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Abstract: Sub-aperture coherence (SAC) is a classical phase control method for high-
precision beam steering using liquid crystal optical phased arrays (LCOPA). On this basis, 
radial sub-aperture coherence (RSAC) and symmetrical radial sub-aperture coherence 
(SRSAC) were proposed, which guarantee the stability of steering angles when the beam 
aperture and incident position fluctuate. In this article, the pre-existing one-dimensional 
SRSAC was firstly extended to a more universal 2D phase generation algorithm. Meanwhile, 
for the intractable problem of local precision defects caused by the basic two-dimensional 
variable period grating (2D-VPG) algorithm, we tracked their locations accurately and 
designed a targeted elimination method carefully. So these remarkable error peaks could be 
thoroughly removed by using 2D-SRSAC optimized by the local precision defect elimination 
method. Since then, all the excellent performance of 1D-SRSAC can be perfectly transplanted 
to 2D, which makes the non-mechanical beam steering technology using LCOPA more 
mature and competitive in the applications required ultra-high precision. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Beam steering technology is widely used in many fields such as lidar [1,2] and free-space 
laser communication [3–5]. Since last century, the multitudinous non-mechanical beam 
steering techniques [6–9] have brought a new revolution in the field of photoelectric control, 
which realizes the agile beam scanning without inertia limitation and overcomes the main 
disadvantages of complex mechanical structure and high Size Weight and Power (SWaP) 
[10,11]. With the development of modern photoelectric system towards integration and 
portability, non-mechanical and high-precision beam steering technology represented by 
LCOPA [12,13] shows great potential especially in some specific applications such as optical 
acquisition, pointing and tracking (APT) of spatial dynamic objects [14,15]. 

In order to realize the beam steering with ultra-high angular resolution which cannot be 
realized by the primitive VPG algorithm, a series of sub-aperture segmentation methods were 
designed to improve the scanning accuracy [16] and ensure the stability of steering angle 
when the beam aperture error and the axis alignment error exist [17]. However, in order to 
achieve such an ultra-high precision in one dimension, the 2D pixel structure advantage of 
LCOPA, which could have been used to achieve 2D beam steering, was temporarily 
sacrificed in these new phase control algorithms. In fact, it can be verified that there is no 
necessary to abandon the steering ability in one direction when the ultra-high precision in the 

Vol. 27, No. 13 | 24 Jun 2019 | OPTICS EXPRESS 18751 

#364796 https://doi.org/10.1364/OE.27.018751 
Journal © 2019 Received 11 Apr 2019; revised 29 May 2019; accepted 29 May 2019; published 19 Jun 2019 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.27.018751&amp;domain=pdf&amp;date_stamp=2019-06-19


other vertical direction is demanded, but the details of the algorithm need to be further 
optimized. 

On the other hand, the extreme manifestation of uneven angular resolution in VPG is the 
existence of local precision defects, that is, the discrete error peaks. In recent years, some 
optimization methods to improve the VPG pointing accuracy have been proposed [18,19], in 
which the thorniest problem is that although the height of the error peaks can be reduced with 
the suppression of the overall pointing error, the loop optimization process of phase 
translation is probable to restrict the dynamic response speed of the beam steering system. 
Previous sub-aperture algorithms have been able to solve the problem of local precision 
defects to some extent without degrading the dynamic performance, but a small number of 
error peaks will still be neglected. For this reason, a new active method for straightforwardly 
eliminating the error peaks was designed to refine 2D-SRSAC so that these local precision 
defects can be thoroughly removed and the global ultra-high resolution can be finally realized 
in the agile beam scanning process. 

In this article, the 2D steering strategy was extended directly by 1D-SRSAC and the 
related theory of local precision defects was firstly proposed. On this basis, the necessity of 
introducing local precision defect elimination method and its correction effect on steering 
angle arrays are verified by simulation. Finally, a steering angle measuring experiment with 
ultra-high precision was carried out to test the local beam steering performance of the 
ultimate optimized algorithm. 

2. Theoretical analysis and relevant simulation 

2.1 Conventional 2D-SRSAC algorithm 

SRSRAC is essentially an angle interpolation process in which the sawtooth phase 
distribution corresponding to two endpoint angles are generated respectively in two sub-
apertures and the fine-tuning of the steering angles between two endpoints can be 
implemented by adjusting the occupation rates of two sub-aperture areas. The principle and 
advantages of SRSAC for 1D beam steering has been detailedly introduced in [17], C. Wang 
et al. Technically, the advantages of ultra-high scanning accuracy and stability of 1D-SRSAC 
will be inherited if the phase surface is rotated at any azimuth. So 2D-SRSAC can be built on 
that basis, as shown in Fig. 1. 
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Fig. 1. A phase diagram for 2D steering derived from that for 1D steering. 

For an arbitrary 2D steering angle θ = (θx, θy ), the corresponding 1D phase diagram is 
first generated according to the magnitude of the vector θ and the whole phase function 
should be rotated by β, which represents the azimuthal angle of θ. αI and αII represent the 
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sector angle of subdomains ΣI and ΣII respectively and vary from 0 to π to control the area 
occupation rates of two subdomains. The interpolation endpoint angles θI and θII 
corresponding to ΣI and ΣII are distributed on two concentric rings with a constant radius 
difference θstep, so these two endpoint vectors are shown in Eq. (1), where the function floor() 
stands for rounding down and the function angle() stands for the vector azimuth. 
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Further, the normalized steering angle is redefined by Eq. (2) in the process of realizing 
desired angle θ between the interpolation endpoints θI and θII . At the same time, the 
simplified functional relationship between the occupation rate of the first subdomain (ηI = αI 
/π) and the normalized steering angle is given in Eq. (3) for the partition of sub-apertures, 
which is substantially the same as that in 1D steering. 
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On this basis, a series of equidistant scanning angles can be obtained by the accurate control 
of sub-aperture areas within specific interpolation segments, whose simulation diagram are 
shown in Fig. 2. Since the pixel structure on both sides of the vector θ is no longer completely 
symmetric in the phase diagram with discrete coordinates, the actual scanning points in Fig. 2 
may have some tolerable deviations perpendicular to θ, which has little effect on the overall 
performance of 2D-SRSAC. 
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Fig. 2. Simulated diagram of equidistant scanning angle generation within scanning intervals. 

The main advantage of this primary 2D algorithm is to greatly improve the resolution of 
the steering angles, ensure the stability and uniformity of that and slightly raise the pointing 
accuracy of the system. However, there is still plenty of scope for 2D-SRSAC to be optimized 
in terms of residual local precision defects 

2.2 Property analysis of local precision defects 

In the primitive 2D-VPG algorithm, the quantized phase modulated by actual LCOPAs leads 
to the generation of a large number of local precision defects in the whole beam steering 
range. In view of the fact that the pre-existing overall error suppression method may lead to 

                                                              Vol. 27, No. 13 | 24 Jun 2019 | OPTICS EXPRESS 18753 



the degradation of the dynamic performance, a targeted method to snip out the error peaks 
straightforwardly must be adopted. Therefore, in order to design an optimized 2D-SRSAC 
algorithm which can realize this requirement faultlessly, the properties of these error peaks, 
such as their positions and widths, need to be firstly analyzed in detail. Taking 1D-VPG as a 
simplified example, a phase diagram used to demonstrate the origin of error peaks is shown in 
Fig. 3. 
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Fig. 3. The fragments of 1D tilted optical path delays. The red, green, and blue floating ranges 
correspond to the error peaks around the positions that the desired steering angles equal to 
λ/NGd, −2λ/NGd and λ/2NGd, respectively. 

In Fig. 3, d is the pixel pitch, R is the effective radius of the incident light cross section, 
NG is the number of quantized grayscale of the phase delay and λ is the wavelength of the 
modulated light, so λ/NG is a minimum step of the optical path delays in the approximation of 
uniform grayscale. When the desired tilt fluctuates between the two red lines in Fig. 3, the 
output tilt must change to the fixed black dashed line because of the pixel-by-pixel rounding 
effect. Therefore, there will be a large pointing error in the neighborhood of this special angle, 
which is defined as θp in Eq. (4). 

 .p
GN d
λθ =

⋅
 (4) 

Theoretically, the precision defect around θp contains two sub-peaks and the situation that the 
desired steering angle exactly equals to θp corresponds to the boundary point between them. 
Actually, they are so close to be regarded as one peak in the subsequent error elimination. The 
width of this main peak is defined as W1 in Eq. (5), which is twice the floating angle of the tilt 
in Fig. 3 and felicitously describes the range size of this local precision defect. 
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If the steering angle is redefined with the ratio of it to θp, that is, m = θ/θp, it is not difficult 
to find that when m is an arbitrary integer, there will be exactly a main error peak with the 
same peak width as shown in Eq. (5). The causes for these error peaks is the consistent 
rounding up or down of the phase values on all pixels when the ideal phase is approximate to 
the quantized phase. The floating tilt corresponding to another main error peak at m = −2 is 
shown by the green lines in Fig. 3. Furthermore, for an arbitrary fractional steering angle m in 
the steering range, if there is a minimum positive integer N such that N*m is an integer, N will 
be defined as the order of the error peak at the steering angle m. Meanwhile, its peak width is 
defined as WN in Eq. (6). 
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Considering that the error peaks with different positions but the same orders N have 
almost the same width and height, we respectively select one error peak from the peaks with 
different order N for simulation verification. The simulation parameters are selected 
according to the actual experimental system, where λ = 730nm, R = 3000mm, NG = 40 and d 
= 15μm. Figure 6 is the simulated result of the error peaks with different order N, which 
verified the rationality of Eqs. (4)-(6). It is important to note that the so-called “error at a 
point” in Fig. 6 actually refers to the error in the neighborhood of the point, regardless of 
main error peaks or higher order minor peaks. 
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Fig. 6. Simulated diagram of error peaks based on 2D-VPG. (a) The main error peak for N = 1 
and (mx , my ) = (1,1). (b) The minor error peak for N = 2 and (mx , my ) = (1,1/2). (c) The minor 
error peak for N = 3 and (mx , my ) = (0,1/3). (d) The minor error peak for N = 4 and (mx , my ) = 
(3/4,1/4). 

2.3 The ultimate elimination method of local precision defects 

In the previous section, the causes and properties of local precision defects based on VPG 
have been introduced in detail. Technically, the thought of steering angle interpolation can 
make the fluctuation of pointing error tend to be smooth, so initial SRSAC already has 
elimination effect for local error peaks no matter in 1D or 2D cases, but this capability can be 
ulteriorly optimized. Still taking 1D beam steering as an example, the global steering error 
based on conventional SRSAC is shown in Fig. 7. Compared with Fig. 4, it can be found that 
most of the error peaks have been completely removed. However, a small number of error 
peaks still escape the elimination successfully, which needs to be further resolved in 
applications where the quantity limitation of noise points is particularly stringent. 
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Fig. 7. Simulated diagram of the overall steering error based on conventional 1D-SRSAC. 

The reason for such imperfections is obvious. In conventional SRSAC, the selection of 
interpolation endpoints can never be adjusted according to the neighboring VPG pointing 
accuracy. Therefore, when an endpoint used for interpolation happens to be within an error 
peak, it will drive the pointing error in the neighborhood to increase dramatically in the same 
direction and that is why there are a small number of unilateral peaks in Fig. 7 that have not 
been successfully removed. 

Since the position and the range of these precision defects have been clearly estimated in 
section 2.2, the positions of interpolation endpoints can be adjusted actively. Considering that 
the larger θstep , the worse interpolation precision, the initial value of θstep in conventional 
SRSAC is set to approximately equal to the range diameter of main error peaks so that the 
situation where both two endpoints fall into one error peak can be furthest avoided. However, 
the endpoint positions in the active local precision defect elimination method are required to 
be stricter. In order to ensure that either of two endpoints does not fall into one error peak, the 
value of |θII -θI | firstly has to be doubled to 2θstep . Since then, the midpoint (θI + θII )/2 and 
any endpoints of a interpolation segment can no longer be affected at the same time by one 
error peak. On this basis, if either of the two endpoints calculated by Eq. (1) is within an error 
peak, the entire interpolation segment needs to move up or down the length of θstep in the 
radial direction, as shown in Fig. 8. 
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Fig. 8. Schematic diagram of the interpolation segment adjustment in the local error 
elimination process. 

In Fig. 8, the blue circle represents an error peak which contains an endpoint auto-
generated by the primary 2D-SRSAC. After the interpolation segments are adjusted, any 
endpoints are ensured to be outside the error peak so that the quondam bad points can be 
replaced smoothly by the linear interpolation points. More specifically, if the distance from 
any one of the endpoints to the center of an arbitrary error peak is less than its half width as 
well as |θI |≠0, the magnitude of the endpoints needs to be changed to Eq. (7). Meanwhile, the 
normalized steering angle θnorm needs to be recalculated by Eq. (2) based on the location of 
the new endpoints. 

0 1 2 3 4 5 6 7 8
-4

-2

0

2

4

desired steering angle (m=θ /θp )

st
ee

ri
ng

 a
ng

le
 e

rr
or

 (
 μ r

ad
)

                                                              Vol. 27, No. 13 | 24 Jun 2019 | OPTICS EXPRESS 18757 



 ( )2 / 2 , 2 .I step step step step II I stepfloorθ θ θ θ θ θ θ θ θ = ⋅ − + = + 
   

 (7) 

After doubling the interpolation segment length and adjusting the endpoint locations 
according to the properties of error peaks, the suppression effect of the local precision defects 
can be obtained from the global simulation of 1D steering error, as shown in Fig. 9. 

 

Fig. 9. Simulated diagram of the overall steering error based on the optimized 1D-SRSAC. 

From Fig. 9, it can be seen that all the error peaks have been completely eliminated as 
expected. However, the shortcomings of this method are also visible, that is, the enhancement 
of the basic error fluctuation compared to Figs. 4 and 7. The most intuitive reason for this 
deficiency is the longer interpolation segment, in which case the error of linear interpolation 
based on Eq. (3) will inevitably increase. 

In addition, even assuming perfect interpolation, a steering angle can also be affected by 
the error of its two adjacent endpoints. Ignoring a few bad points in the error peak, it can be 
concluded from a statistical perspective that the interpolation endpoints based on 2D-VPG 
follow 2D normal distribution N(E(θ),σ2) in the overall steering range. On this basis, it can be 
proved that the deviations of internal interpolated points are also normally distributed and 
their mathematical expectation and variance can be worked out, as shown in Eqs. (8) and (9) 
respectively. 
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In Eq. (9), the parameter c stands for the correlation coefficient of two endpoints and is 
determined only by the interpolation segment length θstep = |θII -θI |. By utilizing the 
simulated data in Fig. 4, the relationship between them can be obtained, as shown in Fig. 10, 
in which the correlation coefficient decays when the interpolation segment length is only a 
few micro-radians but then oscillates periodically. 
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Fig. 10. The relationship between correlation coefficient and the interpolation segment length. 

Obviously, it can be seen from Eq. (9) that the smaller correlation coefficient results in 
smaller fluctuation of the interpolate angle error. Therefore, to reduce the global steering 
error, the most suitable interpolation segment length should be selected around 10μrad rather 
than 20μrad according to Fig. 10, which is another essential reason for the overall precision 
deterioration in Fig. 9. 

In general, the interpolation segment length can determine not only the accuracy of the 
interpolation process itself, but also the influence of the endpoint fluctuation on the output 
angle. Taking these two factors into consideration, it is necessary to set variable interpolation 
segment length to balance the contradiction between the elimination effect of local error 
peaks and the average amplitude of global deviation. Since the positions of error peaks have 
been known, we can double the interpolation segment length to 2θstep only near error peaks, 
but still adopt θstep in the steering range other than error peaks. The 1D global steering error 
distribution based on the ultimate precision defect elimination method will combine the 
advantages of Figs. 7 and 9. Meanwhile, the correction effect of the local error peaks is 
shown in Fig. 11. 
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Fig. 11. Simulated diagram of the correction effect of error peaks based on 2D-SRSAC 
optimized by the precision defect elimination method. (a) The main error peak for N = 1 and 
(mx , my ) = (1,1). (b) The minor error peak for N = 2 and (mx , my ) = (1,1/2). (c) The minor 
error peak for N = 3 and (mx , my ) = (0,1/3). (d) The minor error peak for N = 4 and (mx , my ) = 
(3/4,1/4). 

Compared with Fig. 5, it can be seen that the modified 2D-SRSAC has a pretty 
conspicuous correction effect of local precision defects and the residual traces of minor error 
peaks can hardly be seen. A small amount of systematic error appears in Fig. 11(a) but its 
magnitude has been reduced to the same level as the basic overall fluctuation, which is within 
an acceptable range. 

3. Verification experiment

After the optimized 2D-SRSAC has been proved to be available from simulation, a high 
precision measuring setup for 2D steering angles was carefully built to further verify its actual 
performance of local error suppression. Figures. 12 and 13 are the schematic diagram and 
physical photo of the 2D steering angle measuring setup with corresponding phase 
distribution instances, respectively. 
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Fig. 14. The measuring interface with the steering angles at the zero point and around different 
positions of error peaks. 

After the known system error of the measuring instrument has been removed, the actual 
steering angle arrays within the neighborhood of error peaks based on 2D-VPG and optimized 
2D-SRSAC are measured respectively, as shown in Figs. 15 and 16. 
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Fig. 15. Measured data of error peaks based on the primitive 2D-VPG algorithm. (a) The main 
error peak for N = 1 and (mx , my ) = (1,1). (b) The minor error peak for N = 2 and (mx , my ) = 
(1,1/2). (c) The minor error peak for N = 3 and (mx , my ) = (0,1/3). (d) The minor error peak 
for N = 4 and (mx , my ) = (3/4,1/4). 
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The test results of the steering angles based on 2D-VPG have adequately confirmed the 
theoretical prediction about the positions and widths of error peaks. Although the 
convergence trend of the steering angle array in Fig. 15(b) does not fully coincide with the 
divergent trend of the simulated data in Fig. 6(b), it does not affect the judgment on the 
position and width of the error peak. In addition, the identifiability of the 4-order error peak 
shown in Fig. 15(d) has decreased apparently, which proves that it is reasonable to just 
eliminate the error peaks whose orders are no more than 4. The error peaks with higher order 
were also tested tentatively, but their widths are so small that they are completely beyond the 
identification ability of our measuring instrument and lost the significance of being carefully 
corrected. 

1212 1214 1216 1218 1220 1222

1212

1214

1216

1218

1220

1222

θx (μrad)

θ y ( 
μr

ad
)

1212 1214 1216 1218 1220 1222

604

606

608

610

612

614

θx (μrad)

θ y ( 
μr

ad
)

-4 -2 0 2 4
401

403

405

407

409

θx (μrad)

θ y ( 
μr

ad
)

910 912 914 916

302

304

306

308

θx (μrad)

θ y ( 
μr

ad
)

(c)

(a) (b)

(d)

Fig. 16. Measured data of error peaks with different order N based on the optimized 2D-
SRSAC algorithm. (a) The main error peak for N = 1 and (mx , my ) = (1,1). (b) The minor error 
peak for N = 2 and (mx , my ) = (1,1/2). (c) The minor error peak for N = 3 and (mx , my ) = 
(0,1/3). (d) The minor error peak for N = 4 and (mx , my ) = (3/4,1/4). 

Compared with the primitive 2D-VPG algorithm, the optimized 2D-SRSAC has 
conspicuous correction effect especially at the positions of the error peaks whose order are 1 
or 2. In order to quantitatively compare the deviations between the actual steering angle 
arrays and the ideal cases, the error RMS of two algorithms in different positions have been 
further counted in Table 1. 
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Table 1. RMS of steering angle error at different position (μrad) 

(mx , my ) (1, 1) (1, 1/2) (0, 1/3) (3/4, 1/4) 

2D-VPG 1.20 0.36 0.34 0.27

2D-SRSAC 0.35 0.27 0.28 0.27

As can be seen from Table 1, the error elimination ability of the optimized 2D-SRSAC is 
undeniable, which would be more obvious in terms of RMS data if the random measuring 
errors could be removed. Except for a little residual systematic error around the position of 
(mx , my ) = (1,1), the RMS of the steering angle arrays generated by the optimized 2D-
SRSAC are at the same level, which indicates that the minor error peaks of 2D-VPG have 
been completely eliminated, even if their accuracy advantage over the VPG steering points 
has not been highlighted due to the doubling of the local interpolation segment length. As 
predicted by the simulated results in Fig. 11(a), a small number of acceptable blemishes near 
the main error peak appeared in Fig. 16(a) becauseθstep cannot be set large enough to 
completely avoid the influence of the error peak sidelobes when the global error suppression 
is taken into account. 

On the other hand, in order to verify the effectiveness of the local precision defect 
elimination method, the measured steering angle ranges are carefully considered rather than 
randomly selected especially for main error peaks and 2-order error peaks which are easier to 
be identified. The steering angles were measured at (mx, my) = (1, 1) and (1, 1/2) to represent 
the deviation of steering angles in the vicinity of main error peaks and 2-order error peaks 

respectively. Thus their corresponding magnitudes are 2 θp and 5 θp /2, which are very 
close to the integer times of θstep . Such a situation means that the distances between some 
default interpolation endpoints of conventional 2D-SRSAC and the error peak centers will be 
distinctly less than the half widths of the corresponding error peaks, which makes the steering 
angles generated by these endpoints severely affected by the error peaks. Fortunately, with 
our local precision defect elimination method, the interpolation segment length near error 
peaks will be doubled to 2θstep and the endpoint positions will be actively adjusted to avoid 
the areas covered by the error peaks. Finally, there is almost no apparent systematic error of 
the steering angle arrays in Figs. 16(a) and 16(b), which indicated that the local precision 
defect elimination method has a great optimization effect on 2D-SRSAC. 

4. Conclusion

In this paper, we firstly extend the one-dimensional SRSAC to two-dimension and retained 
the essential advantages of this phase generation methods. More importantly, the local 
precision defects caused by primitive 2D-VPG are analyzed in detail and the main parameters 
of these error peaks such as the position and width are explicitly presented. On this basis, the 
local precision defect elimination method for optimizing 2D-SRSAC has been designed so 
that the steering angle near the error peaks can thoroughly avoid their disturbance by doubling 
the interpolation segment length and actively adjusting the positions of interpolation 
endpoints. Finally, an impeccable phase generation scheme for 2D beam steering with ultra-
high resolution, no local precision defects is determined, which ensures the 2D non-
mechanical dynamic beam steering system has more prominent and reliable performance in 
the applications with extremely high precision requirement. 
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