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ABSTRACT We present MCF3D, a multi-stage complementary fusion three-dimensional (3D) object
detection network for autonomous driving, robot navigation, and virtual reality. This is an end-to-end
learnable architecture, which takes both LIDAR point clouds and RGB images as inputs and utilizes a 3D
region proposal subnet and second stage detector(s) subnet to achieve high-precision oriented 3D bounding
box prediction. To fully exploit the strength of multimodal information, we design a series of fine and targeted
fusion methods based on the attention mechanism and prior knowledge, including *‘pre-fusion,” ‘“‘anchor-
fusion,” and “proposal-fusion.” Our proposed RGB-Intensity form encodes the reflection intensity onto
the input image to strengthen the representational power. Our designed proposal-element attention module
allows the network to be guided to focus more on efficient and critical information with negligible overheads.
In addition, we propose a cascade-enhanced detector for small classes, which is more selective against
close false positives. The experiments on the challenging KITTI benchmark show that our MCF3D method

produces state-of-the-art results while running in near real-time with a low memory footprint.

INDEX TERMS 3D object detection, multi-sensor fusion, attention mechanism, autonomous driving.

I. INTRODUCTION
Three-dimensional (3D) object detection predicts the 3D
bounding boxes and class labels of objects of interest in
a scene, and plays an important role in intelligent robotics
perception systems such as autonomous vehicles and drones.
Compared to two-dimensional (2D) object detection, richer
input data and superior algorithms are required to recover
the six-degree-of-freedom (DoF) poses and 3D bounding
box dimensions of objects. Recent autonomous vehicles are
commonly equipped with both cameras and LIDAR. This
is advantageous for exploiting different sensors to obtain
information on multiple modalities for accurate and reliable
3D object detection.

3D point clouds generated by LIDAR contain accurate
depth and reflection intensity information, and this has
been combined with powerful deep learning methods and
widely applied in 3D object detection. Related approaches
either convert point clouds into 2D bird’s-eye view (BEV)
images [1]-[4], front view images [5], or structured voxel
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grid representations [6], [7], or directly take raw discrete and
unordered point clouds as inputs to estimate 3D bounding
boxes [8]. However, these approaches are ineffective when
faced with small or occluded objects, owing to the sparsity
of the point clouds. On the other hand, 2D images generated
by cameras can provide rich and dense texture descriptions
for 3D scenes, but the depth information required for precise
3D localization is difficult to obtain. Whether using monoc-
ular [9] or stereo [10], [11] camera approaches, the accuracy
of the estimated depth cannot be guaranteed, particularly
for unseen or dark scenes. Therefore, several approaches
have attempted to combine the advantage of images and
point clouds to achieve an accurate and robust perception.
In [12]-[15], high-resolution images are utilized to gener-
ate proposals while point clouds are applied to estimate 3D
bounding boxes. However, these cascade networks do not
have the capability to perform joint reasoning on multimodal
inputs, and the final detection results are largely influenced
by the performance of the 2D image-only detection network.

Other approaches [16]-[19] utilize the LIDAR BEV with
an image to generate 3D proposals to estimate the final
oriented 3D bounding boxes. Reference [18], [19] fuse the
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FIGURE 1. Multi-stage complementary fusion 3D object detection network (MICF3D): The network consists of a 3D RPN and a
second-stage detector(s) subnet. The first stage produces non-oriented region proposals by fusing anchor-dependent features from
LIDAR and camera views. The second stage jointly predicts object class and do oriented 3D box regression by fusing
proposal-dependent features from both views. We design different fusion methods for each stage according to the corresponding

"

tasks, including “pre-fusion,

whole feature maps from various views before the region
proposal stage. These global-based fusion methods are time-
consuming and prone to redundant data. MV3D [16] and
AVOD [17] combine region-based multimodal features at
the region proposal network (RPN) or detection stage. They
usually deal with different view features in a proportional
and rigid manner, such as by concatenating or averaging
them, using fully connected layers as required. This is clearly
inefficient, in the same way that humans do not confuse color
perception with geometric spatial perception when dealing
with visual problems. LIDAR and image modalities are com-
plementary and parallel, and their weights should be adaptive
to various appearances instead of fixed. For example, when
faced with small or similarly shaped objects, detection should
heavily rely on dense RGB and texture information from cam-
era images, owing to the sparsity of point clouds. Conversely,
when the geometric spatial information from point clouds is
sufficient to represent the objects, adding extra RGB infor-
mation will result in a detection performance degradation.
In this paper, we address the above challenges by proposing
MCF3D, a multi-sensor 3D object detection method based
on multi-stage complementary fusion, which maximizes the
strength of multimodal information via fine and targeted
fusion. As illustrated in Fig. 1, MCF3D is an end-to-end
learnable architecture consisting of a 3D region proposal
subnet (3D RPN) and a second stage detector(s) subnet.
First, 2D images and LIDAR point clouds are preprocessed
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anchor-fusion,” and “proposal-fusion.”

as inputs, and CNNs are applied to these to extract high-
resolution feature maps. Second, 3D anchors are generated
from BEV, and anchor-dependent features from different
views are fused to produce 3D non-oriented region proposals.
Finally, the proposal-dependent features are fused and passed
to the detection subnet for dimension refinement, orientation
estimation, and category classification. We design a series of
multimodal fusion methods for the tasks of each of the above
stages: (1) “Pre-fusion” is performed at the input prepro-
cessing stage, using spatial geometric constraints and prior
knowledge to selectively match and transform the camera and
LIDAR data. (2) “Anchor-fusion” occurs at the RPN stage,
adequately fusing feature crops from different views guided
by anchors to achieve a high recall at the next detection
step. (3) “Proposal-fusion” occurs at the detection stage,
applying innovative attention models as feature selectors to
refine the fusion by enhancing desirable features and sup-
pressing inefficient ones.

The proposed architecture encompasses the following con-
tributions:

e We design a pre-fusion method that encodes the
reflection intensities of LIDAR point clouds into an addi-
tional channel for camera images, which obtains a new
image representation called RGB-Intensity (RGB-I). This
aims to strengthen the representational power of multi-
ple modalities using prior knowledge to enhance detection
performance.
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e We propose a novel proposal-fusion method that
incorporates the self-attention mechanism into the network
structure. This utilizes a newly designed module, called
proposal-element attention (PEA), to adaptively re-weight
elements of proposals from different views to determine how
much the features of the proposals from each view contribute
to the fusion and subsequent detection. This makes the fusion
results include efficient and critical information.

e Inspired by the Cascade R-CNN [20] method for 2D
object detection, we propose a cascade-enhanced detector
consisting of a sequence of detectors trained with increasing
intersection over union (IoU) thresholds. This makes the
network more selective against close false positives, allowing
for a higher 3D localization accuracy for small classes.

Our experimental evaluation on the KITTI benchmark
suite [21] shows that our MCF3D method outperforms most
state-of-the-art multi-sensor-based methods, and achieves
a strong performance with a low computational cost and
memory footprint.

Il. RELATED WORK

A. LIDAR-BASED METHODS FOR 3D OBJECT DETECTION
1) USING RAW POINT CLOUD DATA

LIDAR scans object to generate unstructured point clouds
represented by the 3D spatial coordinates and reflectiv-
ity (x,y,z,1r) [22]. PointNet [8] and PointNet++ [23]
directly digest raw point clouds to learn pointwise fea-
tures for 3D object classification and semantic segmentation.
Reference [8] employs a CNN-based architecture with t-net
networks and symmetric functions to solve rotation and dis-
order problems. Reference [23] improves [8] that could learn
local structures at different scale by means of set abstraction
levels and density adaptive layers.

2) CONVERTING POINT CLOUDS TO OTHER FORMATS
VoxelNet [6] quantizes raw point clouds using voxel grids,
and combines pointwise features with locally aggregated
features through voxel feature encoding (VFE) layers.
Then, either 2D or 3D convolutional networks are utilized
on the voxelized shapes to detect 3D objects. However,
the high computational cost of 3D convolutions constrains
the inference speed and voxel resolution. SECOND [24]
extends [6] further by applying sparse convolution to
reduce the computational, and uses novel loss function
to improve orientation regression performance. PIXOR [2]
encodes point clouds as the BEV representation, and then
using a fine-tuned RetinaNet [25] to achieve 3D real-time
detection. Complex-YOLO [26] takes voxelwise BEV fea-
tures extracted by MV3D [16] network as input, using a
YOLO [27] network to detect 3D objects with a high frame-
rate at approximately 50fps on an NVIDIA Titan Xp GPU.
These LIDAR-based methods have been shown to perform
well for 3D object detection by only learning geometric spa-
tial features from point cloud data. However, their capacities
to detect small objects (such as pedestrians and cyclists) need
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to be improved. Furthermore, if they are extended to multi-
tasking problems such as segmentation and re-recognition,
LIDAR information alone is not sufficient.

B. CAMERA-BASED METHODS FOR 3D OBJECT
DETECTION

1) STEREO-BASED

3DOP [10] estimates depth information from stereo images,
and generates 3D box proposals by encoding the depth and
hand-crafted geometric features into an energy minimization
framework. 3D proposals are then fed into a modified Fast
R-CNN [28] pipeline to predict the 3D object coordinates and
classes. Stereo R-CNN [11] simultaneously detects and asso-
ciates object in left and right images, exploiting dense object
constraints in raw stereo images to formulate the projection
relations for estimating and regressing final 3D bounding
boxes.

2) MONOCULAR-BASED

Mono3D [9] takes advantage of object size priors, ground-
plane priors, and monocular RGB images to score 3D pro-
posals in an energy minimization approach. It has a similar
framework to 3DOP [10], and produces more accurate 3D
proposals than that method.

These camera-based methods do not perform well on
3D detection tasks compared with LIDAR-based methods,
because the inaccurate depth information estimated from
monocular or stereo images can seriously affect the learning
and understanding of 3D spatial distributions for neural net-
works.

C. MULTI-SENSORS-BASED METHODS FOR 3D OBJECT
DETECTION

Autonomous driving requires 3D object detection with a high
accuracy and good stability, which cannot be satisfied by a
single sensor. Therefore, many multimodal fusion methods
utilizing both LIDAR and camera sensors have been pro-
posed. These methods can be categorized into two classes.
Those in the first class apply mature 2D object detectors
to generate proposals from 2D images, then map these to
point clouds for extrusion and regression. Those in the other
propose 3D region proposal networks (RPN), which exploit
BEV-only or the BEV with a camera image to generate 3D
proposals for subsequent 3D object detection.

1) 2D-DRIVEN 3D OBJECT DETECTION

F-PointNet [12] selects necessary frustum-region reasoned
point clouds by utilizing initial detection results generated
by a 2D detector. Then, two cascaded PointNet [8] pipelines
are consecutively applied to process the reduced point clouds
to conduct 3D object instance segmentation and detection.
RoarNet [13] is composed of RoarNet 2D and RoarNet 3D
pipelines: the former one estimates proposals’ 3D poses and
2d bounding boxes from 2D monocular images, then deriving
more proposals locations based on geometrically feasible to
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reduce sensors out of synchronization problem. The later one
is analogous to Faster R-CNN [29], taking these 3D region
point clouds which have the shape of standing cylinders
generated by the former one as inputs, then predicting 3D
bounding box based on [8]. F-ConvNet [14] extends [12] that
using multiple duplicate PointNet pipelines to respectively
process a sequence of frustums generated for each region
proposal and then applies the fully convolutional network to
regress final 3D bounding boxes. However, the accuracy of
these 2D-driven 3D approaches is bounded by the accuracy
of the 2D detections, which is susceptible to snowy and low-
light scenes.

2) 3D REGION PROPOSAL NETWORKS

MV3D [16] converts LiDAR point clouds into 2D BEV
and front view (FV) representations by means of exploiting
height, intensity, and density maps extracted from voxelized
point clouds. Using a modified RPN of Faster R-CNN [29]
to generate 3D proposals from the BEV feature map. Then,
the proposals are projected onto BEV, FV, and 2D images
feature maps to obtain the corresponding features, and these
are fed into a deep fusion method to produce the final
3D detection results. Compared with the method in [16],
AVOD [17] reforms and reduces the handcrafted inputs to
speed up processing. Two modified VGG-16 [30] networks
are utilized to generate high-resolution feature maps from
images and the corresponding BEYV, allowing small objects
to be located more effectively. Then, these full resolution
features, cropped by prior anchors, are fused to produce more
reliable 3D object proposals for final 3D object detection.
ContFuse [19] employs continuous convolutions to aggregate
image and BEV features at different resolution levels based
on their geometric position relationships. This approach uti-
lizes dense image features to enrich sparse LIDAR point
clouds to enhance the 3D detection performance.

Similar to 3D region proposal methods, we take advantage
of a two-stage architecture for 3D object detection. However,
our network incorporates several improvements and achieves
a better performance.

Ill. MCF3D ARCHITECTURE

The main idea behind MCF3D is to construct an excel-
lent data-driven network that makes full use of the display
and implicit information of multimodal data at each stage,
adding “knowledge guidance” and ‘“‘complementary fusion”
to accomplish efficient training and accurate predictions for
3D object detection. Fig. 1 illustrates the architecture of
MCF3D, which consists of three components: (1) multimodal
input representations; (2) a 3D RPN; and (3) second stage
detector(s).

A. MULTIMODAL REPRESENTATIONS

We utilize prior knowledge and spatial geometric constraints
to process 2D camera images and LIDAR point clouds, mak-
ing input representations accurate and compact to maintain
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the computational speed while effectively extracting space,
texture, and color information.

1) BIRD'S-EYE VIEW REPRESENTATION

Referring to VoxelNet [6], MV3D [16], and AVOD [17],
we generate a six-channel BEV map encoded by the height
and density to represent LIDAR point clouds. First, the raw
LIDAR point clouds are cropped at [40, 40] x [0, 70] m. Point
clouds that are projected outside of the image boundaries
are removed, and those that remain are quantized with voxel
grids at a resolution of 0.1 m. Then, the voxelized point
clouds are divided into five equal slices between [0, 2.5] m
along the Z-axis to obtain the first five channels of the BEV
map. Each slice is encoded via the maximum height of the
points in each grid cell. Finally, the sixth BEV channel is
encoded via the point density information of each cell in
all the voxelized point clouds, which is computed as min
(1.0,log (N + 1) /log (64)), where N is the number of points
in a cell.

2) RGB-I REPRESENTATION

To a certain extent, the reflection intensity information pro-
vided by LIDAR point clouds represents the materials of
objects. For example, the reflection intensity of a road surface
is between (0 — 0.1) and those of cars, people, and trees
are between (0.1 — 0.8) in the KITTI dataset. Fig. 2(a) and
Fig. 2(b) visualize point cloud representations with the reflec-
tion intensity and distance information, respectively. It can
be observed that the expression in the form of the reflection
intensity is closer to the human visual sense than the distance
information. As shown in Fig. 2(a), cars (V0, V1) and cyclists
(CO, C1) are rendered as corresponding colors according to
categories. In addition, the intrinsic attributes of the reflection
intensity and color are more consistent, and a combination
of these two similar features will be more easily learned by
the neural network. Moreover, the reflection intensity infor-
mation not only reflects an object’s spectral information, but

(a) reflection intensity map (b) distance map

FIGURE 2. lllustration of relations for color, reflection intensity, and
distance (Section 3.A.2). (a) shows the reflection intensity map visualized
from point clouds corresponding to the images at the top. (b) shows the
distance map visualized from the same point clouds as in (a).
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is also not affected by extreme weather and lighting condi-
tions and can effectively represent objects under a shadow to
improve the detection performance, as shown in Fig. 2.

Therefore, we propose a novel pre-fusion method to con-
vert RGB images into RGB-I representations. According to
the spatial geometric relationship between the two sensors,
the accurate but sparse reflection intensity information of
LIDAR point clouds is innovatively added to the correspond-
ing RGB image as an additional channel, which has not
been performed in previous related networks, as visualized
in Fig. 3. The detailed procedure is as follows: First, point
clouds are transformed from the 3D LIDAR coordinate sys-
tem to the camera coordinate system via extrinsic parameters,
which represent the positional relationship between the two
sensors to align the two modalities. Second, 3D point clouds
are projected in the camera coordinates onto the 2D camera
image. This process is formulated as in (1) and (2).

X
u
(V) = Prect - Tig’ﬂ; y (D
z
= (55 ) @

RGB-I
Representation

FIGURE 3. lllustration of RGB-I Transformation. The reflection intensities
of lidar point clouds are encoded into an additional channel for camera
images (section 3.a.2). “I” is the intensity map visualized from point
clouds.

Following the KITTI benchmark suite [21], where (x, y, z)
are 3D point coordinates in the LIDAR coordinate system,
(u, v) are the camera pixel coordinates corresponding to
(x, y, z). Furthermore, Tf/‘cf{g is the rigid body transformation
from the LIDAR coordinate system to the camera coordinate
system, consisting of a rotation matrix R{%" and translation
vector ty3", as shown in (2). In addition, Prec is a projection
matrix that converts a 3D point in the camera coordinate
system to a 2D point in the camera image. The calibration
parameters mentioned above are also provided in [21].

Using the above procedure, we determined the correspond-
ing position of each LIDAR point in the camera image.
The pixel at this position consists of three channels,
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R, G, and B. Then, the reflection intensity of the corre-
sponding LIDAR point is added as the fourth channel. If one
pixel corresponds to more than one point, then the reflection
intensities of the points are averaged. Because the resolution
of the LIDAR point clouds is significantly lower than that of a
camera image, only a small number of pixels (approximately
1/10) in images will obtain a reflection intensity, and the
other pixels are given a value of O in the fourth channel.
The RGB-I representation only makes use of the reflection
intensity information of point clouds that is not utilized when
generating the BEV representation in Section 3.A.1, adding
little additional computational costs.

B. 3D REGION PROPOSAL NETWORK

Inspired by state-of-the-art 2D [20], [28], [29], [31] and
3D [16], [17] object detectors, we propose a 3D RPN,
which is similar to a weak detector, to generate non-oriented
region proposals with a high recall and low precision. First,
we exploit the designed feature extractors to produce feature
maps of BEV and images. Second, we generate 3D anchors
and then project these onto the two view feature maps, respec-
tively. Fusing the projected corresponding regions via the pro-
posed anchor fusion method. Third, the fused features are fed
to the proposed multi-layer perceptron (MPL) to regress the
difference between the anchors and ground truth to generate
3D proposals.

1) THE FULL-RESOLUTION FEATURE EXTRACTOR

Inspired by [17], two identical CNNSs are respectively applied
onto the RGB-I and LIDAR BEV representations to extract
features. Each CNNs consists of an encoder and a decoder.
The encoder is a modified and simplified VGG-16 [30],
with the number of channels reduced by half in each con-
volutional layer, the conv-5 layer and those below removed.
Its output feature maps have high-level semantics but a low-
resolution, resulting in small classes such as pedestrian and
cyclist only retaining little information. Therefore, the design
of the decoder is inspired by the feature pyramid network
(FPN) [31] to up-sample the feature map generated by the
encoder back to the input resolution. Then, feature maps of
the same spatial size from encoder and decoder are merged
via a 3 x 3 convolution and concatenation operation. The
final outputs have a high resolution and strong semantics, and
are shared by the 3D RPN and the second stage detector(s).

2) 3D ANCHOR GENERATION AND FUSION

The 3D Anchors are encoded by the centroid (cx, cy, cz)
and axis-aligned dimensions (dx, dy, dz) [17]. The (cx,cy)
pairs are sampled at intervals of 0.5 m in the BEV, while
¢, is a fixed value that is determined according to the sensor’s
height above the ground plane. Because we do not regress the
orientation at this stage, (dx, dy, dz) are transformed from
(w, 1, h) of the prior 3D boxes based on rotations. Further-
more, (W, I, h) are determined by clustering the ground truth
object sizes for each class in the training set [16].
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In [17], AVOD exploits 1 x 1 convolutions on the BEV
and image feature maps, reducing their dimensionalities from
32 to 1 and allowing the RPN to process anchors with only
a small memory overhead. The complete features are used
to predict the final results at the second stage, while the
simplified features are used to generate region proposals at
the present stage. However, this approach changes the feature
distribution, which increases the difficulty of network learn-
ing and leads to a decline in the final detection performance.
We directly project each 3D anchor onto the original BEV
and image feature maps to obtain two corresponding region-
based features. Then, these are respectively cropped from two
view feature maps and the cropped features are resized to be
equally sized. These should be the same size as the proposals
used for subsequent detection, unlike in [17]. Next, these
fixed-length feature crops from both views are fused via a
concatenation operation, which is more inclusive and com-
prehensive than the element-wise mean operation employed
in [17].

3) 3D PROPOSAL GENERATION

These fused feature crops are fed to two similar branches to
perform 3D proposal box regression and binary classification,
respectively. Each branch consists of three convolution layers
rather than fully connected layers. The regression branch
estimates (Acx, Acy, Acz, Adx, Ady, Adyz) , representing
the differences between the centroids and dimensions of
the anchors and target proposals. The classification branch
predicts the “objectness” score, which is used to determine
whether an anchor is an object or background. During train-
ing, the 3D anchors and ground truth bounding boxes are
projected onto the BEV to compute the 2D IoUs between
these, which are employed to determine positive, negative,
and ignored anchors for training. The IoU thresholds are set
to different values depending on the object class (introduced
in Table 1 and Section 3.D). We optimize the following
multitasking loss function in the 3D RPN stage.

LrpNn = ,BlLobj + ,32Lloc+size (3)

Here, Lioc+size 1s @ smooth L1 loss for the 3D proposal box
regression task, Lop; is a cross-entropy loss for the *“object-
ness,” B1 = 1.0 and B, = 5.0 are constant coefficients
of our RPN loss formula. 2D non-maximum suppression
(NMS) is applied to remove redundant regressed anchors
(3D proposals) based on the predicted “objectness’ scores.
With an IoU threshold of 0.8, the NMS keeps the top 1024 3D
proposals for the subsequent detection stages.

C. SECOND STAGE DETECTION NETWORK

The proposed second stage detection network aims to further
optimize and regress the above non-oriented region proposals
to achieve a final excellent 3D object detection performance.
First, we propose a novel attention-guided fusion method
to effectively and adaptively combine paired proposals from
multiple views. Second, the fused region features are fed to
the specific branches for dimension refinement, orientation
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estimation, and category classification. In addition, we pro-
pose a cascade-enhanced detector modified from [20], which
consists of three stages employing two detectors in succession
to enhance the detection performance for small classes such
as pedestrian and cyclist.

1) ATTENTION-GUIDED PROPOSAL FUSION METHOD

3D proposals are respectively projected onto the two view
feature maps. These projected features are cropped and
resized to be equally sized and taken as the inputs of the
fusion operations. In current multi-sensor-based methods,
the weights of the proposals (crops) from different views are
fixed when fusing these, which inevitably affects the repre-
sentation of critical information and limits a network’s adap-
tivity to various appearances. For example, in Fig. 2 because
the cars (VO, V1) are in shadow in the image, their detection
should primarily apply features from the point clouds. The
cyclist CO is far away from the sensors and can only corre-
spond to a few LIDAR points, and so detecting the cyclist
should depend on the features from the image. Therefore, our
goal is to allow the network to determine how much each view
proposal contributes to the fusion and subsequent detection
and let important and efficient features contribute more while
inefficient ones contribute less.

Therefore, inspired by [32]-[36] we propose a simple but
effective attention module named Proposal-Element Atten-
tion (PEA) as a multimodal feature selector to guide the
proposal fusion. The PEA module can emphasize informative
elements and suppress unnecessary ones by learning the
input features themselves. In the self-attention mechanism,
channel-wise [32] and spatial [36] attention focus respec-
tively on “what” and “where.” Our PEA approach absorbs
and references the advantages of these, using fewer opera-
tions and parameters to achieve ‘“‘element-wise” attention
to focus on “which.” Its structure is illustrated in Fig. 4.
The PEA module consists of a simple encoding part and a
decoding part: Given a proposal-features P e R(E*HxW)
as input, P is first aggregated across its spatial dimen-
sions (H x W) using a global average pooling operation,
generating a channel descriptor P,y € R(EXIXD_ Then,
the encoded features Pg,, are forwarded to the multi-layer
perceptron (MLP) consisting of fully connected (FC) layers
and activation functions. Unlike in [32]-[36], the FC layers
increase the dimensions layer by layer. The first has an activa-
tion size set to (C/r x H x W) followed by a ReLU [37]. The
second has an activation size of (C x H x W) followed by a
sigmoid, where r is the reduction ratio. Next, a reshape oper-
ation is applied to convert the one-dimensional (1D) attention
map into our element attention map M € RCEXH*W) which
has the same dimensions as the input P. Finally, an element-
wise multiplication operation is applied to perform feature
re-weighting. The whole element-wise attention process can
be summarized as follows:

M (P) = o (MLP(AvgPool (P))) =0 (W (8 (Wo (Pavg))) (4
P=MP)®P )
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FIGURE 4. Diagram of the proposal-element attention (PEA) module (Section 3.C.1).

Skip connection
RGB-| features

BEV features
Skip connection

FIGURE 5. Architectures of the skip fusion method. “Skip connection”
indicates that the inputs skip over the intermediate processing part
directly to the output (Section 3.C.1). “Mean” denotes element-wise
mean operation. “FC” stands for a fully-connected layer.

where o and § denote the sigmoid and ReL.U activation func-
tions, respectively; Wy € RE/mxHXW) and W, e RCE*HXW)
refer to the MLP weights; ® denotes the element-wise mul-
tiplication operation; P’ is the final refined output. PEA is
a lightweight module, which can be seamlessly integrated
into our architecture and jointly trained with other parts of
our MCF3D in an end-to-end fashion with a slight additional
computational cost.

We employ two PEA modules to process the two respective
view proposal features. Following the attention-guided re-
weighting procedure, both features are fed into our ““skip
fusion” approach, as shown in Fig. 5. Inspired by [16], [17],
this approach enables interactions between intermediate lay-
ers from different views. First, we apply an element-wise
mean operation to fuse both inputs since it is more flexible
when combined with drop-path training, and separate FCs
are utilized to learn the feature transformations indepen-
dently. Then, the above operations are repeated once to
obtain the intermediate outputs. Next, we innovatively apply
“skip connections” to directly fuse the primary inputs and
intermediate outputs. This makes the fusion results include
clearly original and repeatedly abstracted features. Finally,
these are passed into a series of FCs for the subsequent
prediction.

2) GENERATING THE FINAL DETECTION GENERATION
The above fused feature crops are processed through three
parallel fully connected layers for output box regression,
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orientation estimation, and category classification, respec-
tively. Similar to [17], a 3D bounding box is simply encoded
with a 10-dimensional vector, which reduces redundancy
while keeping the physical constraints. We perform 3D
bounding box regression by regressing to (AXj...Ax4,
Ay]...Ays, Ahy, Ahy) that represent the top and bottom
corner offsets from the ground plane. The estimated orienta-
tion vector is represented as (cos(), sin(9)), that implicitly
handles angle wrapping. During training, we optimize the
following multitasking loss function at the second stage:

Ldetection = /3 1Lcls + /32L100+size + ,33L0ri (6)

where Ljoctsize and L, are the regression losses for the
location and size and the orientation, respectively, which are
represented as smooth L1 losses. Furthermore, Ljs is the
classification loss, which is represented as a cross-entropy
loss, and 81 = 1.0, o = 5.0, B3 = 1.0 are constant coef-
ficients of our detection loss formula. Whether the proposals
are considered in the computation of the above loss depends
on their 2D IoU in the BEV with the ground truth boxes,
as introduced in Table 1 and Section 3.D. To remove over-
lapping and redundant detections, the 2D NMS is employed
with an IoU threshold of 0.01 in the BEV.

3) CASCADE-ENHANCED DETECTOR

Inspired by [20], we cascade an extra detector to the
above network to enhance the 3D object detection perfor-
mance for small classes, with the resulting design called
MCF3D(cascade). The network architecture is also changed
from two stages to three stages, as shown in Fig 6. The added
detector (v2) has a similar structure to the former detec-
tor (v1) described in Section 3.C.2. To control the number
of parameters, the detector (v1) is changed to utilize early
fusion [16] and (v2) uses our skip fusion method (intro-
duced in Section 3.C.1). The two detectors are trained using
different and increasingly higher IoU thresholds, with the
aim of detecting true positives while suppressing close false
positives. The output of the first detector is taken as the
input to the second one, which is equivalent to obtaining an

90807



IEEE Access

J. Wang et al.: MCF3D: Multi-Stage Complementary Fusion for Multi-Sensor 3D Object Detection

AncTrs Proposals v1 Proposals v2
crop & fuse crop & fuse crop & fuse
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size& location
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Proposals v1 Proposals v2 Detections

FIGURE 6. Top row: a simple detection pipeline of MCF3D (cascade).
Bottom row: Visualizations of outputs of the corresponding top parts
(Section 3.C.3). “FC layers” stands for fully-connected layers.

increasingly good distribution stage by stage to train a higher
quality detector. Cascade regression is exploited as a resam-
pling mechanism, to keep the set of positive examples for the
successive stages at a roughly constant size. When faced with
the detection of small classes, the cascade detectors adapted
to increasingly higher IoUs can be effectively trained while
overcoming the overfitting problem, and the same cascade
procedure is applied at the inference stage. The performance
of the cascaded detectors is highly dependent on the design
of the IoU thresholds required to define positives/negatives
at each stage, as described in Table 1 and further discussed
in Sections 3.D and Section 4.B.3. The three-stage network
including the extra detector can be trained in an end-to-
end or multi-step manner by optimizing the following loss
function:

Liotal = (LRPN—obj + LRPN—reg) + (Lvl—cls + Lvl—reg)
+(LV27CIS + Lv27reg) (7

where LrpN—obj, Lyi—cls; and Lyz_¢js are the cross-entropy
losses for classification in the RPN and two detection net-
works, and LRpN-—reg, Lvi—reg, and Lys_reg are the L1 losses
for the non-oriented and oriented bounding box regressions.

D. TRAINING DETAILS

We train two network versions: MCF3D and MCF3D
(cascade). We also train two separate networks for each
version, for car and pedestrian/cyclist respectively. MCF3D
consists of an RPN and a detector, and the two stages are
jointly trained in an end-to-end fashion using mini-batches
containing one image with 512 and 1024 ROIs, respectively.
Approximately 50% of the ROIs are kept as positive for each
mini-batch. Whether the anchors/proposals are considered
as positive, negative, or ignored samples for training relies
on the IoUs between them and all the ground truth boxes.
Detailed descriptions of each stage’s IoU thresholds are given
in Table 1. For the car class in MCF3D, an anchor/proposal is
considered as positive if its maximum IoU is above 0.5/0.65
(in the BEV), and is treated as negative if its maximum
IoU is below 0.3/0.55. For the pedestrian and cyclist classes
in MCF3D, an anchor/proposal is considered as positive if
its maximum IoU is above 0.45/0.55, and as negative if its
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maximum IoU is below 0.3/0.45. The network is trained
using stochastic gradient descent (SGD) for 150K iterations
without a pre-trained model. The Adam optimizer is utilized
with an initial learning rate of 0.0001, which is decayed
exponentially every 100K iterations with a decay factor of
0.1. Training the MCF3D network using a single Titan Xp
GPU took 17 h.

MCEF3D (cascade) includes an RPN, detector (v1), and
detector (v2). The three stages are trained in a two-step
fashion using mini-batches containing one image with 512,
1024, and 1024 ROIs, respectively, and approximately 50%
of the ROIs are kept as positive for each mini-batch. The
negative/positive IOU thresholds for each stage for the three
classes are introduced in Table 1. In the first step, we fix
the parameters of the detector (v2) to the initialized values,
and only update the parameters of the RPN and the
detector (v1). In the second step, we lock the parameters of
the RPN and detector (v1) to the results trained in the first
step, and only update parameters of the detector (v2). The
above two training stages both adopt the following settings:
SGD is utilized with the Adam optimizer for 120K iterations,
with an initial learning rate of 0.0001 and an exponential
decay factor of 0.1, decaying every 100K iterations. Training
the MCF3D(cascade) network using a single Titan Xp GPU
took 34 h.

TABLE 1. loU threshold settings for each stage of MCF3D and MCF3D
(cascade).

MCF3D
The IoU MCF3D (cascade)
St
age Threshold Car Ped. & Car Ped. &
Cyc. Cyc.
RPN | Negative IoU 0,031 | 10,031 | 0,03 | 0,03]

thresholds
(First Positive IoU

stage) | thresholds [051] | [045,11 | [051] | [04,1]

De:/ef“’r Eieg:‘}i)vlfislw [0, 0.55] | [0,045] | [0,045] | [0,035]
(Zf:;’;d gﬁils‘l‘l‘(’)el ;;)U [0.651] | 105511 | [0.55.1] | [0.45.1]
T P IS I Y e

(third Positive IoU } : [0.65.1] | [0.55.1]

stage) thresholds

IV. EXPERIMENTS

We evaluate our MCF3D’s performance on the KITTI object
detection benchmark [21] for 3D object detection and BEV
object detection (3D localization) tasks on the car, pedestrian,
and cyclist classes. Following the KITTI settings, each class
is evaluated based on the three difficulty levels of easy,
moderate, and hard considering the object size, distance,
occlusion, and truncation. The KITTI dataset provides
7,481 images/point clouds for training and 7,518 for testing.
Because the ground truth for the test set is not available
and access to the test server is limited, we conduct a com-
prehensive evaluation using the protocol described in [9],
[10], [16], and [17]. The 7481 provided training frames are
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TABLE 2. Comparison of the 3D Object and localization performance of MCF3D with state-of-the-art 3D object detectors.

Class Method Runtime(s) Easy Moderate Hard Easy Moderate Hard
AVOD-FPN [6] 0.1 84.41 74.44 68.65 - - -
MV3D [5] 0.36 71.29 62.68 56.56 86.55 78.10 76.67
F-PointNet [18] 0.17 83.76 70.92 63.65 88.16 84.02 76.44
Car VoxelNet [12] 0.23 81.97 65.46 62.85 89.60 84.81 78.57
ContFusion [23] 0.06 86.32 73.25 67.81 95.44 87.34 82.43
Ours 0.14 84.36 76.09 75.13 89.41 86.98 86.89
Ours (cascade) 0.16 84.11 75.19 74.23 88.82 86.11 79.31
AVOD-FPN [6] 0.1 _ 58.8 _ - - -
F-PointNet [18] 0.17 70.00 61.32 53.59 72.38 66.39 59.57
Ped. VoxelNet [12] 0.23 57.86 53.42 48.87 65.95 61.05 56.98
Ours 0.13 68.54 64.93 59.47 68.56 64.98 59.55
Ours (cascade) 0.15 72.67 65.92 63.17 72.68 66.06 63.20
AVOD-FPN [6] 0.1 - 49.7 - - - -
F-PointNet [18] 0.17 77.15 56.49 53.37 81.82 60.03 56.32
Cye. VoxelNet [12] 0.23 67.17 47.65 45.11 74.41 52.18 50.49
Ours 0.13 78.18 51.06 50.43 78.18 51.09 50.45
Ours(cascade) 0.15 82.69 55.33 49.11 82.69 55.33 49.11

Average Precision (AP-3D) (in %) of 3D boxes and Average Precision (AP-BEV) (in %) of bird’s eye view boxes on KITTI’s validation set. We use a 3D IoU

threshold of 0.7 for the Car class, and 0.5 for the pedestrian and cyclist classes.

split into a training and validation set at approximately a
1:1 ratio to avoid the same samples being included in both
the training and validation set. We follow the official KITTI
evaluation protocol, evaluating both 3D object detection and
BEV object detection (3D localization) tasks at a 0.7 IoU
threshold for the car class and 0.5 IoU threshold for the
pedestrian and cyclist classes. The evaluation results are given
in terms of the average precision (AP) metric. The runtimes
refer to the inference times of our networks for one image
on a Titan Xp GPU. The experiments are divided into three
parts. First, we compare with state-of-the-art methods for
3D object detection on KITTI. Second, we perform some
ablation studies. Third, we present qualitative results and
discuss the strengths and limitations of our methods.

A. COMPARING WITH STATE-OF-THE-ART METHODS

We evaluate two versions of our implementation (introduced
in Section 3.D). Ours refers to MCF3D containing an RPN
and a detector, and Ours(cascade) refers to MCF3D(cascade)
containing an RPN and the two detectors (v1, v2). Table 2
presents the results of our methods on the KITTI validation
set for 3D object detection and localization (BEV) tasks.
Our method outperforms several state-of-the-art algorithms,
including LIDAR-based [6] and multi-modal-based [12],
[16], [17], [19] methods. F-PointNet [12] employs a 2D
detector that has been fine-tuned using ImageNet [38]
weights and MV3D [16] utilizes a pre-trained model for
initialization, whereas our network is trained from scratch.
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On the car class, Ours achieves a 1.65% increase on the
most important “Moderate’” column in 3D object detection
compared with the second-best performing method, with
noticeable margins of 6.48% and 4.46% for hard (highly
occluded or far) instances in 3D and BEV object detec-
tion, respectively, indicating that our method is particularly
effective on cluttered objects. On the pedestrian class, even
with the only detector (v1), Ours performs reasonably effec-
tively. Moreover, once we add the cascade detector (v2),
Ours(cascade) ranks first in both tasks except for a slightly
lower score than F-PointNet for moderate instances in BEV.
In particular, for the hard difficulty Ours(cascade) achieves
9.58% and 3.63% increases in 3D and BEYV, respectively,
demonstrating that our cascade version is effective in detect-
ing dense objects such as a crowd of people. On the cyclist
class, our method only outperforms the state-of-the-art meth-
ods slightly on easy instances. We believe that this is because
of the low number of cyclist instances in the KITTI dataset,
which induces a bias towards pedestrian detection in our joint
pedestrian/cyclist network. Concerning the inference times
of our networks for one image on a Titan Xp GPU shown
in Table 2, our runtime is slightly longer than those of the
state-of-the-art methods, but it still achieves a comparable
speed.

Overall, Ours can produce high-accuracy results on the car
class with a fast inference speed, and Ours(cascade) performs
better on small class predictions. The outputs of our networks
are visualized in Fig. 8, where we observe accurate 3D box
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TABLE 3. Effect of input representations.

Input Car Pedestrian Cyclist
(pre-fusion) Easy Mode Hard Easy Mode Hard Easy Mode Hard
RGB+BEV 84.33 75.61 68.89 67.78 64.09 5891 66.73 48.06 41.29
RGB-Distance + BEV 84.34 75.63 70.01 68.05 64.42 59.37 67.82 50.06 43.72
RGB-Density + BEV 83.89 74.60 69.17 67.75 63.97 59.38 66.80 49.13 42.63
RGB-Intensity+ BEV 84.36 76.09 75.13 68.54 64.93 59.47 78.18 51.06 50.43

(See Section 3.A.2 and Section 4.B.1) 3D object detection performances of detectors using different input representations. Average Precision (in %) of 3D
boxes on KITTI’s validation set. We use a 3D IoU threshold of 0.7 for the Car class, and 0.5 for the Pedestrian and Cyclist classes. The base detector is our

MCF3D.

prediction even under very challenging cases. We also present
several imperfect results in Fig. 9. We defer further discussion
of success and failure case patterns to Section 4.C.

B. ABLATION STUDIES

In this section, we provide an analysis and ablation exper-
iments to validate the components and variants of our pro-
posed MCF3D on the KITTI validation set.

1) EFFECT OF INPUT REPRESENTATIONS

MV3D [16] shows that as input the RGB images contribute
less to 3D object detection. Therefore, we convert this format
to RGB-I (see Section 3.A.2) to strengthen the representa-
tional power through pre-fusion. In this section, we eval-
uate the performances when using different transformed
representations, such as RGB-Distance and RGB-Density.
The processes of generating these are similar to RGB-I,
adding distance or density information, respectively, from
point clouds to RGB images based on the spatial geometric
relationships between the two sensors. “Density” indicates
the number of points of point clouds that are transformed
and projected onto the corresponding pixel position. Inspired
by [16], this is computed as min (1.0, log (N + 1) /log(64))
for normalization, where N is the number of points.

In Table 3, we compare RGB-I, RGB-Density, and
RGB-Distance with the original RGB representation, taking
each of them respectively as the image input of our MCF3D
method for 3D object detection. We observe that converting
RBG to RGB-Density or RGB-Distance contributes negli-
gibly to the performance. However, using RGB-I leads to
a clear performance enhancement, especially at in the hard
column, with gains of 6.24%, 0.56%, and 9.14% AP on the
car, pedestrian, and cyclist classes, respectively. This phe-
nomenon can be attributed to the closely related physical
properties of the RGB and intensity, as described in Section
3.A.2. Fig. 7 presents a visualization of the results for using
RGB and RGB-I in comparison to KITTI’s ground truth.
It can be observed that RGB-I could accurately detect some
distant or heavily occluded cars that are not detected using
RGB (e.g., V5, V6 in Fig. 7(c)), although these difficult cases
are not labeled in KITTI (e.g., V3, V6 Fig. 7(b)).

2) EFFECT OF THE ATTENTION MODULE

To thoroughly evaluate the effectiveness of our proposed
PEA (see Section 3.C.1), we take MCF3D without any
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FIGURE 7. A qualitative comparison of our MCF3D, MCF3D with RGB
inputs, and MCF3D without the attention module relative to KITTI's
ground-truth on a sample from the validation set (best viewed in color
with zoom in). True positive detection boxes are in green, while false
positive boxes are in red and ground-truth boxes in blue are shown for
false positive and false negative cases. Digit and letter beside each box
denote instance ID and the class, with “V” for cars, “P” for pedestrian and
“C"” for cyclist. The orientation (driving direction) of each box is shown by
the position of the digit and letter.

attention module as the basic network, comparing its 3D
detection results with those of the SE-enhanced [32], CBAM-
enhanced [33] and PEA-enhanced ones. The three compared
modules all have a self-attention mechanism. SE [32] exploits
channel-wise attention to focus on ‘“what,” CBAM [33]
exploits spatial and channel-wise attention to focus on both
“what”” and ‘“where,” and our PEA models the “element-
wise” attention, using proposal-dependent features them-
selves to focus on “which.” Table 4 shows that integrating our
lightweight PEA into the network at the reduction ratio of four
achieves the best result. This can be attributed to the fact that
adaptively adjusting how much ‘which’ features in ‘which’
views contribute during fusion could suppress inefficient
and interference information. To verify this assertion, Fig. 7
visualizes the output of MCF3D and MCF3D (no-attention)
for comparison. The no-attention network fails to accurately
exclude cluttered objects with similar shapes or colors with
positive objects (e.g., V6 Fig. 7(d)) and is inefficient facing
farther away objects (e.g., V7 Fig. 7(d)).
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TABLE 4. Effect of attention module.

. Car Pedestrian Cyclist

Attention Module Easy Mode Hard Easy Mode Hard Easy Mode Hard

Base (no-attention) 83.85 74.18 68.34 66.71 64.08 57.82 77.44 50.01 48.71
Base + SE =4 84.02 74.83 68.58 66.89 64.13 5791 78.01 49.86 49.33
Base + CBAM =8 k=7 83.86 74.56 68.19 65.31 63.22 56.75 75.92 48.56 48.63
=4,k=3 84.36 75.26 68.50 67.91 64.05 57.97 77.63 50.05 48.95

Base +PEA(ours) =8 84.77 76.03 69.05 67.54 63.68 58.96 77.83 49.88 49.75
=4 84.36 76.09 75.13 68.54 64.93 59.47 78.18 51.06 50.43

(See Section 3.C.1 and Section 4.B.2) 3D object detection performances of detectors using different attention module. Average Precision (in %) of 3D boxes
on KITTI’s validation set. We use a 3D IoU threshold of 0.7 for the Car class, and 0.5 for the Pedestrian and Cyclist classes. The baseline detector is our
MCEF3D without any attention module. "r" denotes the reduction ratio. "k" denotes kernel size in a convolution operation.

TABLE 5. Effect of the number of stages in MCF3D.

. . Pedestrian Cyclist
Architecture Runtime (s) Easy Mode Hard Easy N)Ilode Hard
MCF3D 2-satge: RPN+Detector 0.13 68.54 64.93 59.47 78.18 51.06 50.43
MCEF3D 3-satge: RPN+2 Detectors 0.15 72.67 65.92 63.17 82.69 55.33 49.11
(cascade) 4-stage: RPN+3 Detectors 0.17 74.16 65.23 63.16 82.67 56.19 50.85

(See Section 3.C.3 and Section 4.B.3) 3D object detection performances evaluated by Average Precision (AP3D) (in %) of 3D boxes s on KITTI’s validation

set. We use a 3D IoU threshold of 0.5 for the Pedestrian and Cyclist classes.

3) EFFECT OF CASCADE-ENHANCED DETECTORS

In Table 5, we evaluate the impact of the number of stages
in our architecture on the 3D object detection performance.
Owing to MCF3D(cascade) being designed with the aim of
dealing with a lack of true positives (see Section 3.C.3),
we only conduct experiments on the pedestrian and cyclist
categories, which have fewer training examples than the
car category. In the last row of Table 5, we present the
results for with the four-stage version of MCF3D(cascade)
that contains three detectors with a similar architecture. The
method of adding the third detector is analogous to that in
three-stage MCF3D(cascade), as described in Section 3.C.3.
The results demonstrate that the three-stage version (in
the second row) with an added detector (v2) results in a
non-trivial improvement, adding a further detector (resulting
in the four-stage version in the last row) only produces a
slight increase or decrease. Considering that the number
of MCF3D(cascade) parameters increases with the number
of cascade stages, three-stage MCF3D achieves the best
trade-off.

4) OTHER EFFECTS

Table 6 shows the effects of varying different hyper-
parameters on the performance of our 3D object detector.
In this section, we only focus on the car category, which
has the most training examples and uses our MCF3D (in
Section 3.D) as the base network. For the second row of
Table 6, we utilize a shared feature extractor instead of two
the same ones (as introduced in Section 3.B.1) to learn the
features from both the point clouds and images. Although the
number of parameters is reduced, this achieves considerably
worse results than our base network. For the third row of
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TABLE 6. Comparison of the performances for different variations of
hyper-parameters.

. Runtime car
Architecture (s) Easy Mode Hard
Base: MCF3D 0.14 84.36 76.09 75.13

Reuse feature extractor 0.13 76.76 67.20 59.38
RPN feature maps: 0.12 8403 7525 6840
1x1 convolution [6]

PRN crops: 3*3;
.1 4. . 84
proposal crops: 7*7 [6] 0.13 84.98 75.38 68.8
. *g .
PRN crops: 5%5; 0.13 8443 7574 7486
proposal crops: 5*5
Anchor_—fusmn: element- 013 84.43 74.83 68.62
wise mean [6]
Proposal-fusion: 0.14 8321 7505 6828

deep fusion [5]
(See Section 4.B.4) Average Precision (in %) of 3D boxes on KITTI’s
validation set. We use a 3D IoU threshold of 0.7 for the Car class.

Table 6, referring to AVOD [17], we add 1 x 1 convolutional
kernels to the respective outputs of the two feature extractors
to reduce the memory overhead to compute anchor-specific
feature crops. The modified model obtains inferior results
to our base network. This can be attributed to the fact that
when regressing proposals and predicting 3D boxes using
different feature maps, it is difficult for the network to learn
the inter-relationships in the feature distributions of different
stages. For the fourth row of Table 6, we resize the anchors
to 3 x 3 to generate proposals and resize the proposals to
7 x 7 for the final 3D detection regression process [17]. For
the fifth row, both anchors and proposals are resized to 5 x 5.
The parameters saved by these two methods are almost the
same. However, the fifth-row module obtains significantly
better results than the fourth-row module, which indicates
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FIGURE 8. Visualizations of high-quality MCF3D results on the KITTI validation set (best viewed in color with zoom in). For each sample, the upper part is
the image, the lower part is a representative view of the corresponding point cloud and points of each instance marked by yellow. The detection boxes
are in green, while the ground-truth boxes are in gray. Digit and letter beside each box denote instance ID and the class, with “V"” for cars, “P” for
pedestrian and “C” for cyclist. The orientation (driving direction) of each box is shown by the position of the digit and letter. See Section 4.C for more
discussion on the results.

FIGURE 9. Visualizations of MCF3D failure results on the KITTI validation set (best viewed in color with zoom in). True positive detection boxes are in
green, while false positive boxes are in red and ground-truth boxes in blue are shown for false positive and false negative cases. Digit and letter beside
each box denote instance ID and the class, with “V” for cars, “P” for pedestrian and “C” for cyclist. The orientation (driving direction) of each box is
shown by the position of the digit and letter. See Section 4.C for more discussion on the results.

that the RPN, as a weak detector, should have similar parame- fusion, which produces slightly inferior results to our base
ter settings to the second detector. For the sixth row of Table 6, network. This verifies our assertion that rich features should
we utilize an element-wise mean operation proposed by be preserved as completely as possible in the early stages,
AVOD [17] instead of the concatenation operation for anchor even if some parameters are added. For the seventh row
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of Table 6, we apply the deep fusion method proposed by
MV3D [16] for proposal fusion, rather than using our skip-
fusion method (in Section 3.C.1). The results demonstrate
that the skip connection further helps to process multimodal
information in 3D object detection.

C. QUALITATIVE RESULTS AND DISCUSSION

In Fig. 8 we depict representative and high-quality outputs
of our MCF3D. For easy and moderate cases that are fully
visible or partly occluded at a reasonable distance, our net-
work can produce particularly accurate oriented 3D bounding
boxes. For certain challenging cases that are strongly overlap-
ping or have a small number of available points, our model
can predict correctly posed amodal 3D boxes (e.g., parallel
parked cars in the first three columns of the first row and the
crowd in the second column of the second row). Surprisingly,
our network still successfully detects some difficult and com-
plex cases that are heavily occluded or difficult to see, despite
some not being labeled at all in the ground truth annotations
(e.g., V8, V10, and V6 in the third column of the first row,
and P3 and P6 in the third column of the second row).

In Fig. 9 we depict some failure detection results, which
point towards the directions for improving our MCF3D
approach. The first common mistake involves inaccurate rota-
tions and size estimations owing to objects only have few
points (e.g., V8 in the second column of the first row and
V9 in the first column of the second row). The second type of
failure includes false negatives on occluded or distant objects
(e.g., V12 and V13 in the third column of the first row, V10 in
the first column of the second row, and pedestrians in the last
two columns of the second row). In addition, the detection of
small classes is more challenging, and leads to some inter-
esting failure modes. Pedestrians and cyclists are commonly
misclassified as each other (e.g., CO in the first column of
the first row). Pedestrians are easily confused with narrow
vertical features of the environment, such as poles or tree
trunks (e.g., PO in the first column of the second row and
P4 and P5 in the second column of the second row).

V. CONCLUSIONS

In this study, we propose a sensory-fusion framework called
MCEF3D, consisting of a 3D RPN and a second-stage
detector(s) subnet. The first stage produces non-oriented
region proposals by fusing anchor-dependent features from
LIDAR and camera views. The second stage performs
dimension refinement, orientation estimation, and category
classification by fusing proposal-dependent features from
both views. We design different fusion methods for each
stage according to the corresponding tasks. We innovatively
introduce attention models (PEA) and a conversion input
representation (RGB-I) to enhance the fusion effect and
detection performance. Our experiments show that MCF3D
outperforms state-of-the-art 3D detection methods by a large
margin, especially for high-occlusion or crowded scenes.
In the future, we will exploit an enhanced fusion method to
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reduce the gap between images and LiDAR and extend our
network to achieve segmentation tasks.
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