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a b s t r a c t

Analysis and suppression of micro-vibration is an important concern in the research
related to large space telescopes. In accordance with this concern, a series of works,
including simulations and experiments, must be carried out to assess these micro-
vibrations. Accurate disturbance data from the vibration source of a large space tele-
scope serves as the basis for the required micro-vibration research; therefore, this paper
describes the development of a novel generalized disturbance force measurement plat-
form for large device vibration sources. Use of redundant piezoelectric sensors allows the
structural stiffness and the measurement precision of the platform to be improved. The
design of the mechanism, the simulation analysis and the calibration algorithms of the
developed platform are analyzed theoretically. Based on the results of this analysis, a
prototype system is designed and tested. The experimental results show that the dynamic
relative error within the 8e800 Hz range is largely less than 5%, while the static relative
error is less than 5%. The linearity of the generalized forces within a 40 kN range is within
0.1%FS, while the repeatability is within 0.1%FS.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Micro-vibration is a difficult but inevitable problem that must be resolved for highly stable spacecraft such as large space
telescopes [1e5]. Moving devices, such as a control moment gyroscope (CMG), a momentum wheel, a cryocooler, or a relay
antenna, can often cause the resonance of densemodes to affect the telescope’s line of sight (LOS). With the increasingly large
scale of spacecraft, the masses and volumes of these active devices are also increasing, which means that the resulting micro-
vibrations are becoming increasingly serious. Therefore, analysis and suppression of these micro-vibrations will be necessary.
Based on experience gained from the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST) [6e10],
accurate disturbance data fromvibration sources can serve as a basis for micro-vibration research. Theweight of China’s space
telescope is likely to be more than fifteen tons and its primary mirror has a diameter of 2m. The telescope’s optical resolution
will be comparable to that of the HST, and its field of view will be more than 300 times that of the HST. If it is in orbit for 10
years, this telescope will be able to observe more than 40% of the area of the sky, equivalent to approximately 17500 square
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degrees. This telescope is still at the design stage. However, because of its greater mass and higher precision requirements,
micro-vibration measurements of the vibration sources will be more difficult.

In recent years, research into micro-vibration measurements was mainly aimed at small vibration sources that were used
in satellites [11]. However, the masses of the moving devices are tending to become larger to provide the required output
forces andmoments. For example, themaximum output of a CMG is 500 Nm, while its mass is 90 kg, and six CMGs are usually
used in a group for large space telescopes. Fig. 1 shows a common CMG disturbance waterfall curve. According to the micro-
vibration disturbance mechanism, the disturbances can be divided into two main categories. 1) Active disturbances. This
category mainly includes the harmonic disturbances generated by rotation of the rotor, dynamic imbalance, rolling bearing
defects and motor disturbances. 2) Structural natural frequency responses. These responses are caused by the resonance of
the active disturbance and the internal structure, including the structural modal curves that do not change with the rotation
speed and V-shaped curves. In addition, a significant amplification occurs when the two types of curve intersect. According to
the method of micro-vibration spectrum analysis, the sources disturbance can be divided into three categories: 1) stationary
randomdisturbances; 2) harmonic disturbances; and 3) nonstationary disturbances. The frequency distributions of stationary
random disturbances and harmonic disturbances are wide, generally ranging up to tens of thousands of hertz, while their
amplitudes can range from a few millinewtons to hundreds of newtons. If the stiffness of the measurement platform is
insufficient, resonance between the vibration source and the platform during the measurement process is inevitable and
results in decreasing measurement precision. In this case, it becomes difficult to measure this type of micro-vibration
disturbance force data using traditional force measurement platforms. We therefore require a new force measurement
platform that can meet the measurement requirements of large space telescopes in terms of its stiffness, precision and
measurement range. We must also ensure that the fundamental frequency of the platform is more than 1000 Hz, that the
force test resolution reaches 0.001 N when the signal-to-noise ratio (SNR) is greater than 10, that the dynamic measurement
precision is within 5% in the 8e800Hz range, and that the load capacity is at least 3 tons.

Sensors with carrying capacities of between 10 and 2000 kN are usually called heavy force sensors [12], and the maximal
rated loads of the heavy force platforms used on such heavy load operating equipment can reach 100MN or more. Based on
the research on heavy force measurement technology, the force measurement platforms can mainly be classified into strain
and piezoelectric types. The strain-type platforms can be designed to be compact, lightweight, and simple structures that are
easy to use and offer a fast response. However, for the large strains caused by heavy loads, obvious nonlinear errors often
occur within the output signals from these platforms. In addition, the parameters of these devices, such as the coefficients of
resistance and sensitivity, are often sensitive to temperature variations. Therefore, these strain-type sensors [13e19] are now
more commonly used in robot wrist sensors. Piezoelectric sensors, however, have a stronger ability to withstand heavy loads
and offer higher stability (see e.g., the Kistler measurement platform), which means that the piezoelectric-type sensors will
usually offer better performance than strain-type sensors for dynamic measurement of heavy loads.

The spatial disturbances that emanate from the vibration sources of large space telescopes are generally multi-
dimensional. To test these types of disturbance forces, a specific configuration composed of multiple piezoelectric sensors
is required. In previous research [20e22] on piezoelectric measurement platforms, the Stewart platformwas most commonly
used, but its loose and bulky structure will reduce the stiffness of the platform, and thus the coupling of the platform and the
vibration source is inevitable. This limits the application of the Stewart platform in heavy load measurements. Other plat-
forms have mostly used orthogonal layouts. This type of layout can take the effects of the stiffness and the measurement
precision into account, and its design can be varied, as in Li’s design [12] of a six-axial piezoelectric force sensor for mea-
surement of extremely heavy loads. A study of the spatial layout of the force-sensing elements, the preliminary load sharing
method, and the structural response of the sensor was performed. Soon after that study, Li [23] used adjustable load sharing
devices to develop another parallel piezoelectric sensor for heavy loads, which was applied to the wrist joints of a robot. Liang
[24] investigated the performance of piezoelectric lead zirconate titanate (PZT) thick-film pressure sensors and fabricated an
unimorph sensor structure. Durand [25] invented a measurement sensor for a linking wrench, where the sensor consisted of
six piezoelectric cylinders mounted and fastened in different directions between two plates. Sujan [26] designed a stainless
steel resonant pressure sensor that used both piezoelectric excitation and detection. The sensor consisted of a sensing
Fig. 1. Disturbance waterfall curve of CMG.
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diaphragm, inclined trusses, vertical mounts and a resonating beam, and provided improved nonlinearity performance and
maximum hysteresis.

The above piezoelectric measurement systems, which have structures and principles that are intended for different
working environments and different test requirements, are used for reference for the design of the structure proposed in this
paper, but they are more often used to measure the six-dimensional forces of small space structures for force feedback. Their
stiffness and measurement ranges and working principles are not suitable for large vibration source measurements, about
which there are almost no relevant publications in the literature. Based on this approach, a novel generalized force piezo-
electric measurement platform is proposed that is applied to themicro-vibrationmeasurement of large vibration sources. The
platform uses eight piezoelectric sensors in a redundant layout. To improve the stiffness and the precision of the platform,
systematic work was carried out in terms of the mechanism design, the related simulation analyses and the calibration al-
gorithms. Section 2 describes the basic design of the proposed platform, and the effects of the sensor position on the stiffness
are verified by finite element analysis (FEA). In Section 3, the working principle of the platform is analyzed theoretically to
improve the test precision. Experiments are performed to verify the dynamic and static mechanical properties of the mea-
surement platform in Section 4. The conclusions are then summarized in the final section.

2. Structural design and analysis

Different measurement platforms can mainly be distinguished by their variable sensor elements and their layout. How-
ever, all platforms can be described using the same basic model: a load platform, a base and the sensors that connect the load
platform to the base.

Fig. 2 shows a schematic of the working principle of the platform. During measurements, the platform is fixed on a vi-
bration isolation platform through its base, and the vibration source to be measured is mounted on the load platform. When
the vibration source is operating, the disturbance force is transmitted to the piezoelectric sensors, which produce output
signals that can be converted into the generalized disturbing force of the measured vibration sourcemounting interface using
a calibration matrix.

2.1. Basic layout of the structure

In measurement of micro-vibrations, insufficient platform stiffness will cause structural resonance that leads to signal
distortion, so it can be said that the stiffness determines the measurement precision. In addition, based on previous research
[27], increasing the number of sensors used can effectively improve both the stiffness and the measurement precision of the
platform. Therefore, it is essential that sufficient numbers of sensors are available for measurement of the micro-vibrations; a
redundant layout for the sensors will thus form the basis of this design. In accordance with the stiffness and structural layout
requirements, the number of sensors used in this work is set at eight.

Fig. 3 shows the basic structure of the platform. Eight sensors are installed in this measurement platform. Half of the
sensors are distributed at the four corners of the base, which is connected to the load platform, to collect the vertical force and
moment components; the other sensors are located with rotational symmetry about the four corners of the load platform to
collect the torque and horizontal force components, as shown in Fig. 4. Compared to 4-point connection structure, this 8-
point redundant form can effectively increase stiffness.

The sensing element of each sensor is made from lead zirconate titanate (PZT), which has a piezoelectric constant of
330 pC/N, and the measurement range of each element can reach a minimum of 10 kN, which means that the measurement
range of the platform in this layout is more than 40 kN. The PZT is axially polarized and operated in a differential connection
mode, while each sensor takes the form of a ring, with an outer ring diameter of 19mm, an inner ring diameter of 7.5mm, and
ring thickness of 5mm. The superposition of two sensing layers is then used to improve the measurement precision and
resolution, as illustrated in Fig. 5.

To ensure platform precision, we tested the resolution and the linearity of the designed sensor. The sensor output as a
time-domain signal is shown in Fig. 6; by inputting impact forces with different amplitudes, the sensitivity coefficient of the
Fig. 2. Schematic showing the working principle of the measurement platform.



Fig. 3. Basic structure of the platform.

Fig. 4. Basic layout of the force sensors.

Fig. 5. Structural schematic of the force sensor.

Fig. 6. Performance test curves of piezoelectric sensor.
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sensor was experimentally determined to be approximately 6.2mV/N axially. However, in the absence of an input force, the
data acquisition device (precision: ±0.02 dB (0.2% FS) @ 1 kHz; SignalCalc ACE, Data Physics Corporation, San Jose, CA, USA)
has a noise input of 0.12mV. This means that the resolution of the platform is largely determined by the resolution of the
sensor and the noise environment. The noise amplitude is constant under the same conditions, when the input force is 0.2 N
(in the time domain), the SNR for acquisition in the time domain is just under 10, and the output waveform and amplitude are
still consistent with the input impact forces. As the magnitude decreases, the SNR will also continue to decrease; therefore, in
this case, the resolution of the platform is mainly determined by the layout of the sensors and the random environment,
which is analyzed in Section 3.2 and tested in Section 4.2. Additionally, the sensor shows very good linearity based on an
analysis of the test data. After ensuring the resolution and the linearity of the sensors, the specific positioning of the sensors
will be defined in the next section to obtain improved platform stiffness.
2.2. Finite element analysis of the structure

To obtain the better platform performance we need to improve the platform structure through FEA. Based on the char-
acteristics of the disturbance signal (micro-vibration, coupling) and the properties of the piezoelectric ceramic (high sensi-
tivity, good linearity), the design focus of the FEA is turned towards the stiffness to ensure that the transfer function will be
sufficiently stable within the test frequency range [30,31]. The sensors should be the only connection between the load
platform and the base. The stiffness of the platform is largely determined by the positioning of the sensors; therefore, in this
work, Nastran software has been used to analyze the stiffness of the platform. The objective of the design is to determine the
natural frequency of the platform. After the structural response has been obtained, the sensitivity of the various design
variables to the structural response can be determined. Based on this new design, we can then modify the model used in the
analysis and begin write iteration until the reliability and design requirements of the platform are met [13]. The reliability
requirements are mainly based on whether the boundary and loading conditions of the results are actually credible.

In this design, we still use a symmetrical distribution for the sensors to ensure that the natural frequency of the platform is
maximized in all directions. While asymmetry will lead to different natural frequencies in the x, y direction, although it may
result in better stiffness in one direction, it will cause difficulties in the structural design, manufacturing and the calibration
algorithm. After comprehensive consideration of the possible distributions, we adopted a symmetrical form. Therefore, the
sensor distribution can only be determined based on three parameters (X1, X2 and X3), which are shown in Fig. 7. Here, X1
and X2 determine the positions of the four vertical direction sensors (or Z-axis sensors), while X3 determines the positions of
the horizontal direction sensors (or X&Y-axis sensors). Fig. 8 shows the structural finite element model. The main material
used for the structure is 40Cr, which has an elastic modulus of 206780MPa, a Poisson ratio of 0.277, density of 7.82�103 kg/
m3, and a yield strength of 780MPa. In addition, the elastic modulus of the piezoelectric ceramic (PZT) was set at 76500MPa.
These material parameters were obtained experimentally, and the finite element model follows the assembly relationship of
the actual platform model. Hexahedral elements were mainly used, the chamfering was simplified, and small parts were
ignored, with their masses being attached to that of the main structure; connection of the components was achieved through
node coupling, and the piezoelectric ceramic sensors are connectedwhile neglecting preloading, such that only the stiffness is
provided. The number of elements in the model is 88146, the number of nodes is 119166, and the number of multi-point
Fig. 7. Distribution position parameters of the sensors.



Fig. 8. Finite element model of the measurement platform.
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constraints (MPC) is 0. The first four modes of the model provided by FEA are shown in Fig. 9. The first-order mode of the
platform is the diagonal angle twists of the load platform, while the second- and third-order modes are the adjacent angle
twists of the load platform, and the fourth-order mode represents a twist of the base. To obtain a better platform stiffness
value, the effects of X1, X2, and X3 on each of the order modes are considered via the FEA.

Assuming that the value of X3 is constant, the effects of sensor positions X1 and X2 on the stiffness are as shown in Fig. 10.
From the cloud images, we know that peaks are evident for the natural frequencies of the first four orders as X1 and X2 change,
and their trends are almost identical in that the natural frequencies reach their maxima at the same position. Therefore, when
only the stiffness is considered, the optimal values of X1 and X2 can be determined, and are both 85mm here.

Because the position of the horizontal sensor is determined based on X3 alone, however, the trends of the natural fre-
quencies of the first four orders are not similar; when only the peak of the frequency is considered, there is no optimal value
for X3. Therefore, the work in this paper uses the bandwidth as another measure for evaluation of the stiffness, because the
bandwidth of the platform must be as narrow as possible to make it easier to avoid structural resonance. In this case, the
analysis results could be determined based on the weighted average of the peaks of the natural frequencies of the first four
orders, and their bandwidths are given by Eq. (1). Here, W14 represents the bandwidth at the natural frequencies of the first
four orders, Freqi is the i-th order frequency, n1¼0.25, n2¼ 0.6, n3¼ 0.05, n4¼ 0.05, and n5¼ 0.05. The final value of X3 is
56mm, as shown in Fig. 11.

Xob3 ¼ n1 �W14 þ
P4

i¼1niþ1 � FreqiP5
i¼1ni

(1)
Following the above analysis process, the specific sensor position values that were obtained are listed in Table 1. From the
results of the FEA, the first order mode of the platform is at 1343 Hz, which does meet the original design requirement.
However, whenmoving devices with largemasses aremeasured, the coupling effect will cause the test system’s own stiffness
distribution to change. Using rigid-flexible coupling theory, we can obtain a more accurate sensor position for prediction of
the stiffness distribution, whichmay allow the precision of the calibrationmatrix to be further improved; this part of thework
will be completed as part of our future work.
Fig. 9. Cloud chart showing the first four order modes of the platform.



Fig. 10. Gradient charts of the first four order modes with X1 and X2: (a) The first order natural frequency; (b) The second order natural frequency; (c) The third
order natural frequency; (d) The fourth order natural frequency.
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3. Working principle

3.1. Redundant calibration theory

The forces that are associatedwithmicro-vibrations can vary from a fewNewtons to hundreds of Newtons.With the dense
modes that are available from the large space telescope data, the spectral information can be analyzed more easily. Therefore,
during themicro-vibrationmeasurements, the platform calibration should be completed using frequency domain analysis. As
shown in Fig. 12, for the proposed measurement platform, point O

0
represents the center of the vibration source that outputs

the actual six-dimensional disturbance force. The equivalent center is the geometrical center of the mounting surface of the



Fig. 11. Curves of the natural frequencies of the first four orders with X3.

Table 1
Final sensor position values obtained from the FEA of the platform.

Optimal value (mm) First four natural frequency (Hz)

X1¼ 85; X2¼ 85; X3¼ 56 f1¼ 1343.4 f2¼ 1356.5 f3¼ 1378.4 f4¼ 1414.4

Fig. 12. Specific layout of force sensing elements.
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load platform, which is denoted by point O. During testing, and using the basic layout of the eight force sensors, the platform
can obtain the disturbance distribution that corresponds to point O’, and this distribution can then be converted into the six-
dimensional disturbance force that corresponds to point O using the dynamic calibration matrix.

In platform calibration, the basic assumption that is made for the nonrigid body when modeling the sensor system is that
the platform’s response is linear; i.e.,

VðuÞ ¼ HðuÞFðuÞ (2)
where V(u) is the output spectrum vector matrix from eight sensors, F(u) is the output spectrum vector matrix from the
measured vibration source, and H(u) is the frequency response function matrix. The disturbing force has a six-dimensional
output, so if the number of sensors contained in Eq. (2) is more than six, we can call this process redundant observation. The
frequency response function matrix H(u) will no longer be a square matrix, and the generalized inverse of H(u) must then be
calculated to obtain the measured output spectrum; i.e.,



Fig. 13. Layout of the load points for the calibration process: (a) front view, and (b) top view.
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FðuÞ ¼
h
HHðuÞH

i
ðuÞ�1HHðuÞVðuÞ (3)
Usually, the dynamic response VðuÞ is relatively easy to obtain, while determination of the frequency response function
matrix HðuÞ is difficult, which is a reflection of the relationship between the different discrete excitation points and response
points. Therefore, to determine each matrix element, rigid calibration equipment is mounted on the upper surface of the load
platform, as shown in Fig. 13; the fundamental frequency of this calibration equipment is more than three times the maximal
detection frequency, whichmeans that it is considered to be a rigid body relative to the platform. All the calibration excitation
forces are thus equivalent to six generalized forces acting at the center O of the mounting surface.

First, the calibration forces are converted into equivalent forces that act on the center O of the mounting surface, i.e.,

F6�nðuÞ ¼ C6�n F0n�nðuÞ (4)
In Eq. (4), n indicates the number of calibration forces used in the test. In this work, n is 16, as shown in Fig.11. In addition, F
represents the excitation force that is equivalent to O, F0 represents the actual loaded force, which is a diagonal matrix, and C
represents the transition matrix.

The relationship between the equivalent load and the output signal of the force sensor is:

W6�8ðuÞV8�nðuÞ ¼ F6�nðuÞ (5)

whereW is the inverse of the frequency response function matrix (i.e., the calibration matrix) and V represents the response

signals of the eight force sensors. From Eq. (5), we see that when V has a generalized inverse,W can be expressed as follows:

W6�8ðuÞ ¼ F6�nðuÞVHðuÞ
h
VðuÞVHðuÞ

i�1
(6)
Substitution of Eq. (4) into Eq. (6) then gives:

W6�8ðuÞ ¼ C6�nF
’
n�nðuÞVHðuÞ

h
VðuÞVHðuÞ

i�1
(7)
In the micro-vibration measurements with eight sensor output signals and WðuÞ, the measured equivalent force FoðuÞ at
point O is given by

FoðuÞ ¼ WðuÞVðuÞ (8)
3.2. Measurement precision analysis

The potential measurement errors include both force sensor errors and calibration errors. For the force sensor errors,
system errors can be corrected by selecting more accurate data acquisition devices and calibration algorithms, while random
sensor errors can be improved by increasing the number of sensors used. The calibration errors mainly stem from random
errors in the calibration force and system errors during the calibration process. With regard to the system errors during the
calibration process, we performed the following analysis.

To determine the effects of the redundancy on the measurement precision of the platform, the calibration process errors
are analyzed theoretically. Similar to Eq. (2), the calibration process can be defined as follows:
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V ¼ T,H (9)

where V is the output of the sensor, T is the generalized calibration force that acts on the calibration tooling (see Fig.11), and H

is a generalizedmatrix that is determined based on the platform structure. The essence of the calibration procedure is theway
in which the matrix H is obtained using T and the sensor output V. In this paper, based on the redundant layout used for the
sensors, the theoretical precision of the redundant observation can be deduced using norm theory. First, the calibration force
is Tik (where i¼ 1, 2…n, and k¼ 1, 2…6), where i indicates the number of calibration forces, k represents the indexes of the six
components of the calibration generalized force, and Vij (j¼ 1, 2 …m) is the output of every sensor when j is the number of
sensors. From Eq. (10) the linear equations for the j-line elements of matrix A can be obtained.

V1j ¼ T11H1j þ T12H2j þ/þ T16H6j
V2j ¼ T21H1j þ T22H2j þ/þ T26H6j

«
Vnj ¼ Tn1H1j þ Tn2H2j þ/þ Tn6H6j

(10)
This means that

Vn�m ¼ Tn�6,H6�m (11)
When the number of calibration forces n＞6, Eq. (11) has no unique solution and only has an approximate solution. The
generalized inverse matrix for F is known, and thus

H6�m ¼
�
FTF
��1

FTV6�m (12)
This equation is known to have a least-squares solution, as given in Eq. (11). The solution for the error propagation can be
expressed as:

εa ¼ ðεFV þ εFFÞK
�
FTF
�

(13)

where K(F) is the error propagation factor, which has an upper bound. In addition, ε ¼ ��dðFTVÞ��=��FTV��, and ε ¼
FV FF��dðFTFÞ��=��FTF��. This means that:

εFF ¼
���FT þ dFT

�ðFþ dFÞ � FTF
����FTF�� � 2εF (14)

���FT þ dFT
�ðV þ dVÞ � FTV

�� ��FT��kVk

εFV ¼ ��FTV�� � ��FTV�� ðεV þ εF Þ (15)
To determine the upper bound of Eq. (15), the norms of the vector and the matrix are assumed to be the 2-norms of the
vector and the matrix, respectively. Depending on the nature of the vector 2-norm, we then obtain

��FTV��2
kVk2

¼ VT�FFT�V
VTV

¼ RFFT ðVÞ> d2min ¼
 

1����FT�þ���
!2

(16)

where RFFT ðVÞ is the Rayleigh form of the matrix FFT, dmin is the least-positive odd value of the matrix FFT, and (FT)þ is the
pseudo-inverse matrix of the matrix FT.

The number of conditions for a rectangular matrix is defined as:

cond
�
FT
�
≡kFk

���Fþ��� ¼ condðFÞ (17)
Then, Eq. (15) is transformed into

εFV � condðFÞðεV þ εFÞ (18)
Based on Eqs. (14) and (18), the error propagation given in Eq. (13) can be expressed as:
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εa � f½2þ condðFÞ�εF þ condðFÞεVgK
�
FTF
�

(19)

T 2
where KðF FÞz½condðFÞ� . If F is the sub-orthogonal matrix, then

FTF ¼ 1 (20)
The matrix F has a minimum number of conditions (equal to 1). Based on Eq. (19), when εV and εF remain unchanged, the
sensor has a minimum propagation error, i.e., the platform obtains its highest sensor calibration precision. The minimum
propagation error is given by:

εa ¼ 3εF þ εV (21)
Therefore, when the number of calibrated forces satisfies n> 6 in theory, the relative error that is associated with the
calibration force matrix F is amplified when compared with n¼ 6. This indicates that the redundant calibration will cause
magnification of the system error [34]. However, in actual dynamic measurements, the system error can be corrected by
processing the acquired data, and because of the uncertainty of the calibration force caused by the unpredictable effects of the
environment and personnel operations, the environmental random error of the calibrated force has a greater overall influence
on the measurement results. When compared with system errors, the magnitude and the inter-dimensional interference of
random errors are more obvious.

Based on error theory, random errors can only be reduced effectively by increasing the number of calibration forces and
measurements. This indicates that a calibration strategy withmore than six calibration forces should be adopted in this paper,
where the number was set at 16 in this case [27e29]. Actual test results indicated that the test precision tends to improve as a
result of this approach.

With regard to the errors from the sensors, as mentioned earlier, system errors can be corrected by selection of more
accurate data acquisition devices and calibration algorithms. To reduce the interference from random errors and improve the
platform resolution (SNRP10), to establish the minimum measurement error, the number of sensors used m should also be
appropriate and should be greater than 6; m is thus set at 8 in this paper.

4. Experimental

Based on the FEA of the structure, we designed and manufactured a prototype measurement platform. To verify the
simulation results and determine both the calibration matrix and the performance of the prototype, we set up two main
experimental systems, inwhich the dynamic test system is mainly designed for dynamic calibration and dynamic mechanical
performance testing of the proposed platform. The static test system is used to obtain the static mechanical properties of the
platform, which include linearity, repeatability, and the static relative error [32,33].

4.1. Dynamic calibration test

Fig. 14 shows the dynamic calibration test system, the system includes calibration equipment, a data acquisition device
(precision: ±0.1 dB; 652u-24 bit, IOtech, Norton, MA, USA), and an impact hammer (086C03, PCB; sensitivity: 2.25mV/N;
resolution: 0.02 N-rms; range: ±2200 N-pk.).

The natural frequency of the platform can be measured first. The hammer is used to input the required impact signal. The
transfer function of the measurement platform, which was fixed to the isolation platform, was then obtained using the data
acquisition device. Fig. 15 shows the transfer function curve of the platform that was obtained from the test. The natural
frequency of the first order mode is 1340 Hz at a sampling frequency of 5120 Hz for the transfer function test, while the
simulated result was 1343.4 Hz. This shows that the results of the FEA agreewell with those obtained experimentally because
of the precision of the modeling, and the goodness of fit proves that the simulation model can obtain the platform’s dynamic
performance with high precision. On the other hand, Fig. 15 could also show that there are some companion peaks near the
fundamental frequency. This phenomenon is inevitable due to structural imperfection. So the stiffness needs to be kept high
enough to avoid structural resonance, and for the test requirement in a range of 8e800 Hz, the fundamental frequency of
1340Hz is enough.

The dynamic calibration matrix of the platform can also be obtained using this system. During the dynamic calibration
experiment, an impact force was applied to the 16 calibration points in sequence using the hammer. Each point was loaded
three times, andwe then used the average values of the hammer and sensor output signals as themeasured data to reduce the
effects of random errors. From Eq. (7), we can obtain the calibration matrixW(u), as shown in Eq. (22). The frequency domain
response curve of the platform and the transfer function curve can both be produced using a data sampling frequency of
2560 Hz, and a sampling time of 12.8 s. The length of each element Wij(u) of the calibration matrix is 32768, which has an
effective bandwidth of 1/12.8e1000Hz (the effective coefficient of W(u) is 2.56.).



Fig. 14. Dynamic mechanical performance test system.

Fig. 15. Transfer function curve of the platform.
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4.2. Dynamic mechanical performance test

After the dynamic calibrationmatrixW(u) was obtained, we set up a series of tests to determine the dynamic performance
of the platform. First, we know that the calibration aims to acquire the energy distribution in the frequency domain. However,
the amplitude of the disturbance ranges from a fewmillinewtons to hundreds of newtons for a large space telescope, and thus
good dynamic linearity is the basis of stable measurement. For this reason, we detect the dynamic linearity of the platform
based on a dynamic calibration system. Using a hammer, impacts with different amplitudes are input into the calibration
equipment to obtain the transfer function between the calibration point and the sensor output, as shown in Fig. 16; this
function can then be used to characterize the dynamic linearity of the sensor in both the axial direction and the shear
direction.

Fig. 16 gives transfer functions for selected input impact amplitudes of 2.42 N, 25.33N, and 112.24 N. Because the transfer
function has been kept as flat as possible within theworking frequency band (8e800 Hz), the transfer function curve fits most
of the frequency bands well. However, it is not a flat curve near the platform resonance peak, which is unavoidable, so there
are still deviations from the curve in the areas where the fluctuations are obvious. The measurement results can be accurately
corrected via a calibration process. The test data statistics are presented in Table 2, and we consider the input of 25.33N to be
the reference. Table 2 lists the relative errors for impact inputs of 112.24 N and 2.24 N.

Table 2 shows that themaximum relative error is 8.4%, which occurs in the shear direction of the sensor, but also considers
the randomness of the impact energy distribution in the various modes. This method is intended to characterize the sensor
linearity over awide frequency band. Themethod does not fully reflect the dynamic linearity of the six-dimensional output of
the platform after dynamic calibration. Therefore, the dynamic linearity of the platform is detected using the sinusoidal signal
response method. Fig. 17 shows a schematic diagram and a photograph of the dynamic linearity test system.



Fig. 16. Transfer function curves for different input impacts.

Table 2
Statistics of transfer function test results.

Frequency range Input in axial direction (%) Input in shear direction (%)

112.24 N 2.24 N 112.24 N 2.24 N

Low frequency 0e50 5.29% 5.70% 1.47% 4.26%
50e100 5.33% 5.13% 1.51% 5.95%

Middle frequency 500e600 3.64% 4.31% 8.40% 8.15%
600e700 5.36% 4.39% 5.32% 5.13%
700e800 5.29% 5.70% 1.47% 3.26%

High Frequency 1200e1300 0.64% 4.31% 5.32% 6.13%
1300e1400 1.62% 3.08% 2.92% 0.86%

Fig. 17. Dynamic linearity test system. (a) Schematic illustration of the test system, and (b) photograph of the test system.
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Using this system, we can obtain the dynamic linearity curve of the six-dimensional output at frequencies of 0.5 Hz, 30 Hz,
600 Hz, and 1200Hz, as shown in Fig. 18. The input forces with their different amplitudes act on the equipment through the
actuator, where the maximum is close to 100 N, and the minimum is approximately 1.4 N. Using the calibration matrixW(u),
we can calculate the force and the moment of the platform output. The linearity error is fitted using the least squares method,
and the relative error is within 3% at each point. With the platform measurement range acting as the reference, the dynamic
linearity of the force and the moment of the platform are within 0.1%FS.

Next, we calculate the platform resolution using the obtained calibration matrixW(u). Based on the previous experiment,
the sensor resolution has proved to be acceptable. The resolution of the platform is mainly determined by the precision of the
environment acquisition. In addition, the data acquisition device used in the test has a range of 10 V and the effective number
of bits (ENOB) for analog-to-digital conversion (ADC) is 24. The acquisition resolution of the device can theoretically reach 10/
224¼ 5.96�10�7 (V), which can then be converted into the resolution of the generalized disturbance force using the cali-
bration matrixW(u). In addition, the platform resolutions of the six components are finally averaged in each frequency band.
As shown in Table 3, the resolution statistics within the 8e200Hz range are listed. The results show that with changes in
frequency, the platform force and the moment resolution are different. When we consider acquisition environment noise at
low frequencies, the force resolution is of the order of 10�4 N, and the resolution at frequencies above 200 Hz can reach the
order of 10�5 N. The resolution of the platformmoment is of the order of 10�6 Nm. If the signal can be identified by its SNR of
10, the force resolution should be at least 10�3 N and the moment is of the order of 10�4 Nm. Of course, these are theoretical



Fig. 18. Dynamic linearity test curves for the six-dimensional output.

Table 3
Average platform resolution in the 8e200 Hz range.

Frequency range Resolution (N/Nm)

Fx Fy Fz Mx My Mz

8e10 Hz 1.62� 10�4 1.75� 10�4 3.49� 10�4 1.16� 10�5 1.2� 10�5 7.1� 10�6

10e20 Hz 5.846� 10�5 3.73� 10�5 2.05� 10�4 3.74� 10�6 1.59� 10�6 2.9� 10�6

20e50 Hz 4.15� 10�5 1.72� 10�5 7.8� 10�5 4.45� 10�6 1.13� 10�6 3.38� 10�6

50e100 Hz 2.92� 10�5 1.89� 10�5 6.64� 10�5 5.22� 10�6 1.66� 10�6 4.94� 10�6

100e200 Hz 4.04� 10�5 1.03� 10�5 5.549� 10�5 8.54� 10�6 2.1� 10�6 5.18� 10�6
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values, obtained without taking the real acquisition environment into account, so we can detect both the resolution and the
precision via the following test.

Finally, we test the dynamic precision based on the relative error of the platform. A platform error analysis is then per-
formed using the dynamic calibration matrixW(u) and the input impact signal from the hammer. The data acquisition device
records the output voltage signals V(u) from the sensors, and we can then obtain the equivalent input excitation F(u) of the
hammer using Eq. (4). The test results for the platform Fob(u) are obtained through post-multiplication of the calibration
matrix W(u) by the output voltage V(u); i.e.,

FobðuÞ ¼ WðuÞVðuÞ (23)
Therefore, the dynamic test errors of the six components can be obtained by comparing the equivalent input excitation
with the test results. The relative error is calculated from:

xi
�
uj
� ¼

��Fobi�uj
���� ��Fi�uj

�����Fi�uj
��� � 100%;

�
i ¼ 1;2/6; j ¼ 1;2/nfft

�
(24)

where Fi(uj) and Fobi(uj) are both frequency domain complex matrices. To obtain the relative error, both Fi(uj) and Fobi(uj) use
the magnitude of each element, where i represents the six components of the generalized force, and j is the element number
of the matrix, which represents different frequencies. An error analysis of the six components of the disturbance force in each
band allows comparison to be made between the actual values and the test results (see Fig. 19). From Fig. 19, we know that,
based on consideration of a sufficient SNR (i.e., more than 10), the three force components of the test resolution can reach
0.001 N within the frequency range, and the three moment components of the test resolution can reach 0.0001 Nm. Table 4
and Table 5 present the maxima and the root mean square (RMS) values of the relative errors of the six components in the
Fig. 19. Comparison of measured forces with input generalized forces.



Table 4
Dynamic relative measurement errors in the 8e800 Hz range.

Frequency range Relative error (%)

Fx Fy Fz Mx My Mz

8e50 Hz 1.57 1.61 1.25 1.17 1.43 4.23
50e100 Hz 4.62 0.89 2.56 1.32 2.33 3.73
100e150 Hz 6.66 1.43 4.98 0.88 1.55 4.72
150e200 Hz 7.04 3.87 1.77 1.50 4.44 3.46
200e250 Hz 4.56 3.28 2.93 1.93 5.21 3.82
250e300 Hz 0.35 0.31 3.32 1.54 2.68 4.22
300e350 Hz 1.65 1.55 1.47 3.86 3.77 5.21
350e400 Hz 5.08 0.76 1.41 2.49 4.89 6.89
400e450 Hz 4.421 3.01 2.22 3.21 4.21 3.38
450e500 Hz 4.59 1.89 2.49 4.55 4.64 6.54
500e550 Hz 2.39 3.54 0.27 0.85 4.66 2.11
550e600 Hz 0.52 2.84 0.60 2.32 3.76 3.21
600e650 Hz 0.24 2.37 0.84 3.89 5.18 5.01
650e700 Hz 1.12 1.84 4.10 4.90 4.27 4.71
700e750 Hz 3.34 4.421 0.35 5.11 5.33 4.62
750e800 Hz 3.53 4.126 3.47 5.57 7.75 13.45

Table 5
RMS values of the generalized force in dynamic measurements.

Fx (N) Fy (N) Fz (N) Mx (Nm) My (Nm) Mz (Nm)

RMS 4.0755e-4 3.8275e-4 3.84975e-4 3.8142e-5 2.5005e-5 4.5039e-5
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8e800 Hz range. The dynamic relative error is mostly within 5% for all six components in the 8e800 Hz range and is required
for micro-vibration testing of the large space telescope; the peak value (PV) is approximately 10%, and the RMS values of the
relative errors are less than 4.1e�4 N and 4.5e�5 Nm. This test precision is at the same level as that of the light-load mea-
surement systems that are commonly used in aerospace applications and can thus meet the requirements of micro-vibration
measurements of vibration sources in large space telescopes.

4.3. Static mechanical performance test

Because a generalized-force measurement platform has been proposed, the static mechanical performance, which can be
used to verify the reliability of the measurement data, should not be neglected in the performance test. To test the static
mechanical characteristics of the platform, such as its linearity, repeatability, and inter-dimensional coupling, a static char-
acteristic test systemwas also designed and built (Fig. 20). In addition, because of the attenuation of the piezoelectric signal,
the peak before attenuation can be regarded as the output signal of the static force. Various standard forces and torques were
applied at the geometric center of the platform using pulleys and weights. The real-time time data were processed using the
previously-obtained dynamic calibration matrix W(u) and a fast Fourier transform (FFT). The range limits for the forces and
moments in this test are 1 kN and 200 Nm, respectively.

In the static mechanical performance test, the force sensor (208C03, PCB; sensitivity: 2.248mV/N; resolution: 0.02 N-rms;
range: 2.224 kN) is used to monitor the loading force. Weights (5 kg; precision: ±1%) are loaded on the pulley one by one,
where the pulley is connected to the platform using a rope. This loading and unloading cycle is performed three times. The
Fig. 20. Static mechanical performance test system. (a) Photograph of static mechanical performance test system, and (b) schematic illustration of static me-
chanical performance test system.
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real-time data of the stable voltage (or the voltage peak) are recorded at every loading or unloading step (Fig. 21). Using the
dynamic calibration matrix W(u) and the FFT, we then obtain the real-time six-dimensional frequency-domain data infor-
mation. Table 6 shows the coupling interference of the platform determined from the static characteristic experimental data.
The interference in the platformmeasurement data mainly comes from dimensional errors and assembly errors, and can also
be corrected using the static calibration matrix. The other static characteristics of the platform that were processed using the
static calibration matrix are listed in Table 7. The measurement platform linearity is within 0.1%FS. The repeatability is within
0.1%FS, and the static relative error of the platform is within 5%FS.

5. Conclusions

This article has described the analysis, design and testing of a novel dynamic disturbance measurement platform for large
vibration sources. The platform uses redundant piezoelectric sensors to increase its stiffness and its measurement range,
while the precision is improved through use of an efficient algorithm. The experimental results show that the first-order
fundamental frequency is more than 1300Hz, while the corresponding range is more than 40 kN. The dynamic relative
error in the 8e800Hz range is largely less than 5%, while the PV remains near 10%. The static relative error of the platform is
within 5%. The linearity of the platform is within 0.1%FS, and the repeatability is within 0.1%FS. The research results show that
the platform provides advances in terms of its high rigidity and its measurement range and precision. Further investigations
of this measurement platform will focus on the rigid-flexible coupling theory of the vibration source and the measurement
platform.
Fig. 21. Relationship curves between input load and output load.

Table 6
Coupling interference of sensors obtained experimentally.

Force/Moment (N; Nm) Coupling interference (%)

Fx Fy Fz Mx My Mz

Fx e 3.9% 4.3% 1.7% 2.3% 2.9%
Fy 5.1% e 6.7% 5.7% 8.1% 0.3%
Fz 5.5% 6.5% e 8.8% 5.7% 5.3%
Mx 2.0% 6.0% 9.4% e 4.2% 1.3%
My 6.4% 2.2% 9.2% 6.0% e 2.3%
Mz 2.7% 0.4% 5.4% 1.0% 2.4% e

Table 7
Statistics of static performance results.

Force/Moment (N; Nm) Sensor sensitivity （N/N; Nm/Nm） Nonlinearity (%FS) Repeatability error (%FS) Stability relative error (%FS)

Fx 1.07 0.08 0.08 2.02
Fy 1.08 0.09 0.03 3.61
Fz 1.08 0.09 0.02 2.43
Mx 1.03 0.08 0.06 1.15
My 1.02 0.03 0.08 0.71
Mz 1.02 0.01 0.07 0.82
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