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a b s t r a c t 

Interferometry, which measures the difference between a reference surface and a test surface, is widely used in 

high-precision testing. Usually the reference surface is considered as perfect and the surface errors there can be 

ignored during the testing. Considering the interferometry for fine optics with large apertures where the error 

of the reference surface is non-ignorable, we propose a stitching algorithm based on an orthonormal polynomial 

fitting method that can be used to accomplish the testing of both the reference surface and the surface under 

test simultaneously. To evaluate the accuracy of the above algorithm, the performance of the proposed method 

was analyzed by testing the tertiary mirror for the Thirty-Meter Telescope project (TMT project) and utilizing the 

algorithm in the simulation. Further, a practical experiment was implemented to demonstrate the practicability 

of the proposed method. 
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. Introduction 

In recent years, large aperture telescopes are being built all around

he world, such as the TMT (Thirty-Meter Telescope) in Hawaii [1] ,

ELT (European Extremely Large Telescope) in Chile [2] and LOT (Large

ptical Telescope) in China [3] . As the aperture of the telescope in-

reases, the size of the optical element also increases. In the design

f TMT, the primary mirror is segmented into 492 aspherical mirrors

.4 m in size [1] . For the tertiary mirror in the TMT design, an ellip-

ical flat mirror with dimensions of 2.5 m ×3.5 m is applied, while in

he recommended conceptual design for LOT, an elliptical flat mirror

1.573 m ×1.333 m) is proposed [3] . As the size of optical elements be-

omes larger, the need for precise and efficient measurement techniques

s growing. Among these, a promising measurement method is subaper-

ure stitching testing. 

Subaperture stitching testing has been primarily developed for test-

ng large-aperture optics, especially large flat mirrors, spherical surfaces

ith high numerical aperture, and large convex surfaces. Based on dif-

erent shapes of the subaperture, annular subaperture stitching and cir-

ular stitching methods are proposed. The annular subaperture stitching

ethod is an effective way to extend the vertical dynamic range of a con-

entional interferometer, but it can only accomplish measurements for
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otationally symmetric aspheric surfaces [4–6] . The circular stitching

ethod can test planes, spheres, and a variety of aspheres [7–9] . As the

ore of stitching testing, various stitching algorithms have been stud-

ed by many researchers. Among them, original algorithms such as the

won–Thunen method [10] or the simultaneous fitting method [11] use

 series of global Zernike polynomials to accomplish the fitting of the test

urfaces. Polynomial fitting methods suffer from localized irregularities

n both the subaperture shape and the test surface shape. A discrete-type

hase method was proposed by Stuhlinger to overcome the shortcom-

ngs of polynomial fitting methods [12] . In this method, the subaperture

urface is represented by the phase value of a series of discrete points,

nd overlapping regions are required between adjacent subapertures.

elative adjustment errors such as piston and tip/tilt are calculated with

he least squares method. The full aperture map can be obtained by ap-

lying adjustment errors between adjacent subapertures. This type of

titching has also been studied by other researchers [13–15] . Stitching

esting can also be applied through non-null testing. The relative stitch-

ng algorithms are demonstrated in QED technology’s patent [16] and

ther non-null stitching research work [17–19] . In interferometry, usu-

lly the figure error of the reference surface is treated as perfect. How-

ver, in high-accuracy stitching testing, the figure errors in the reference

urface (which cannot be ignored) inherently create inconsistency be-

ween the overlapping data and appear as an important error source in

ach subaperture. One way to solve the problem is to calibrate the refer-

nce error before using it, which is usually difficult to realize because of
 February 2019 
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he demands of high-accuracy auxiliary optical elements. The University

f Arizona in the USA has provided a method based on maximum like-

ihood to accomplish the error separation between a reference surface

n a 1 m aperture and a test surface in a 1.6 m aperture [20] . Aiming

t improving the stitching accuracy for flat mirrors in large apertures

nd for separating the reference error from the test map, we propose a

titching algorithm which can be applied to stitching for a flat mirror

ith arbitrary shape. The advantages of the algorithm are evaluated and

erified through simulations and experiments. 

In this paper, we focus on the orthonormal polynomials fitting stitch-

ng algorithm and experimental demonstration of high accuracy surface

easurement. The proposed stitching algorithm can be applied in the

titching testing for flat mirrors with arbitrary shape and it can recon-

truct unknown surfaces including both the reference and the test simul-

aneously. To evaluate the performance of the above stitching algorithm,

t has been applied to the M3 (the tertiary mirror in the Thirty-Meter

elescope) simulation testing and a Φ300 mm standard surface testing

xperiment. The paper is organized as follows. In Section 2 , the basic

heory of the orthonormal polynomials fitting stitching algorithm is in-

roduced. In Section 3 , the effectiveness of our method is demonstrated

hrough simulation testing of M3, which is an elliptical aperture mir-

or with dimensions of 2.5 m ×3.5 m. In Section 4 , we demonstrate the

erformance of our stitching algorithm by testing a Φ300 mm standard

urface. Finally, Section 5 provides conclusions. 

. Theory 

The flow chart of the orthonormal polynomial fitting stitching algo-

ithm is shown in Fig. 1 . First, interferometric measurements were taken

or each subaperture and all subaperture data were placed into a global

oordinate system, which is defined beforehand according to their rel-

tive positions. Then basic polynomials were chosen to describe both

he reference surface and the test surface. Considering that the shape of

he test surface or the subaperture may be irregular, orthogonalization

hould be applied to each subaperture map of the test surface and the ref-

rence surface before the fitting calculation, as discussed in Section 2.1 .

fter performing the orthogonalization, the orthonormal polynomials

tting calculation was performed, as discussed in Section 2.2 . Then the

tting coefficients of the predefined polynomials, which are used to de-

cribe the surface maps of the reference and the test, were obtained and

he relative surface maps were constructed. To get a better fitting re-
Fig. 1. Flow chart of the stitching algorithm. 
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50 
ult, residual maps of the reference surface and the test surface were

alculated and the root mean square (RMS) of the residual maps were

sed to evaluate whether the fitting results meet the requirement. If not,

asic polynomial terms were reselected and the polynomial fitting was

ecalculated until the residual maps met the requirement. 

.1. Principles of orthonormal polynomials fitting 

Optical systems or surfaces generally have a circular boundary.

ernike circle polynomials are widely used for wavefront analysis be-

ause of their orthogonality over a circular region and their representa-

ion of balanced classical aberrations. 

However, for mirrors with a noncircular boundary, Zernike circular

olynomials are neither orthogonal over such region nor do they rep-

esent balanced aberrations. Hence their special utility is lost and they

hould be expanded using an aberration function over a noncircular re-

ion [21, 22] . 

Considering a set of orthonormal polynomials { F i } over an arbitrary

egion Σ, which can be expressed as a linear combination of Zernike

olynomials{ Z i }, the relationship between them can be expressed as:

 𝑖 = 

𝐽 ∑
𝑗=1 

𝑀 𝑖𝑗 𝑍 𝑗 (1)

here M ij is a conversion matrix and J is the number of predefined

erms. As the Zernike polynomials are given beforehand, the orthonor-

al polynomials { F i } can be obtained if the conversion matrix M ij is

alculated. 

Considering that the polynomials { F i } are orthogonal over the

egion Σ, then 

 

𝐹 𝑖 
||| 𝐹 𝑗 

⟩ 
= 

∫∑ 𝐹 𝑖 𝐹 𝑗 𝑑𝑆 

∫∑ 𝑑𝑆 
= 𝛿𝑖𝑗 (2)

here 𝛿ij is the Kronecker delta. 

Combining Eqs. (1) and (2) , we obtain: 

𝑍 𝑘 
|| 𝐹 𝑖 ⟩ = 

𝐽 ∑
𝑗=1 

⟨ 
𝑍 𝑘 

||| 𝑍 𝑗 

⟩ [
𝑀 𝑖𝑗 

]𝑇 
(3)

here i and k are the sequence numbers of polynomials { F i } and

 Z k }, 𝑖, 𝑘 = 1 , 2 , 3 ⋯ 𝐽 and [ M ij ] 
T is the transpose matrix of the above con-

ersion matrix with elements M ij . 

Eq. (3) can be expressed as: 

 

𝑍𝐹 = 𝐶 

𝑍𝑍 𝑀 𝑖𝑗 
𝑇 (4)

here both C 

ZF and C 

ZZ are J × J matrices respectively. The difference

etween them is that the inner element of C 

ZF is the relationship of poly-

omials { Z i } and{ F i }, while the inner element of C 

ZZ is the relationship

f polynomials { Z i } and{ Z i }. 

Similarly, 

𝐹 𝑖 
|| 𝐹 𝑘 ⟩ = 

𝐽 ∑
𝑗=1 

𝑀 𝑖𝑗 

⟨ 
𝑍 𝑗 

||| 𝐹 𝑘 
⟩ 
= 𝛿𝑖𝑘 (5)

As with Eq. (3), Eq. (5) can be written as: 

 𝑖𝑗 𝐶 

𝑍𝐹 = 𝐼 (6)

here I is the unit matrix. Substituting Eq. (4) into Eq. (6) , and defining

 = ( 𝑄 

𝑇 ) −1 (7)

hen 

 

𝑇 𝑄 = 𝐶 

𝑍𝑍 (8)

Eq. (8) can be solved for Q with the Cholesky decomposition [23] and

he relative conversion matrix M ij can be obtained, thus the relationship

etween the predefined Zernike polynomials{ Z i } and the orthonormal

olynomials { F i } over an arbitrary region Σ is obtained, meaning that

he orthonormal polynomials fitting is accomplished. 



L. Yan, W. Luo and G. Yan et al. Optics and Lasers in Engineering 120 (2019) 49–58 

2

 

b

w  

t  

a  

Z  

a  

t  

p  

f  

s  

o

 

b  

w

𝐿  

w  

i  

t

 

f  

m

𝑆  

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
 

f

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋯

⋯

⋯

⋯

 4 ⋯

 4 ⋯

 4 ⋯

⋯

⋱

 𝑡 5 ⋯

 𝑡 6 ⋯

⋱

 𝑡𝑚 

 𝑟 5 

 𝑟 6 

 𝑟𝑚 

⋯
⋯
⋯
⋱
⋯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑃  

(

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
 

f

 

𝑃  
.2. Stitching algorithm 

For each subaperture testing map, the testing data can be expressed

y Eq. (9) [20] . 

𝐷 𝑖𝑗 = 𝐷 

𝛼
𝑖𝑗 
+ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝑎 𝑖 1 𝑍 1 ( 𝜌𝑎 , 𝜃𝑎 + 𝜑 𝑎𝑖 ) + 𝑎 𝑖 2 𝑍 2 ( 𝜌𝑎 , 𝜃𝑎 + 𝜑 𝑎𝑖 ) 

+ 𝑎 𝑖 3 𝑍 3 ( 𝜌𝑎 , 𝜃𝑎 + 𝜑 𝑎𝑖 ) + 𝑎 𝑖 4 𝑍 4 ( 𝜌𝑎 , 𝜃𝑎 + 𝜑 𝑎𝑖 ) − 

𝑟𝑚 ∑
𝑘 =5 

𝑎 𝑟𝑘 𝑍 𝑘 ( 𝜌𝑎 , 𝜃𝑎 + 𝜑 𝑎𝑖 ) 

+ 

𝑡𝑚 ∑
𝑘 =5 

𝑎 𝑡𝑘 𝑍 𝑘 ( 𝜌𝑎 , 𝜃𝑎 + 𝜑 𝑏𝑖 ) + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 (9) 

here D ij : the testing phase data of point j in the ith subaperture; 𝐷 

𝛼
𝑖𝑗 

:

he part of the data that can be described analytically by polynomi-

ls; residuals : the part of data that cannot be described by polynomials;

 1 , Z 2 , Z 3 , Z 4 : the terms describing the phase errors introduced by the

lignment, such as piston, x tilt, y tilt, and defocus; Z : polynomials used

o represent the surfaces; i : the index of the subaperture; j : the index of the

hase data; rm, tm : the index of terms used to describe the reference sur-

ace and testing surface, respectively; a r , a t : coefficients of the reference

urface and the testing surface, respectively; 𝜌, 𝜃, 𝜑 : global coordinates

f reference and testing surfaces in a subaperture. 

Because the testing map of each subaperture meets the Gauss distri-

ution [20] , the likelihood function of a subaperture testing map can be

ritten as: 

 ( 𝐷 𝑖𝑗 |𝑎 𝑖 , 𝑎 𝑟 , 𝑎 𝑡 ) = 

1 

( 
√
2 𝜋𝜎) 

𝑁 𝑣 𝑖 
exp (− 

1 
2 𝜎2 

𝑁 ∑
𝑖 =1 

𝑣 𝑖 ∑
𝑗=1 

( 𝐷 𝑖𝑗 − 𝐷 

𝑎 
𝑖𝑗 
) 2 ) (10)

here N is the number of testing subapertures, v i is the number of test-

ng points in the ith subaperture, and 𝜎 is the standard deviation of the

esting result. 

The goal of the stitching algorithm is to maximize the likelihood

unction, which means that the value of the Eq. (11) should be mini-

ized. 

 = 

𝑁 ∑
𝑖 =1 

𝑣 𝑖 ∑
𝑗=1 

( 𝐷 𝑖𝑗 − 𝐷 

𝛼
𝑖𝑗 
) 2 = min (11)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∑
1 
𝜙1 𝑍 1 ∑

1 
𝜙1 𝑍 2 ∑

1 
𝜙1 𝑍 3 ∑

1 
𝜙1 𝑍 4 ∑

2 
𝜙2 𝑍 1 ∑

2 
𝜙2 𝑍 2 ∑

2 
𝜙2 𝑍 3 ∑

2 
𝜙2 𝑍 4 

⋮ 
𝑁 ∑
𝑖 =1 

𝜙𝑖 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝜙𝑖 𝑍 𝑡 6 

⋮ 
𝑁 ∑
𝑖 =1 

𝜙𝑖 𝑍 𝑡𝑚 

𝑁 ∑
𝑖 =1 

𝜙𝑖 𝑍 𝑟 5 

𝑁 ∑
𝑖 =1 

𝜙𝑖 𝑍 𝑟 6 

⋮ 
𝑁 ∑
𝑖 =1 

𝜙𝑖 𝑍 𝑟𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∑
1 
𝑍 2 1 

∑
1 
𝑍 1 𝑍 2 

∑
1 
𝑍 1 𝑍 3 

∑
1 
𝑍 1 𝑍 4 0 0 0 0 

∑
1 
𝑍 2 𝑍 1 

∑
1 
𝑍 2 2 

∑
1 
𝑍 2 𝑍 3 

∑
1 
𝑍 2 𝑍 4 0 0 0 0 

∑
1 
𝑍 3 𝑍 1 

∑
1 
𝑍 3 𝑍 2 

∑
1 
𝑍 2 3 

∑
1 
𝑍 3 𝑍 4 0 0 0 0 

∑
1 
𝑍 4 𝑍 1 

∑
1 
𝑍 4 𝑍 2 

∑
1 
𝑍 4 𝑍 3 

∑
1 
𝑍 2 4 0 0 0 0 

0 0 0 0 
∑
2 
𝑍 2 1 

∑
2 
𝑍 1 𝑍 2 

∑
2 
𝑍 1 𝑍 3 

∑
2 
𝑍 1 𝑍

0 0 0 0 
∑
2 
𝑍 2 𝑍 1 

∑
2 
𝑍 2 2 

∑
2 
𝑍 2 𝑍 3 

∑
2 
𝑍 2 𝑍

0 0 0 0 
∑
2 
𝑍 3 𝑍 1 

∑
2 
𝑍 3 𝑍 2 

∑
2 
𝑍 2 3 

∑
2 
𝑍 3 𝑍

0 0 0 0 
∑
2 
𝑍 4 𝑍 1 

∑
2 
𝑍 4 𝑍 2 

∑
2 
𝑍 4 𝑍 2 

∑
2 
𝑍 2 4 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ∑
1 
𝑍 1 𝑍 𝑡 5 

∑
1 
𝑍 2 𝑍 𝑡 5 

∑
1 
𝑍 3 𝑍 𝑡 5 

∑
1 
𝑍 4 𝑍 𝑡 5 

∑
2 
𝑍 1 𝑍 𝑡 5 

∑
2 
𝑍 2 𝑍 𝑡 5 

∑
2 
𝑍 3 𝑍 𝑡 5 

∑
2 
𝑍 4 𝑍

∑
1 
𝑍 1 𝑍 𝑡 6 

∑
1 
𝑍 2 𝑍 𝑡 6 

∑
1 
𝑍 3 𝑍 𝑡 6 

∑
1 
𝑍 4 𝑍 𝑡 6 

∑
1 
𝑍 1 𝑍 𝑡 6 

∑
1 
𝑍 2 𝑍 𝑡 6 

∑
1 
𝑍 3 𝑍 𝑡 6 

∑
1 
𝑍 4 𝑍

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

∑
1 
𝑍 1 𝑍 𝑡𝑚 ∑

1 
𝑍 1 𝑍 𝑟 5 ∑

1 
𝑍 1 𝑍 𝑟 6 

⋮ ∑
1 
𝑍 1 𝑍 𝑟𝑚 

∑
1 
𝑍 2 𝑍 𝑡𝑚 ∑

1 
𝑍 2 𝑍 𝑟 5 ∑

1 
𝑍 2 𝑍 𝑟 6 

⋮ ∑
1 
𝑍 2 𝑍 𝑟𝑚 

∑
1 
𝑍 3 𝑍 𝑡𝑚 ∑

1 
𝑍 3 𝑍 𝑟 5 ∑

1 
𝑍 3 𝑍 𝑟 6 

⋮ ∑
1 
𝑍 3 𝑍 𝑟𝑚 

∑
1 
𝑍 4 𝑍 𝑡𝑚 ∑

1 
𝑍 4 𝑍 𝑟 5 ∑

1 
𝑍 4 𝑍 𝑟 6 

⋮ ∑
1 
𝑍 4 𝑍 𝑟𝑚 

∑
2 
𝑍 1 𝑍 𝑡𝑚 ∑

2 
𝑍 1 𝑍 𝑟 5 ∑

2 
𝑍 1 𝑍 𝑟 6 

⋮ ∑
2 
𝑍 1 𝑍 𝑟𝑚 

∑
2 
𝑍 2 𝑍 𝑡𝑚 ∑

2 
𝑍 2 𝑍 𝑟 5 ∑

2 
𝑍 2 𝑍 𝑟 6 

⋮ ∑
2 
𝑍 2 𝑍 𝑟𝑚 

∑
2 
𝑍 3 𝑍 𝑡𝑚 ∑

2 
𝑍 3 𝑍 𝑟 5 ∑

2 
𝑍 3 𝑍 𝑟 6 

⋮ ∑
2 
𝑍 3 𝑍 𝑟𝑚 

∑
2 
𝑍 4 𝑍∑

2 
𝑍 4 𝑍∑

2 
𝑍 4 𝑍

⋮ ∑
2 
𝑍 4 𝑍
51 
Calculate the partial derivative of Eq. (11) as shown in Eq. (12) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜕𝑆 

𝜕 𝑎 𝑖 1 
= 0 

𝜕𝑆 

𝜕 𝑎 𝑖 2 
= 0 

𝜕𝑆 

𝜕 𝑎 𝑖 3 
= 0 

𝜕𝑆 

𝜕 𝑎 𝑖 4 
= 0 

𝜕𝑆 

𝜕 𝑎 𝑟 k 
= 0 

𝜕𝑆 

𝜕 𝑎 𝑡𝑘 
= 0 

(12) 

Eq. (12) can be transformed to a group of linear equations in the

ollowing form, as shown in Eq. (13) . 

 

∑
1 
𝑍 1 𝑍 𝑡 5 

∑
1 
𝑍 1 𝑍 𝑡 6 ⋯ 

∑
1 
𝑍 1 𝑍 𝑡𝑚 

∑
1 
𝑍 1 𝑍 𝑟 5 

∑
1 
𝑍 1 𝑍 𝑟 6 

⋯ 
∑
1 
𝑍 1 𝑍 𝑟𝑚 

 

∑
1 
𝑍 2 𝑍 𝑡 5 

∑
1 
𝑍 2 𝑍 𝑡 6 ⋯ 

∑
1 
𝑍 2 𝑍 𝑡𝑚 

∑
1 
𝑍 2 𝑍 𝑟 5 

∑
1 
𝑍 2 𝑍 𝑟 6 

⋯ 
∑
1 
𝑍 2 𝑍 𝑟𝑚 

 

∑
1 
𝑍 3 𝑍 𝑡 5 

∑
1 
𝑍 3 𝑍 𝑡 6 ⋯ 

∑
1 
𝑍 3 𝑍 𝑡𝑚 

∑
1 
𝑍 3 𝑍 𝑟 5 

∑
1 
𝑍 3 𝑍 𝑟 6 

⋯ 
∑
1 
𝑍 3 𝑍 𝑟𝑚 

 

∑
1 
𝑍 4 𝑍 𝑡 5 

∑
1 
𝑍 4 𝑍 𝑡 6 ⋯ 

∑
1 
𝑍 4 𝑍 𝑡𝑚 

∑
1 
𝑍 4 𝑍 𝑟 5 

∑
1 
𝑍 4 𝑍 𝑟 6 

⋯ 
∑
1 
𝑍 4 𝑍 𝑟𝑚 

 

∑
2 
𝑍 1 𝑍 𝑡 5 

∑
1 
𝑍 1 𝑍 𝑡 6 ⋯ 

∑
2 
𝑍 1 𝑍 𝑡𝑚 

∑
2 
𝑍 1 𝑍 𝑟 5 

∑
2 
𝑍 1 𝑍 𝑟 6 

⋯ 
∑
2 
𝑍 1 𝑍 𝑟𝑚 

 

∑
2 
𝑍 2 𝑍 𝑡 5 

∑
1 
𝑍 2 𝑍 𝑡 6 ⋯ 

∑
2 
𝑍 2 𝑍 𝑡𝑚 

∑
2 
𝑍 2 𝑍 𝑟 5 

∑
2 
𝑍 2 𝑍 𝑟 6 

⋯ 
∑
2 
𝑍 2 𝑍 𝑟𝑚 

 

∑
2 
𝑍 3 𝑍 𝑡 5 

∑
1 
𝑍 3 𝑍 𝑡 6 ⋯ 

∑
2 
𝑍 3 𝑍 𝑡𝑚 

∑
2 
𝑍 3 𝑍 𝑟 5 

∑
2 
𝑍 3 𝑍 𝑟 6 

⋯ 
∑
2 
𝑍 3 𝑍 𝑟𝑚 

 

∑
2 
𝑍 4 𝑍 𝑡 5 

∑
1 
𝑍 4 𝑍 𝑡 6 ⋯ 

∑
2 
𝑍 4 𝑍 𝑡𝑚 

∑
2 
𝑍 4 𝑍 𝑟 5 

∑
2 
𝑍 4 𝑍 𝑟 6 

⋯ 
∑
2 
𝑍 4 𝑍 𝑟𝑚 

 ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ 

 

𝑁 ∑
𝑖 =1 

𝑍 𝑡 5 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑡 5 𝑍 𝑡 6 ⋯ 
𝑁 ∑
𝑖 =1 

𝑍 𝑡 5 𝑍 𝑡𝑚 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑡 5 ⋯ 
𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑡 5 

 

𝑁 ∑
𝑖 =1 

𝑍 𝑡 6 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑡 6 𝑍 𝑡 6 ⋯ 
𝑁 ∑
𝑖 =1 

𝑍 𝑡 6 𝑍 𝑡𝑚 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑡 6 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑡 6 ⋯ 
𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑡 6 

 ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ 

 

 

 

 

 

𝑁 ∑
𝑖 =1 

𝑍 𝑡𝑚 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑡 5 

⋮ 
𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑡𝑚 𝑍 𝑡 6 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑡 6 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑡 6 

⋮ 
𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑡 6 

⋯ 
⋯ 
⋯ 
⋱ 
⋯ 

𝑁 ∑
𝑖 =1 

𝑍 𝑡𝑚 𝑍 𝑡𝑚 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑡𝑚 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑡𝑚 ⋯ 
𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑡𝑚 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑡𝑚 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑟 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑟 6 ⋯ 
𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑟𝑚 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑡𝑚 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑟 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑟 6 ⋯ 
𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑟𝑚 

⋮ ⋮ ⋮ ⋱ ⋮ 
𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑡𝑚 

𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑟 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑟 6 ⋯ 
𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑟𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑎 11 
𝑎 12 
𝑎 13 
𝑎 14 
𝑎 21 
𝑎 22 
𝑎 23 
𝑎 24 
⋮ 

𝑎 𝑡 5 
𝑎 𝑡 6 
⋮ 

𝑎 𝑡𝑚 

𝑎 𝑟 5 
𝑎 𝑟 6 
⋮ 

𝑎 𝑟𝑚 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

And Eq. (13) can be expressed as: 

 = 𝑄 ⋅ 𝑅 (14)

If we define the parameters according to the following Eqs. (15) –

24) , then Eqs. (13) and (14) can be written as: 

The final least-squares equation derived from Eq. (13) becomes 

 

 

 

 

 

 

 

 

 

 

𝑃 1 
𝑃 2 
𝑃 3 
⋮ 
𝑃 𝑁 

𝑃 𝑡 
𝑃 𝑟 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑄 11 𝑄 12 𝑄 13 ⋯ 𝑄 1 𝑁 

𝑄 1 𝑡 𝑄 1 𝑟 
𝑄 21 𝑄 22 𝑄 23 ⋯ 𝑄 2 𝑁 

𝑄 2 𝑡 𝑄 2 𝑟 
𝑄 31 𝑄 32 𝑄 33 ⋯ 𝑄 3 𝑁 

𝑄 3 𝑡 𝑄 3 𝑟 
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

𝑄 𝑁1 𝑄 𝑁2 𝑄 𝑁3 ⋯ 𝑄 𝑁𝑁 

𝑄 𝑁𝑡 𝑄 𝑁𝑟 

𝑄 𝑡 1 𝑄 𝑡 2 𝑄 𝑡 3 ⋯ 𝑄 𝑡𝑁 

𝑄 𝑡𝑡 𝑄 𝑡𝑟 

𝑄 𝑟 1 𝑄 𝑟 2 𝑄 𝑟 3 ⋯ 𝑄 𝑟𝑁 

𝑄 𝑟𝑟 𝑄 𝑟𝑟 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑅 1 
𝑅 2 
𝑅 3 
⋮ 
𝑅 𝑁 

𝑅 𝑡 

𝑅 𝑟 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(15) 

To better explain each term in Eq. (15) , their detailed descriptions

ollow. 

P is a vector with [( 𝑟 m + 𝑡𝑚 − 8) + 4 𝑁] rows and it can be written as:

 𝑖 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∑
𝑖 

𝜙𝑖 𝑍 1 ∑
𝑖 

𝜙𝑖 𝑍 2 ∑
𝑖 

𝜙𝑖 𝑍 3 ∑
𝑖 

𝜙𝑖 𝑍 4 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
( 𝑖 = 1 ⋯ 𝑁) 𝑃 𝑡 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑁 ∑
𝑖 =1 

𝜙𝑖 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝜙𝑖 𝑍 𝑡 6 

⋮ 
𝑁 ∑
𝑖 =1 

𝜙𝑖 𝑍 𝑡𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

𝑃 𝑟 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑁 ∑
𝑖 =1 

𝜙𝑖 𝑍 𝑟 5 

𝑁 ∑
𝑖 =1 

𝜙𝑖 𝑍 𝑟 6 

⋮ 
𝑁 ∑
𝑖 =1 

𝜙𝑖 𝑍 𝑟𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(16)
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Fig. 2. Test setup. 

Fig. 3. Equipment of M3 testing. 

 

m

𝑄  

𝑄  

T

P

Fig. 4. Reference surface errors. 

Fig. 5. M3 surface errors. 
Q is a matrix of size [( 𝑟 m + 𝑡𝑚 − 8) + 4 𝑁] and the relationship of ele-

ents in it can be expressed with Eqs. (17 )–(23) . 

 𝑖𝑖 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∑
𝑖 

𝑍 

2 
1 

∑
𝑖 

𝑍 1 𝑍 2 
∑
𝑖 

𝑍 1 𝑍 3 
∑
𝑖 

𝑍 1 𝑍 4 ∑
𝑖 

𝑍 2 𝑍 1 
∑
𝑖 

𝑍 

2 
2 

∑
𝑖 

𝑍 2 𝑍 3 
∑
𝑖 

𝑍 2 𝑍 4 ∑
𝑖 

𝑍 3 𝑍 1 
∑
𝑖 

𝑍 3 𝑍 2 
∑
𝑖 

𝑍 

2 
3 

∑
𝑖 

𝑍 3 𝑍 4 ∑
𝑖 

𝑍 4 𝑍 1 
∑
𝑖 

𝑍 4 𝑍 2 
∑
𝑖 

𝑍 4 𝑍 3 
∑
𝑖 

𝑍 

2 
4 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
( 𝑖 = 1 , 2 ⋯ 𝑁) (17)

 𝑖𝑗 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
( 𝑖, 𝑗 = 1 , 2 ⋯ 𝑁, 𝑖 ≠ 𝑗) (18)
able 1 

arameters and errors in the testing. 

Size of the reference surface 1.5 m diameter 

Surface error of reference surface RMS (Root Mean Square): 60.32 nm 

Size of M3 2.5 m ×3.5 m elliptical aperture mirror 

Surface error of M3 RMS: 116.05 nm 

Alignment error in the radial direction 𝜌 10 μm/m 

Alignment error in the rotation direction 𝜃 10 ′′

Tip error in the X direction 0 . 5 ′′

Tilt error in the Y direction 0 . 5 ′′

Mechanical jump 10 μm 

Random error in the map testing RMS: 0.5 nm 

𝑄

𝑄

52 
 𝑡𝑖 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∑
𝑖 

𝑍 1 𝑍 𝑡 5 
∑
𝑖 

𝑍 2 𝑍 𝑡 5 
∑
𝑖 

𝑍 3 𝑍 𝑡 5 
∑
𝑖 

𝑍 4 𝑍 𝑡 5 ∑
𝑖 

𝑍 1 𝑍 𝑡 6 
∑
𝑖 

𝑍 2 𝑍 𝑡 6 
∑
𝑖 

𝑍 3 𝑍 𝑡 6 
∑
𝑖 

𝑍 4 𝑍 𝑡 6 

⋮ ⋮ ⋮ ⋮ ∑
𝑖 

𝑍 1 𝑍 𝑡𝑚 

∑
𝑖 

𝑍 2 𝑍 𝑡𝑚 

∑
𝑖 

𝑍 3 𝑍 𝑡𝑚 

∑
𝑖 

𝑍 4 𝑍 𝑡𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
( 𝑖 = 1 , 2 ⋯ 𝑁) 

(19) 

 𝑟𝑖 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∑
𝑖 

𝑍 1 𝑍 𝑟 5 
∑
𝑖 

𝑍 2 𝑍 𝑟 5 
∑
𝑖 

𝑍 3 𝑍 𝑟 5 
∑
𝑖 

𝑍 4 𝑍 𝑟 5 ∑
𝑖 

𝑍 1 𝑍 𝑟 6 
∑
𝑖 

𝑍 2 𝑍 𝑟 6 
∑
𝑖 

𝑍 3 𝑍 𝑟 6 
∑
𝑖 

𝑍 4 𝑍 𝑟 6 

⋮ ⋮ ⋮ ⋮ ∑
𝑖 

𝑍 1 𝑍 𝑟𝑚 

∑
𝑖 

𝑍 2 𝑍 𝑟𝑚 

∑
𝑖 

𝑍 3 𝑍 𝑟𝑚 

∑
𝑖 

𝑍 4 𝑍 𝑟𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
( 𝑖 = 1 , 2 ⋯ 𝑁) 

(20) 
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Fig. 6. Subaperture distributions. 

Fig. 7. Stitching map of M3. 

𝑄

𝑄

Fig. 8. Stitching map of the reference surface. 

Fig. 9. Residual map of M3. 

𝑄

𝑅  
 𝑟𝑟 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑟 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑟 6 ⋯ 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑟𝑚 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑟 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑟 6 ⋯ 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑟𝑚 

⋮ ⋮ ⋱ ⋮ 
𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑟 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑟 6 ⋯ 

𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑟𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(21) 

 𝑡𝑡 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑁 ∑
𝑖 =1 

𝑍 𝑡 5 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑡 5 𝑍 𝑡 6 ⋯ 

𝑁 ∑
𝑖 =1 

𝑍 𝑡 5 𝑍 𝑡𝑚 

𝑁 ∑
𝑖 =1 

𝑍 𝑡 6 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑡 6 𝑍 𝑡 6 ⋯ 

𝑁 ∑
𝑖 =1 

𝑍 𝑡 6 𝑍 𝑡𝑚 

⋮ ⋮ ⋱ ⋮ 
𝑁 ∑
𝑖 =1 

𝑍 𝑡𝑚 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑡𝑚 𝑍 𝑡 6 ⋯ 

𝑁 ∑
𝑖 =1 

𝑍 𝑡𝑚 𝑍 𝑡𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(22) 
53 
 𝑟𝑡 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑡 6 ⋯ 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 5 𝑍 𝑡𝑚 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑡 6 ⋯ 

𝑁 ∑
𝑖 =1 

𝑍 𝑟 6 𝑍 𝑡𝑚 

⋮ ⋮ ⋱ ⋮ 
𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑡 5 

𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑡 6 ⋯ 

𝑁 ∑
𝑖 =1 

𝑍 𝑟𝑚 𝑍 𝑡𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(23) 

R is a vector with [( 𝑟 m + 𝑡𝑚 − 8) + 4 𝑁] rows and can be written as: 

 𝑖 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑎 1 𝑖 
𝑎 2 𝑖 
𝑎 3 𝑖 
𝑎 4 𝑖 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
( 𝑖 = 1 ⋯ 𝑁) 𝑅 𝑡 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑎 𝑡 5 
𝑎 𝑡 6 
⋮ 
𝑎 𝑡𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
𝑅 𝑟 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑎 𝑟 5 
𝑎 𝑟 6 
⋮ 
𝑎 𝑟𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(24)
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Fig. 10. Residual map of reference surface. 

Fig. 11. Stitching map of M3 using the traditional method. 

Table 2 

Details of 5-dof platform. 

Axis Range of movement Accuracy 

X 1000 mm 0.01 mm 

Y 500 mm 0.01 mm 

Z 800 mm 0.02 mm 

A 90° 4 ″ 

C 360° 10 ″ 

Fig. 12. Residual map of M3 using the traditional method. 

Fig. 13. Experimental setup. 

Fig.14. Description of 5-dof platform. 
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54 
The coefficients a r and a t can be calculated from Eqs. (15 )–(24) . After

etermining the fitting coefficients, the maps of both the testing surface

nd the reference surface can be obtained. 

. Simulation 

We ran simulations to demonstrate our proposed method. The sim-

lations are based on the TMT (Thirty-Meter Telescope) project. The
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Fig. 15. Subaperture arrangement. 
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Fig. 16. Measured subapertu

55 
ertiary mirror in this project is an elliptical aperture mirror with di-

ensions 2.5 m ×3.5 m. The test setup is shown in Fig. 2 . 

In Fig. 2 , the off-axis paraboloid (OAP) is an off-axis paraboloid re-

ective surface; M3 is an elliptical aperture testing surface with dimen-

ions of 2.5 m ×3.5 m; the green part labeled as the test plate is a circular

eference surface whose diameter is 1.5 m. The interferometer emits a

tandard spherical wavefront to the OAP mirror, which collimates the

eam. The collimated beam, which is now a 1.5 m diameter beam, re-

ects off the reference and M3 and returns to the interferometer 

The equipment to test M3 is shown in Fig. 3 . The interferometer

angs at the top of the tower. M3 is placed on the swivel table, and can

e moved around the swivel table and along the guideway. 

According to the actual testing conditions, the parameters and errors

n the testing simulation are listed in Table 1 . 

The detailed description of each error in Table 1 is as follows. Sur-

ace error of the reference surface means that the reference cannot be

reated as perfect, and the RMS of the surface is 60.32 nm; Surface error

f M3 describes the surface map of the tested surface. Alignment error

n the radial direction 𝜌 indicates the position error along the guideway

hen the mirror is moved along the guideway. Alignment error in the

otation direction 𝜃 is the angle error when the mirror is rotated around

he swivel table. Tip error in the X direction, Tilt error in the Y direc-
res (wave = 632.8 nm). 
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Fig. 17. Stitching result with traditional algorithm (wave = 632.8 nm). 

Fig. 18. Stitching map of Ф 300 mm flat mirror with orthogonal fitting stitching 

algorithm (wave = 632.8 nm). 
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Fig. 19. Reference map with orthogonal fitting stitching algorithm 

(wave = 632.8 nm). 
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ion, and Mechanical jump indicate tip, tilt, and piston errors between

ubapertures, respectively. Random error in the map testing is a ran-

om surface error caused by the testing environment. Corresponding to

able 1 , the surface errors of the reference surface and M3 are shown in

igs. 4 and 5 , respectively. 

The units of the X and Y axes in Figs. 4 and 5 are both in pixels.

ach pixel represents 5 mm. The units of the Z axis in Figs. 4 and 5 are

anometer. To accomplish the stitching testing, nine subapertures are

pecified, as shown in Fig. 6 . 

After applying our proposed algorithm to the subaperture testing

aps, the map of M3 was obtained, as shown in Fig. 7 . 

The reference map shown in Fig. 8 is calculated at the same time. 

The units of X and Y in Figs. 7 and 8 are both in pixels. Each pixel

lso represents 5 mm. The units of Z in Figs. 7 and 8 are nm. To verify

he stitching accuracy, the residual maps for both M3 and the reference

urface were derived by subtracting the data between the stitching map

nd original map point by point, as shown in Figs. 9 and 10 , respectively.

All X, Y , and Z units are the same as in previous figures. Figs. 9 and

0 show that the RMS of the M3 residual map is 2.93 nm, while the RMS

f the residual map of the reference surface is 1.71 nm, which proves

hat stitching maps are consistent with the original maps for both the

3 and the reference surface. To compare the stitching results between

he traditional stitching algorithm [14] and our orthonormal polyno-

ial fitting algorithm, the stitching was also taken using the traditional

ethod, and the stitching map of M3 is shown in Fig. 11 while the rel-

tive residual map of M3 is shown in Fig. 12 . 
56 
All units in the two figures are those previously specified.

igs. 11 and 12 show that obvious steps can be observed at the edges

f the subapertures, while there are no steps in either the stitching map

r the residual map calculated with our proposed method, which means

hat our stitching map is smooth and continuous. The RMS error of the

esidual map in Fig. 12 is 67.4 nm, which indicates that the reference

urface error cannot be ignored anymore in the stitching, as would be

he case using the traditional stitching method. At the same time, from

he stitching results in Figs. 7–10 , it can be seen that stitching can be

ccomplished with our proposed orthonormal polynomial fitting algo-

ithm very well. 

. Experiment 

An experiment was carried out to validate the accuracy of the above

rthogonal fitting stitching algorithm based on current equipment in the

aboratory. In the experiment, a Zygo standard surface with Ф 300 mm

perture was tested with a Ф 150 mm interferometer and a five-degrees

f freedom (5-dof) adjustment platform including the X, Y, Z, A and C

xis, as shown in Figs. 13 and 14 . The range of movement and relative

ccuracy of each axis can be found in Table 2. As the verification exper-

ment, nine subapertures were measured with the interferometer. The

rrangement of subapertures is shown in Fig. 14 and the subaperture

esting results are shown in Fig. 15 . 

To further illustrate the advantage of the orthogonal fitting stitching

lgorithm, we compared the stitching results between the traditional

titching algorithm [14] and the orthogonal fitting stitching algorithm.
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Fig. 20. Difference maps between each subaperture map and corresponding stitching map (after both the reference map and alignment terms are subtracted from 

the difference map). 
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ig. 17 shows the stitching result with the traditional stitching algo-

ithm [14] , which accomplishes stitching by removing the relative ad-

ustment errors between subapertures using the least squares method.

bvious steps appeared at the edges of the overlapping areas between

djacent subapertures. As assumed in the traditional stitching algorithm,

ompared with the testing mirror, the surface error of the interferom-

ter standard lens is so small that it can be ignored in the subaperture

esting. In this case, the method of calculating stitching coefficients in

he traditional stitching algorithm can be used to evaluate the differ-

nces between subapertures, and stitching can be accomplished very

ell. 

However, in the above experiment, the surface error of the inter-

erometer standard lens was not negligible compared to the subaper-

ure error of the testing mirror. Figs. 18 and 19 show the stitching

aps of the Ф 300 mm flat mirror and the reference surface maps of

he interferometer standard lens using the orthogonal fitting stitching

lgorithm calculation, respectively. The peak-to-valley (PV) and RMS

rrors of the testing map are 0.441 𝜆 and 0.036 𝜆, respectively while

he PV and RMS errors of the reference map are 0.057 𝜆 and 0.007 𝜆,
57 
espectively ( 𝜆= 632.8 nm). From Figs. 18 and 19 , it is evident that both

he reference map and the testing map can be tested at the same time

ith the orthogonal fitting stitching algorithm. 

To further evaluate the performance of our stitching method,

e calculated the difference maps between each subaperture data

nd the stitching map (both the reference map and alignment terms

re subtracted from the difference map). The difference maps are

n important indicator of the stitching quality and are shown in

ig. 20 . It can be seen from Fig. 20 that the RMS of each difference

ap is within 0.5 nm, which verifies the capability of our stitching

ethod. 

The pixel-wise subaperture variations after the reference map and

elative alignment are removed were also analyzed as follows. Fig. 21 in-

icates that the maximum RMS of subaperture variations between ad-

acent subapertures in the overlapped areas is 0.24 nm. This verifies

he consistency of adjacent subaperture testing maps in the overlapping

rea (after the reference map and relative alignment are removed). The

titching results are excellent, and demonstrate the powerful capabilities

f our stitching method. 
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Fig. 21. Subaperture variations. 
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. Conclusion 

We propose an orthogonal fitting stitching algorithm to measure flat

irror surfaces when considering the errors of the reference surface.

ith the proposed stitching algorithm, both the reference surface and

he testing surface can be calculated together. From both the M3 testing

imulation and the experimental results, it is evident that the reported

ethod can obtain the reconstructed full-aperture surface map and the

eference surface map simultaneously with satisfactory accuracy. As the

rthogonal fitting stitching algorithm is now fully developed to accom-

lish the absolute measurement of flat mirrors with large apertures, fur-

her research is needed for the absolute measurement of more complex

urfaces such as convex aspherical mirrors and freeform surfaces. 
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