the blue lower triangle denotes the result of POCS, and the purple dot
denotes the result of IBP.
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Fig. 11. IQA charts for “baboon” for various algorithms under various magnifications: (a)
PSNR, (b) SSIM.
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Fig. 12. IQA charts for “monarch” for various algorithms under various magnifications: (a)
PSNR, (b) SSIM.

From Figs. 11 and 12, we can observe that our FPPOCS method can always obtain the
highest PSNR and SSIM results under the magnifications of 2 x 2, 3 x 3, and 4 x 4. The
SRCNN result can provide almost the same level of performance as that of our method, while
it is sensitive to noise as shown in section 3.2, and its computation time is much longer as
shown in section 3.3. The performances of the other algorithms show some irregularity as the
IQA metrics or the scene changed, which may be because of their instability. It can also be
observed that the IQA results decrease as the magnification increases. Theoretically, we can
obtain ideal results for any magnification. However, our experimental results show that the 2
x 2 magnification can provide the best results, which may be because a greater number of
moving steps would introduce more errors.

3.2 Noise robustness

We simulated the image down-sampling by 1/2 with noise variances of 0.01, 0.03, 0.05, and
0.1 for the purpose of comparison. The PSNR charts for the various algorithms under
different noise levels for “baboon” and “monarch” have been illustrated in Fig. 13, where
Figs. 13(a) and 13(b) represent the PSNR for “baboon” and “monarch,” respectively. The
horizontal axis represents the noise level, while the vertical axis represents the PSNR. The red
dot denotes the FPPOCS result, the blue square denotes the SRCNN result, the green diamond
denotes the Bicubic interpolation result, the pink star denotes the wPOCS result, the caramel
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upper triangle denotes the POCSw result, the blue lower triangle denotes the POCS result,
and the purple dot denotes the IBP result.
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Fig. 13. PSNR chart for “baboon” and “monarch” for various algorithms under different noise
levels: (a) “baboon”, (b) “monarch”.

We can draw a conclusion from Fig. 13 that our FPPOCS method can always provide the
highest PSNR under various noise levels, and the PSNR value exhibits a small steady decline
as the noise level increases, which demonstrates that our method is robust to noise.
Furthermore, in the SRCNN method, which exhibits a performance equal to that of our
method under a low noise level, the PSNR decreases greatly as the noise level increases.

3.3 Computation cost

In this section, we present a comparison of the computation cost for obtaining the images with
a 2 x 2 magnification mode and a noise variance equal to 0.01. Tables 3 and 4 show the
computation time to reach convergence for different algorithms for “baboon” and “monarch,”
respectively.

Table 3. Computation time for “baboon”.

IBP Bicubic SRCNN POCS wPOCS POCSw FPPOCS
Time 5.546754 4.921108 13.273676 9.538408 9.804105 9.762910 5.548609

Table 4. Computation time for “monarch”.

IBP Bicubic SRCNN POCS wPOCS POCSw FPPOCS
Time  5.474635 5.271705 14.447426 10.395677 10.672014 10.621014 6.644332

It can be observed from Tables 3 and 4 that our FPPOCS method requires the least time
for convergence except in the case of the IBP and bicubic interpolation methods, while the
performance of our method is far superior to those of IBP and bicubic interpolation as
discussed in section 3.1. In terms of the comparison of the SRCNN and FPPOCS methods,
our method requires half the time required by SRCNN for obtaining a similar performance
level. As compared with the POCS, wPOCS, and POCSw methods, we can obtain both a
better performance and lower computation time despite the fact that the frequency domain
requires an extra DFT to be performed during our reconstructions. This is because our
infrared micro-scanning optical system can obtain accurate sub-pixel LR images, which can
greatly simplify the registration process and, thus, reduce the computation complexity of the
FPPOCS method.

In summary, our FPPOCS method can commendably realize image denoising and SR
reconstruction for the infrared image within a short computation time.
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4. System construction and experiments

Based on the schematic of the system shown in Fig. 8, we construct an infrared micro-
scanning optical system as shown in Fig. 14. The infrared detector is 640 x 512 with a pixel
size of 15 x 15 um. The scanning step is 5.54 um per half-pixel as an optimization result of
the optical system.

Fig. 14. Infrared micro-scanning optical system.

We perform indoor experiments for an identification plat and outdoor experiments for a
building, and we employed the 2 x 2, 3 x 3, and 4 x 4 micro-scanning modes to obtain multi-
level sub-pixel LR frames using our optical system.

Figure 15 shows the indoor results of the identification plat of the 2 x 2 magnification.
The size of the initial images we obtained is 640 x 512 pixels, and we eliminated the useless
black edge pixels and retained the effective image as 256 x 256 pixels. The SR result is 512 x
512 pixels. Figure 15(a) shows the reference image, Figs. 15(b)—15(h) show the SR results of
the IBP, bicubic interpolation, SRCNN, traditional POCS, wPOCS, POCSw, and FPPOCS
algorithms, respectively. The value of m is equal to 1.022219 for the identification plat.

Fig. 15. Indoor results of the identification plat of 2 x 2 magnification: (a) reference image, (b)
IBP, (c) bicubic interpolation (d) SRCNN, (e) POCS, (f) wPOCS, (g) POCSw, (h) FPPOCS.

It can be clearly observed from Fig. 15 that the IBP method brings in too much noise and
useless information, while the bicubic interpolation result causes less noise but is over-
smooth. The SRCNN can restore more details but also introduces edge rings. The traditional
POCS result is clearer than the IBP and bicubic interpolation results, but not sufficiently clear
because the redundant noise causes the edge to become blurred with the small identification
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units. The wPOCS and POCSw results have a certain degree of smoothness because of the
rough denoising process. The FPPOCS result shows a higher resolution image with relatively
distinguishable edges.

Using Eq. (16), the image quality of Fig. 15 can be assessed. The corresponding IQA and
computation time results for the identification plat are shown in Table 5.

Table 5. IQA and computation time results for identification plat.

IBP Bicubic SRCNN POCS wPOCS POCSw FPPOCS
D 12.2081 9.5796 5.7742 10.3738 10.3182 6.4242 5.8462
Time  4.890047 4.845262 14.553802 10.103584 10.460739 10.763091 5.907446

The IQA result in Table 5 shows that the FPPOCS method can provide a smaller NR
assessment value than the other algorithms, which means our FPPOCS result contains more
ground truth information. The SRCNN result can provide almost the same level of
performance as that of our method, while its computation time is twice that of our method.
The FPPOCS method requires a little more time than the IBP and bicubic interpolation
methods, while the performance of our method is far superior to theirs. As our infrared micro-
scanning optical system can obtain accurate sub-pixel LR images, which can greatly simplify
the registration process and thus reduce the computation complexity of the FPPOCS method,
we can obtain both a better performance and low computation time as compared with the
POCS, wPOCS, and POCSw algorithms.

Figure 16 shows the outdoor result of the building with a 2 X 2 magnification. The size of
the initial images we obtained is 640 x 512 pixels; for simplification, we eliminate the pixels
we do not want and just retain the image as 256 x 256 pixels. The SR result comprises 512 x
512 pixels. Figure 16(a) shows the reference image, while Figs. 16(b)-16(h) show the SR
results of the IBP, bicubic interpolation, SRCNN, traditional POCS, wPOCS, POCSw, and
FPPOCS algorithms, respectively. The value of m is equal to 0.859981 for the building.

Fig. 16. Outdoor result of the building of 2 x 2 magnification: (a) reference image, (b) IBP, (c)
bicubic interpolation, (d) SRCNN, (e) POCS, (f) wPOCS, (g) POCSw, (h) FPPOCS.

The outdoor images we used have low gray levels and low contrasts, and thus, we include
a contrast enhancement algorithm in our method. It can be observed from Fig. 16 that the IBP
result has aliased the information at the edge of the image and exhibits serious distortion,
while the bicubic interpolation result exhibits over-smoothness. The SRCNN can restore more
details but also introduces some blur. The traditional POCS result is clearer but still
introduces redundant noise in the smooth area and background region. The wPOCS and
POCSw results show a certain degree of smoothness at the edges because of the rough
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denoising process. The FPPOCS method can provide a much better result, not only with
distinguishable details but also with a sufficiently smooth background area.
The corresponding IQA and computation time results for the building are shown in Table

6.
Table 6. IQA and computation time results for the building.
IBP Bicubic SRCNN POCS wPOCS POCSw FPPOCS
D 12.0011 9.1842 7.3498 11.8422 10.4899 9.3363 6.8241

Time 3.941580 4.310526 12.766742 8.799650 9.020304 8.696297 5.242737

The IQA result in Table 6 shows that the FPPOCS method exhibits a better assessment
value than the other algorithms. The SRCNN method almost exhibits a similar assessment
value as our method, while its computation time is twice that of ours. Our FPPOCS method
required a little more time than the IBP and bicubic interpolation methods, but the
performance of our method is far superior to theirs. As our infrared micro-scanning optical
system can obtain accurate sub-pixel LR images, which can greatly simplify the registration
process and thus reduce the computation complexity of the FPPOCS method, we can obtain a
better performance at a shorter computation time as compared with the POCS, wPOCS, and
POCSw algorithms. Thus, we can conclude that our FPPOCS method can realize image
denoising and SR reconstruction for infrared images commendably with little computation.

Figures 17(a) and 17(b) represent the IQA of the identification plat and the building,
respectively. The horizontal axis represents various magnifications, while the vertical axis
represents the IQA. The red dot denotes the result of the FPPOCS method, the blue square
denotes the SRCNN result, the green diamond denotes the bicubic interpolation result, the
pink star denotes the wPOCS result, the caramel upper triangle denotes the POCSw result, the
blue lower triangle denotes the POCS result, and the purple dot denotes the IBP result.
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Fig. 17. IQA chart of the identification plat and the building for different algorithms under
different magnifications: (a) identification plat, (b) building.

From Fig. 17, it can be observed that our FPPOCS method can always provide the
smallest (which means the best) IQA results under the magnification of 2 x 2, 3 x 3, and 4 %
4. The SRCNN result can almost provide the same performance as that of our method, while
its computation time is much longer as shown in the former discussion. The performance of
the other algorithms show some irregularity as the IQA metrics or the scene changed, which
may be because of their instability. We can also observe that the IQA results decrease as the
magnification increases because of the errors introduced by the increase in the moving steps.

5. Conclusions

In conclusion, we propose a FPPOCS SR algorithm based on an infrared micro-scanning
optical system. The FPPOCS SR algorithm takes full advantage of the texture details and
contrast-independent feature of the phase information in the frequency domain and can reduce
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the noise in the image and obtain more details of the infrared image in the SR reconstruction
result. We also propose the use of an IQA method based on the frequency domain phase
spectrum, which can reflect the SR reconstruction effectiveness in the frequency domain. An
infrared micro-scanning lens has been designed, which is used to construct an infrared micro-
scanning optical system and realize the infrared image SR reconstruction using our proposed
algorithm. The infrared micro-scanning optical system we constructed can guarantee both
displacement uniformity of the entire FOV and ideal image quality in the image plane with
the use of the micro-scanning system; also, it can realize target controllable sub-pixel micro-
scanning of an arbitrary step size by moving two light and compact pieces instead of the
entire lens, sensor array, or sample as in the traditional method. Using our proposed algorithm
and our infrared micro-scanning optical system, we can realize image denoising and SR
reconstruction for the infrared image commendably with little computation. In this paper, we
obtain the best results when the magnification is 2 x 2. We focus our further studies on
obtaining a better performance with our method in the case of other magnifications.
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