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Abstract: Sub-aperture coherence (SAC) algorithm, which is based on the classical phase 
modulation method called variable period grating (VPG), was usually used to control liquid 
crystal optical phased arrays (LCOPA) to achieve agile beam steering with high precision. 
However, the beam steering angle of SAC is severely affected by the beam aperture, which 
limits the generality of the algorithm distinctly. In this article, two kinds of new phase 
modulation method have been proposed to solve this problem, which were named as radial 
sub-aperture coherence (RSAC) and symmetrical radial sub-aperture coherence (SRSAC). By 
using RSAC, the holistic drift of steering angle, which is caused by the variation of beam 
aperture, can be effectively avoided. In addition, a series of equidistant steering points with 
ultra-high precision can be obtained. Upon this basis, SRSAC greatly enhances the steering 
angle’s stability in the presence of system alignment error and relative vibration. Thus, the 
practicability of LCOPA for beam steering can be improved effectively. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

In recent years, with the rapid development of free-space optical (FSO) technology, the 
precision and stability of core beam steering device have become critical parameters that 
attract increasing attention in relevant field [1]. Meanwhile, the non-mechanical beam 
steering technology represented by LCOPA [2–5] can meet the performance requirements of 
FSO communication [6–8] and lidar [9,10] system in many aspects such as agile scan, low 
Size Weight and Power (SWaP) consumption [11]. On this basis, in order to achieve many 
specific applications such as high stability bidirectional laser communication and continuous 
tracking of dynamic target, the scanning accuracy of beam steering system need to be further 
enhanced. 

The traditional phase control method for 1-D beam steering is VPG algorithm [12]. Since 
the phase delay that LCOPA can realize is quantized, the pointing accuracy of VPG decreases 
dramatically in some steering angle regions. Although the undesirable local pointing accuracy 
can be improved to a certain extent by the method of phase translation [13,14], the actual 
iterative calculation process may affect the overall dynamic response speed of the system. In 
2014, SAC algorithm, a new phase control method introduced by Z. Tang and X. Wang, has 
effectively solved the problem of insufficient local pointing accuracy and greatly improved 
the scanning accuracy [15]. At present, although this modulation process can make the final 
pointing accuracy on the order of sub-mircoradian by the calibration of scanning points for 
the plane wave with a fixed aperture, the universal modulation method for arbitrary beam 
apertures with ultra-high precision and high stability is not particularly mature. 
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Taking into account the above factors, the LCOPA with two-dimensional pixel structure 
can be utilized for more flexible sub-aperture segmentation in order to improve the scanning 
accuracy substantially and ensure that the pointing accuracy is at an ultra-high level in the 
entire steering range. In this paper, two new phase modulation algorithms called RSAC and 
SRSAC are proposed for beam steering. Through RSAC, the minimum scanning interval of 
steering angles will be able to reach a level less than one micro-radian and eliminate local 
defects of pointing accuracy. Furthermore, an excellent resistance to the alignment error and 
slight vibration of the laser source can be obtained through SRSAC. The principles of the new 
algorithms will be firstly explained from a theoretical perspective, then the feasibility and 
practicability will be calculated by simulation, finally, the expected conclusion will be 
obtained by comparing the experimental data with the results of simulated analysis. 

2. Theoretical principle 

2.1 VPG and SAC algorithm 

The ideal phase distribution of VPG, which is the most commonly used phase modulation 
algorithm for beam steering [12,16], is shown in Eq. (1). 
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Whereλ is the wavelength of the modulated laser beam,θideal is the desired steering angle, x is 
the position coordinate whose origin is the center of the phased array, d is the pitch of the 
pixel structure and the function mod(X, 2π) represents the modular operation of X. Actually, 
for the quantized phase gray levels, if the difference of adjacent phase gray level is assumed 
to be constant, the phase distribution with discretized gray levels will be rewritten as Eq. (2). 
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φGL(x) represents the correction of the phase distribution in Eq. (1) after considering the 
limited phase gray levels. The discontinuous phase value is one of the main reasons for the 
large pointing error in some local steering angle regions and the maximum pointing error can 
be estimated from Eq. (3). 

 max( )error
grayN L
λθ ≈  (3) 

L represents the effective width of the modulator panel. If the actual beam aperture is less 
than the width of the modulator panel, apparently the value of L should be the former. 
According to the general hardware parameters and the wavelength of visible light, the 
maximum steering error can be calculated to be several micro-radians. One of the most 
intuitive examples is that if the desired steering angle input into the control program is set to 
be the maximum error angle in Eq. (3), the phase modulation at all points on the liquid crystal 
cell will be 0 according to Eq. (2), so the final output beam will not be loaded with any 
steering angle and deviates from the desired angle we set. The error with such magnitude in 
micro-radians will become the main error source of LCOPA beam steering, and other 
imperfections of the device, like fringe effect [17], cross talk [18,19] and laser induced effect 
[20–22] are secondary in terms of the contribution of the pointing error. To address the 
problem of decreasing pointing accuracy in these sick regions [13,23], if we can give up the 
points with larger error in the region and take two precise points in an external as the end 
points to carry out linear interpolation, a series of new high-precision steering points will be 
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obtained in the original sick region. Meanwhile, the resolution, also known as the scanning 
accuracy of the beam steering system, can be greatly improved and unified. 

SAC provides a specific phase control method to realize above assumption without 
changing any hardware parameters of LCOPA. In original SAC, the working panel of 
LCOPA was divided into two rectangular phase modulation subdomains ΣI and ΣII, whose 
expected steering angle wereθI andθII, respectively [15]. The difference betweenθI andθII is a 
constant scanning step length, which is the optimal length of the scanning sections for 
modifying the sick region mentioned above, shown in Eq. (4) . 

 step II Iθ θ θ= −  (4) 

The widths of the two subdomains are LI and LII, and the occupation rates areηI and ηII, shown 
in Eq. (5). 

  , I II
I II

L L
L Lη η= =  (5) 

L is the total width of the panel, apparently L = LI + LII . If we adjust the proportion of the 
area of two subdomains so thatηII changes from 0 to 1, the steering angle will change fromθI 
toθII equidistantly, which is beyond the reach of traditional VPG according to the previous 
error analysis. 

2.2 RSAC algorithm 

For some wavefront modulation system with varying aperture of the incident beam, SAC 
greatly reduces the pointing accuracy due to its limitation of lateral subdomain segmentation 
method. Even if the seriatim calibrations can be carried out for the incident beams with 
different apertures, the complexity of calibration data and the impact of unknown aperture 
errors are also inevitable. Fortunately, RSAC, which is a universal algorithm for the incident 
beams with arbitrary aperture, has been designed to replace SAC in this case. The modulation 
phase diagrams of SAC and RSAC are shown in Figs. 1(a) and 1(b), respectively. 

 

Fig. 1. Normalized phase diagrams of two sub-aperture algorithm. (a) SAC (b) RSAC 

The light power in ΣI and ΣII is defined as Eq. (6). 
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It can be imagined that when the beam comes vertically into the center of LCOPA, for SAC, 
the proportion of PI and PII depends not only on the occupation rates of two subdomains, but 
also on the diameter and the energy distribution form of the beam. However, the aperture 
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segmentation lines of RSAC are along the radial direction and the occupation rates of two 
sectorial subdomains are proportional to their vertex angles, which are shown in Eq. (7). 

  , 2 2
I II

I II
α αη ηπ π= =  (7) 

Obviously, under the premise that the energy distribution of the incident beam is 
centrosymmetric, no matter how the beam diameter changes, Eq. (8) is always true, which is 
the advantage of RSAC over SAC. 
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If the energy centroid of the diffracted light depends only on the value of PI / PII and is 
independent of the aperture of the incident light, the steering angle will be almost determined 
by the occupation rate because of the property shown in Eq. (8). In order to research the 
relationship between the steering angles and the occupation rates of subdomains, the 
normalized steering angle is defined in Eq. (9). 
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norm
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θ θθ
θ θ

−
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In Eq. (9),θ is an actual steering angle in the scanning section [θI, θII). For simplicity, all the 
desired end points of the steering angles generated by VPG are integer multiples ofθstep in this 
paper. The simulation curves betweenθnorm andηII with different beam apertures are shown in 
Figs. 2(a) and 2(b). 

 

Fig. 2. Contrast diagram of θnorm -ηII curves of two sub-aperture algorithms under different 
incident light aperture. (a) SAC (b) RSAC 

The simulation parameters are selected according to the actual device parameters. The 
wavelength of incident light is 730nm, the pixel pitch of LCOPA is 15μm, and the number of 
pixels is 512 × 512. Considering that the weeny black matrix has little effect on beam steering 
accuracy, we approximately set the pixel width equal to the pixel pitch. On the other hand, 
although the defects of gamma correction and electronic noise also have some subtle effect on 
the pointing error of steering angles as a matter of fact, they do not affect the dependence 
ofθnorm andηII in a scanning section. So the deviation between the actual phase and the 
theoretical value is ignored and the reasonableness can be verified by subsequent 
experiments. 

From Fig. 2, it can be seen that the scanning curves generated by RSAC are basically 
unchanged even though the aperture of incident light varies in a large range, which is 
impossible to realize with classic SAC. Furthermore, the scanning curves shown in Fig. 2(b) 
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are also quite insensitive to the changes of the main structural parameters of the system on the 
premise thatθstep is far less than the divergence angle (Rout ) of the diffracted beam. Several 
other typical parameters were selected for simulation, such as d = 5~20μm, and the number of 
pixels is equal to 256 × 256, 1024 × 1024, etc. For incident light, the main parameters such as 
flat-top energy distribution or Gaussian energy distribution, visible or near-infrared, have 
little influence on the final scanning curve, either. Even the gray level changes caused by 
wavelength changes are carefully considered. Therefore, the scanning curve with such 
excellent stability in Fig. 2(b) is of great significance for error calibration or linear 
reconstruction of the occupation rate. 

The purpose of linear reconstruction is to achieve the equidistant growth of the output 
steering angle in a scanning section. The specific procedure is dividing the simulated curve 
shown in Fig. 2(b) equidistantly according to the vertical coordinates and record a series of 
horizontal coordinates as a nonlinear reconstructed sequence ofηII, which is actually a process 
of sampling the inverse function of the scanning curve at regular intervals. The resultant 
sequence is made into a look-up table for actual beam steering. When the value of input 
desired angle is given by the driving program, the system will firstly work out the scanning 
section and the normalized angle, then obtain the accurate occupation rate by looking up the 
nonlinear sequence ofηII and generate the corresponding phase distribution. 

2.3 SRSAC algorithm 

In most processes of wavefront modulation, it is necessary to align the axis of the laser beam 
strictly with the center of the LCOPA panel. The alignment error between the LCOPA panel 
and the beam axis is also a common reason for the quality deterioration of the wavefront 
modulation. Therefore, for the specific application of high precision beam steering, SRSAC 
was designed as another new algorithm based on RSAC. The normalized phase distribution 
generated by SRSAC is shown in Fig. 3. 

 

Fig. 3. Normalized phase diagram of SRSAC. 

Different from the subdomains with single sector shape in RSAC, the subdomains in 
SRSAC present a symmetrical double-sector structure. The vertex angles of the sectorial 
subdomains vary from 0 to π, rather than from 0 to 2π. The new occupation rates of two 
subdomains are shown in Eq. (10). 

  , I II
I II

α αη ηπ π= =  (10) 

This symmetrical structure can effectively reduce the steering angle error caused by the 
alignment error between the beam axis and the center of the LCOPA panel. The concrete 
principle is shown in Fig. 4. 

                                                                Vol. 27, No. 5 | 4 Mar 2019 | OPTICS EXPRESS 6335 



 

Fig. 4. Schematic diagram of alignment error based on SRSAC. 

The circular region in Fig. 4 represents the cross section of the laser beam. Assuming that 
there is a translation along x direction between the position of the beam cross section and its 
desired central position, which is defined asδin = (δin, x, δin, y ), it is not difficult to find that the 
main area variation of the beam cross section in ΣII can be divided into S + and S -. When the 
value ofδin, y approaches 0, the areas of S + and S - are shown in Eqs. (11a) and (11b), 
respectively. 

 ( ) 2
, ,2 sin 2 ( )II in x in xS R Oα δ δ+ = ⋅ +  (11a) 

 ( ) 2
, ,2 sin 2 ( )II in x in xS R Oα δ δ− = ⋅ −  (11b) 

Where R is the effective radius of the beam section and O(δin, x
2) is the second order small 

quantity ofδin, x .Therefore, the energy variation in ΣII can be calculated in Eq. (12). 
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It can be inferred that the partial differential of the power in each subdomain satisfies Eq. 
(13a). 
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When the alignment error exists only in y direction, a conclusion similar to Eq. (13a) can be 
obtained, as shown in Eq. (13b). 
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It is obvious that the powers within two subdomains are first order differentiable functions at 
the origin of coordinates, which satisfy the total differential relations in Eqs. (14a) and (14b). 
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The significance of Eq. (14) is that when the magnitude of the alignment error vector is much 
smaller than the radius of the spot, the power falling within each subdomain can be kept 
stable regardless of the direction in which the vector of the alignment error points. The 
stability of the power ratio in two subdomains will guarantee the stability of the final steering 
angle. Although in the process of coherent superposition of two sub-beams, the power 
proportion of the sub-beams cannot strictly determine the position of the energy centroid of 
the interference field, it can be inferred from the subsequent simulation that the influence of 
the small phase-shift can be neglected. 

3. Simulated analysis of steering angle error 

3.1 Evaluation of angular error caused by the variation of beam aperture 

Based on the previous theoretical analysis, the relation between the RMS of normalized 
steering angle error and the apertures of the incident beam is simulated in a scanning section 
with the length ofθstep, as shown in Fig. 5. It is assumed that the control program is calibrated 
according to the scanning angle sequence when the incident beam aperture is 6mm. 

 

Fig. 5. Simulation diagram of the relationship between the RMS of normalized steering angle 
error and the beam aperture. 

The RMS of the normalized steering angle error in Fig. 5 means the ratio between the 
RMS of actual steering angle error andθstep . It can be seen that the steering angle error of 
RSAC and SRSAC caused by the variation of beam aperture is almost within θstep /100 and 
can be completely ignored compared to that of SAC. 

3.2 Tolerance analysis of the alignment error 

In order to study the concrete magnitude of the steering angle deviation caused by the 
alignment error, several 2-D surfaces representing the relationship of them are simulated. The 
simulation of RSAC error surface is carried out in order to compare it with SRSAC and show 
the stability of the latter. Figures 6-9 show the error surfaces when the beam aperture is 6mm 
and the occupation rates are taken as several discrete values. 
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Fig. 6. The x-direction output error surface (μrad) based on RSAC. 

 

Fig. 7. The y-direction output error surface (μrad) based on RSAC. 

In Figs. 6 and 7, either in x or y direction, the output error surface withηII = 4/6 is similar 
to that withηII = 2/6, but the trend of contour bending is symmetrical. The similar symmetry 
also exists between the contours of the output error surfaces withηII = 1/6 andηII = 5/6, so the 
surface withηII = 5/6 is omitted. The y-direction output error surfaces withηII = 3/6 are also 
removed because the output error of all the points is zero. Two key conclusions can be 
obtained from the output error simulation of RSAC. 

1) The x-direction output error contours are approximated to some equidistant straight 
lines, which means thatδout, x can be regarded as being linearly related toδin, x but 
independent ofδin, y . 

2) In most of the defined range ofδin , the y-direction output error of large-aperture laser 
beam is less than 0.2μrad, whose magnitude is acceptable. So the emphasis of the 
subsequent analysis will be mainly on the output error in x-direction. 

The output error surfaces based on SRSAC are shown in Figs. 8 and 9, whose contour 
variation trends are completely different from those based on RSAC. 

 

Fig. 8. The x-direction output error surface (μrad) based on SRSAC. 
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Fig. 9. The y-direction output error surface (μrad) based on SRSAC. 

In Figs. 8 and 9, there is no phenomenon of a certain contour crossing the origin of 
coordinates, which is consistent with the conclusion shown in Eq. (13). Finally, the overall 
RMS of the normalized steering angle error in x-direction affected by the alignment error is 
given by Fig. 10. It can be seen that the negligible magnitude (θstep /1000) of the x error based 
on SRSAC is much smaller than that on SAC and RSAC in the whole defined input error 
spaceδin∈(−0.3mm, 0.3mm)2, which shows that SRSAC has much better stability than SAC 
and RSAC in the presence of the system alignment error. 

 

Fig. 10. Simulation diagram of the RMS of normalized steering angle error in x-direction with 
different alignment error. (a) SAC (b) RSAC (c) SRSAC 

In addition, the analogue simulation of other apertures of the incident light is also 
performed, which shows that for the same alignment error and occupation rate, the steering 
angle error will increase inversely with the decrease of incident light aperture. According to 
the theory of Fourier optics, the relative angle errorθerror / Rout , as another common form of 
steering angle error definition [13], will remain stable as the aperture of the incident light 
changes. 
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3.3 Analysis of the wavefront deformation effect 

Unlike traditional VPG, the wavefront of the beam deflected by the algorithms we proposed 
must be deformed to a certain extent compared with the incident wavefront, which is not 
expected in the beam steering process. Considering simply in terms of optical aberration, our 
algorithms is actually a process of realizing new tilts by using the weighted average of two 
original tilts. In theory, it is inevitable that other aberrations will be introduced, but what is 
the order of magnitude of these aberrations apart from the tilt? For analyzing the problem 
quantitatively, Zernike polynomial expansion method can be used to calculate the size of 
additional aberrations. In the case of SRSAC, a particular phase distribution can be imagined 
for residual aberration analysis, whereθI = 0 andθII = θstep . All other phase distributions with 
equal occupation rates can be considered as the superposition of this particular phase 
distribution and pure tilts. The first 20 items of Zernike coefficient distribution with several 
typical occupation rates are shown in Fig. 11, where R = 6mm,θstep = 10μrad and λ = 0.73μm. 

 

Fig. 11. Schematic diagram of Zernike coefficients of the accessary aberration. 

In addition to the residual tilt X, it can be seen that the main aberration attached to 
SRSAC is Trefoil X, whose order of magnitude is no more than 1% of the wavelength. The 
non-tilt aberrations carried by the deflected beams are extremely small that the effects of 
these aberrations on the beam energy distribution and wavefront shape are negligible even 
after long distance propagation. 

This effect can also be considered from the divergence angle Rout, which equals toλ/(πR) 
according to the principle of Fourier transform. Theoretically, R × θstep directly reflects the 
size of the accessary aberration and must be far smaller than the wavelength on the premise of 
θstep <<Rout . Hence trying to ensure such a great suppression of non-tilt aberration is another 
mean reason why we set the magnitude difference betweenθstep and Rout . 

4. Experimental validation of RSAC and SRSAC algorithm 

4.1 Experimental set-up for fine measurement 

The schematic and physical diagrams of the optical system for steering angle measurement 
are shown in Figs. 12 and 13, respectively. 
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Fig. 12. Schematic diagram of high precision measuring system. 

 

Fig. 13. Actual measuring system. 

The laser with wavelength of 730nm enters digital auto-collimator by fiber-optic coupling. 
The digital auto-collimator, an integrated commercial instrument for angle measuring, emits 
large aperture plane wave and focuses the reflected light on the built-in CCD. Its focus system 
has a focal length of 300mm and the pixel pitch of the built-in CCD is 5.2μm. The system 
accurately captures the position of the cross-shaped spot and works out its deviation from the 
reference zero point by local centroid algorithm. Figure 14 shows several high-precision 
measurement interfaces. 
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Fig. 14. Continuous measurement interface of reference zero error and steering angles. 

Moreover, a diaphragm, whose position can be adjusted with high precision in the 
horizontal and vertical direction, is placed close to the panel of the LCOPA. So it is possible 
to be equivalent to the beams with different cross-section radius and alignment errors by 
adjusting the aperture and the position of the diaphragm. In order to determine whether the 
position of the diaphragm is accurate, a lateral illumination system shown with the yellow 
beam in Figs. 13 is introduced to make the diaphragm and modulator panel clearly imaged on 
the alignment CCD, so that the displacement platform with diaphragm can be fine-tuned by 
observing the imaging situation. 

4.2 Precision and stability test of RSAC algorithm 

In order to evaluate the consistency between the measured discrete points with the 
simulatedθnorm -ηII curve, an approximate mathematical formula for simulated scanning curve 
should be established as a target function of regression analysis. Considering the conciseness 
and accuracy of the formula, an approximate piecewise power function is established for the 
nonlinear scanning curve of RSAC, as shown in Eq. (15). 
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Equation (15) contains a variable parameterδc for one dimensional regression analysis of 
subsequent experimental data, which represents the deviation of normalized steering angle 
fromθnorm = 0.5 when the alignment error exists andηII = 0.5. As explained earlier, with the 
premise thatθstep << Rout, the form of the scanning curve will be extremely insensitive to the 
structure parameters of the modulator and the wavelength of the laser beam. So Eq. (15) does 
not contain any other parameters related to the diffraction system. An intuitive comparison 
between the simulated scanning curves and the corresponding approximate formulas in the 
presence of different alignment errors is shown in Fig. 15. 
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Fig. 15. The contrast diagram of RSAC simulated scanning curves and their approximate 
formulas. 

A scanning section withθstep = 10μrad is randomly selected in the overall scanning range 
during the measurement. Without the error of alignment, three sets of normalized 
experimental data are obtained by adjusting the aperture size of the diaphragm, as shown in 
Fig. 16. 

 

Fig. 16. The contrast diagram of RSAC scanning curves with different beam apertures. 

The absence of alignment error meansδc = 0, and Eq. (15) can be simplified to Eq. (16). 

 
~ 5 2

0 2 2 sgn( 0.5) 0.5 0.5cF x xδ = = − ⋅ − +  (16) 

Taking Eq. (16) as the theoretical value, the RMS of residual error with different beam 
apertures are all less than 0.25μrad. Considering that the RMS of the inherent measuring error 
fluctuation is estimated to be 0.2μrad, it can be inferred that the deviation between the 
measured data and the simulated nonlinear curve is mainly composed of random 
measurement error, while the actual systematic error can be ignored. 

In the presence of alignment errors, the actual measurement point will move up or down 
as a whole, shown in Fig. 17. 
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Fig. 17. Schematic diagram of the RSAC measured angles. (a) The normalized steering angle 
sequences before linearized reconstruction and their custom fitting curves. (b) The normalized 
steering angle sequences after linearized reconstruction and the desired straight line. 

The single parameter fitting analysis of the measured angles in Fig. 15(a) is carried out by 
using Eq. (15) and the fitting results are shown in Table 1. 

Table 1. The statistical parameters of RSAC data error withδin, x = ± 0.2mm. 

δin, x (mm) + 0.2 −0.2 

δc 0.072 −0.083 

R-square 0.987 0.985 

residual error RMS(μrad) 0.22 0.23 

Based on the simulation results shown in the third diagram of Fig. 6, it can also be 
roughly estimated thatδc should be about ± 0.064 in the above fitting result. The slight 
difference between simulation results and fitting results may be caused by the inaccuracy of 
the aperture of the diaphragm. However, the overall trend of the actual measurement data is 
generally consistent with the results predicted by the simulation analysis. 

Applying the linearized reconstruction principle, the relationship between the normalized 
steering angle and the subscript of the reconstructed occupation sequence is shown in Fig. 
17(b). It can be seen that the overall upward or downward movement of data points cannot be 
eliminated if the alignment errors do exist. 

4.3 Precision and stability test of SRSAC algorithm 

Theθnorm -ηII curve of SRSAC is completely different from that of RSAC. In fact, by 
analyzing the phase distribution of these two algorithms, it can be inferred that in the absence 
of alignment error, the scanning curve of SRSAC can be obtained by magnifying the front 
half of the RSAC curve proportionately. So the approximate formula for the scanning curve 
of SRSAC is shown in Eq. (17) and Fig. 18. 
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Fig. 18. The contrast diagram of SRSAC simulated curves and their approximate formula. 

Considering the error surfaces shown in Fig. 8 are similar to saddle surfaces, two curves 
whose alignment error vectors are respectively along x and y axis actually have the largest 
deviation in all curves with the same |δin |. Nevertheless, this largest deviation is apparently 
negligible in Fig. 18, so that we can use Eq. (17) to approximate theθnorm -ηII curve with any 
alignment error in the simulated range, which also proved that SRSAC has excellent stability 
in the presence of alignment errors. The measured data of SRSAC is shown in Fig. 19. 

 

Fig. 19. Schematic diagram of the SRSAC measured angles. (a) The normalized steering angle 
sequences before linearized reconstruction and their custom fitting curves. (b) The normalized 
steering angle sequences after linearized reconstruction and the desired straight line. 

Comparing with Fig. 17(b), the reconstructed sequences of SRSAC shown in Fig. 19(b) 
will not move upward or downward as a whole due to the alignment error, which provides a 
powerful guarantee for realizing ultra-high scanning accuracy and the excellent equidistant 
property of the steering angles. Concerned about the measurement accuracy of the 
experimental devices, the minimum scanning interval of RSAC and SRSAC is controlled at 
0.5μrad. Theoretically, a higher scanning accuracy can be achieved by increasing the number 
of sample points of reconstructed sequences within a scanning section, if the measurement 
accuracy restriction of the verification experiment is not considered. 

5. Conclusion 

In this paper, two new LCOPA control methods are designed basing on SAC. RSAC can 
effectively reduce the influence of the beam aperture variation on the steering angle for 
centrosymmetric incident beams. On this basis, we retain the advantages of RSAC and 
successfully design SRSAC which can maintain wonderful stability in the presence of 
alignment errors. Ultimately, the precision requirements of the device mounting position and 
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the limits on the amplitude of environmental vibration can be greatly reduced by using 
SRSAC. Under the influence of macroscopic aperture variation and alignment error, the 
SRSAC steering angle error can be restrained within θstep / 100. 

Although the pointing accuracy of RSAC and SRSAC do not make a noticeable 
improvement over that of VPG in most of the locations within the scanning range because the 
end points of the scanning section (ηII = 0 or 1) are still implemented based on VPG, these 
new methods can effectively patch the pointing accuracy problem of a few scattered sick 
regions. Furthermore, after splicing all small scanning sections together, these two algorithms 
can easily reduce the expectation of the minimum scanning interval angle to the order of sub-
micro radians on the basis of maintaining the equidistant property of the steering angle 
sequences, which allows the scanning system to obtain an explicit and stable ultra-high 
resolution across the full scanning range. 

In all probability, the high precision 1D steering principle of these algorithms will have 
great potential to be extended to 2D steering, which will take it one step further to enhance 
the practicability and competitiveness in the field of FSO communication and lidar. 
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