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ABSTRACT
In this paper, the energy characteristics of Gabor texture are used for
cloud detection in high-resolution multispectral images. First, the
satellite remote-sensing image is divided into superpixels using sim-
ple linear iterative clustering (SLIC), and then, the energy character-
istics of Gabor texture and spectral characteristics are computed by
extracting the texture features of the superpixels. The features of the
cloud superpixels are used as the learning sample of the support
vectormachine (SVM) classifier, and a classificationmodel is obtained
by training the SVM classifier. Finally, a cloud-detection experiment is
conducted for various sensor images with three visible bands and
one near-infrared band. The experimental results showed that the
proposed method provides an excellent average overall accuracy for
thick and thin clouds in a complex background of forests, harbours,
snow and mountains. The characteristic parameters of this paper are
not limited by the image parameters; thus, they provide good results
and universality for various types of sensors.
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1. Introduction

With the rapid development of optical remote-sensing image technology, the number of
remote-sensing satellites with high gray level, higher resolution and more spectral bands
is increasing. However, cloud occlusions not only cause false interpretation of images
but also storage waste due to invalid information. Clouds are unavoidable pollutants of
optical images in the visible and infrared spectral ranges, and the generation of a cloud
mask associated with remote-sensing images is an important problem. Cloud masks
provide both an outlet for images and cloud information. In contrast to popular object
detection methods, cloud detection includes a predictive bounding box, and therefore
the pixel precision of the mask is important for removing cloud-contaminated pixels
during advanced processing.

In recent years, many researchers have studied cloud detection using various types of
remote-sensing data. Most researchers use remote-sensing images from multiple spec-
tral segments, such as the eight bands of the Landsat 6, 7 satellite with ETM+ sensors
(Zhu and Woodcock 2012) or the Landsat 8 with the newly added shortwave infrared
band (1.360–1.390) with OLI sensors (Xu et al. 2016) (Candra, Phinn, and Scarth 2017), for
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cloud detection. The multitemporal cloud-detection method usually achieves higher
cloud-detection accuracy than does the single-image cloud-detection method
(Heiselberg and Heiselberg 2017)(Tseng, Tseng, and Chien 2008)(Zhang, Qin, and Qin
2010). However, this method requires more scenes in a short time to ensure that the
land cover in a location does not change greatly.

Because of the low demand for input data, the single-image cloud-detection method
is more popular than the multi-phase method. Moreover, machine learning has been
applied to automatic cloud detection. The parallax feature is highly effective, but its
calculation requires parameters such as the orbital height and speed of the panchro-
matic (PAN) image, which are not always available in image processing (Latry, Panem,
and Dejean 2007). (Li et al. 2015) and (Tan, Qi, and Ren 2016) used support vector
machines to detect clouds in high-resolution single spectra, whereas (Zhaoxiang et al.
2018) and (Le Goff et al. 2017) used deep learning. However, most current cloud-
detection methods use eight bands or images containing a thermal infrared band or
a water absorption zone, which are key for cloud recognition. When spectral information
is insufficient, cloud detection has limitations. However, many optical satellite imaging
sensors have only four bands of spectral information. Thus, studying the use of limited
spectral information to detect clouds is of great relevance.

(Li et al. 2017) proposed an automatic multiple feature combination (MFC) method
for cloud and cloud shadow detection in GF-1 WFV images. The WFV imaging system is
one of the key instruments for GF-1 satellites; it includes four sets with 16-metre spatial
resolution, and each WFV camera has four bands spanning the visible near-infrared
spectral region. The panchromatic/multispectral imaging system (PMS) is also a key
instrument for the GF-1 satellite; it includes two 8-metre spatial resolution systems,
four bands of the same WFV and a bandpass similar to that of the Landsat satellite ETM
+. However, the parameters in the method presented in the literature only apply to the
processing of GF-1 WFV data. Depending on the spectral radiation difference of the
sensor itself and the method in (Li et al. 2017), different sets of parameters are needed
for multispectral images of different resolutions.

Simple linear iterative clustering (SLIC) was originally proposed by (Zitnick and Kang
2007), and the algorithm has been improved (Kim et al. 2013). In recent years, computer
vision applications have become increasingly dependent on superpixels (Achanta et al.
2010)(Hsu and Ding 2013), which have been implemented by parallel GPU acceleration
(Ren, Prisacariu, and Reid 2015) and were recently used in the field of remote-sensing
images (Csillik 2017) (Zhang et al. 2015). The concept of energy is often used in pattern
recognition for gait recognition (Kusakunniran et al. 2009), edge detection (Adelson
et al. 1984) and active contour extraction citep(Zhang, Song, and Zhang 2010). The
method (Laws 1980) is proposed for classifying each pixel of a texture image to segment
the scene. Texture energy has potential for image processing when the intensity
distribution is uneven, and the calculation budget is low (Wang et al. 2009) (Zhang,
Song, and Zhang 2010).

This paper proposes a cloud-detection method based on Gabor energy, which uses
texture energy and the spectral characteristics of four spectral images in combination with
SVM to learn training characteristics. This approach can be applied for various sensors and
resolutions, yield high precision in snow-covered areas and highlight background areas
with limited bands and few features. First, the satellite remote-sensing image is divided
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into superpixels using SLIC. Then, the energy characteristic of the Gabor texture and the
spectral characteristics are computed by extracting the texture features of the superpixel.
The features of the cloud superpixels are used as the learning sample for the SVM classifier,
and the classification model is obtained by training the SVM classifier. Finally, a cloud-
detection experiment is conducted for various sensor images. The experimental results
show that the proposed method has an average overall accuracy as high as 92.5% for thick
and thin clouds with three visible bands and one near-infrared band in a complex back-
ground of forests, harbours, snow and mountains. Good cloud-detection results are
achieved for the 16 meter wide-field GF-1 image (level 2A), 8 meter high-resolution GF-1
image (level 1A) and 5.8 meter high-resolution ZY-3 image.

2. Proposed method

2.1. SLIC

In general, machine-learning cloud-detection methods take each pixel as a unit, which is
time consuming and produces fragmented noise. In this paper, the remote-sensing
image is divided into superpixels using SLIC, and the following steps are performed
with the superpixel as the basic unit. SLIC uses the K-means algorithm to generate
hyperpixels and has the following advantages:

(1) By limiting the search space to areas proportional to the pixel size, the number of
distance calculations in the optimization is significantly reduced, which reduces
the linear complexity of the pixel N and is independent of the number of pixels K .

(2) The weighted distance measures the combination of colour and space proximity
while providing control over the size and compactness of the superpixel.

SLIC methods similar to the pre-processing steps described in (Zitnick and Kang 2007)
for depth estimation have not been studied with regard to hyperpixels. SLIC performs
a local clustering of pixels and can generate compact superpixels as a subregion that
adheres well to regional boundaries. According to (Achanta et al. 2012), the cluster is
applied to the CIELAB colour space defined by the L, a, values and the 5-D space of the x
and y pixel coordinates. A simple definition of D for the 5-D Euclidean distance in lab xy
space will result in inconsistent clustering behaviour under varied pixel sizes. To com-
bine two distances into a single measurement, it is necessary to standardize colour
proximity and spatial proximity by their respective maximum distances within the
cluster. D0 is represented by the following:

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlj � liÞ2 þ ðaj � aiÞ2 þ ðbj � biÞ2

q
(1)

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ2 þ ðyj � yiÞ2

q
(2)

D0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc
Nc

� �2

þ ds
Ns

� �2
s

(3)
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The maximum spatial distance expected within a given cluster should correspond to the
sampling interval, Ns ¼ S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðN=KÞp

. Determining the maximum colour distance Nc is
not easy because the colour distance can be significantly different from the cluster and
the image; this problem can be simplified by fixing Nc to m

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc

2 þ ds
S

� �2

m2

s
(4)

where m weighs the relative importance of colour similarity and spatial proximity. In the
method used in this article, m takes a value of 30.

2.2. Multispectral information features

The HOT index (Zhang, Guindon, and Cihlar 2002) has been widely used in smoke
abatement and cloud detection (Vermote and Saleous 2007)(Harb, Gamba, and
Dell’Acqua 2016). This index is used to separate clouds from clear-sky pixels, considering
that the spectral response of the cloud differs from that of most terrestrial surfaces
between blue and red wavelengths. The calorific value of cloud pixels is usually greater
than that of clear-sky pixels. The mean of the relative HOT (HðiÞ) indices in each of the
superpixels used in our method can be represented in the following ways:

HðiÞ ¼
X
i

HðiÞ=Ni (5)

and

HðiÞ ¼
ρðBÞmi;ni

� 0:5 � ρðRÞmi;ni

ρðBÞmi;ni
þ 0:5 � ρðRÞmi;ni

(6)

where i and Ni denote the label number of the superpixel and the number of pixels in
superpixel i, respectively, and ðmi; niÞ represents the coordinates within superpixel i.

Because the HOT index depends on the band, for high values of the HOT index, the
high reflectivity in the visible band and the blue belt of ground objects, such as snow
and blue buildings, cannot be excluded from the extracted results, as this causes
commission errors in the cloud-detection results. In addition, the ratio of the minimum
reflexivity in the visible band to the maximum reflectivity in the visible band can be used
to exclude ground objects with other blue, red or green colour features. The mean of the
visible band ratio (VðiÞ) of the superpixels is as follows:

VðiÞ ¼
X
i

VðiÞ=Ni (7)

where

VðiÞ ¼
minðρðBÞmi;ni

; ρðGÞmi;ni
; ρðRÞmi;ni

Þ
maxðρðBÞmi;ni

; ρðGÞmi;ni
; ρðRÞmi;ni

Þ (8)

V is close to one when the pixel is graygrey. Therefore, VBR can be used to exclude non-
cloud pixels with salient colour features from the extracted results.
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Because the spectral information of the four spectra is limited, a spectral normalized
exponential convergence degree is presented as a feature of the cloud pixel that is
trained and identified. Multispectral images (produced by the same camera as the
optical remote-sensing images) have different reflection characteristics in different
bands, and the reflection of water decreases from the visible wavelength to the infrared
wavelength. The near-infrared band has stronger moisture absorption. However, other
objects, such as hills, clouds, land and vegetation, do not absorb strongly in near-
infrared bands. Normalized indices, such as NDWI, NDSI and NDVI, have been studied
using thresholds for preliminary cloud detection (Zhu and Woodcock 2012)(Hagolle et al.
2010)(Manjunath et al. 2015). Thicker clouds are more likely to be treated with
a normalized index than other backgrounds because of the high reflectivity in each
spectral segment. In this paper, the image hyperpixel subgraph is extracted using the
NDWI mean. The NDWI mean in each superpixel is as follows:

NDWIi ¼
X
i

NDWIi=Ni (9)

where

NDWIi ¼
ρðGÞmi;ni

� ρðNIRÞmi;ni

ρðGÞmi;ni
þ ρðNIRÞmi;ni

(10)

ρðGÞmi;ni
and ρðNIRÞmi;ni

are the average of the digital number DN value of the green

channel and the near-infrared channel in superpixel i.

2.3. Energy characteristics of the Gabor texture

The spectral characteristics reflect only the relative information between the spectral
segments of the local objects and do not fully express scenery features. The spectral
characteristics of clouds are shared by snow, glaciers, deserts and other features.
Therefore, spectral characteristics cannot distinguish clouds accurately. This paper
uses texture features to further describe the characteristics of the cloud. The texture
characteristics of the cloud are random. Although the texture element is variable and
capricious, it is different from the texture feature of the ground object (Horvath et al.
2002)(Zou and Shi 2016). On the basis of texture feature analysis, a cloud is similar to
a ground object to some extent, and the texture features of clouds and ground
objects are extracted from the statistical characteristics of the image, which can
distinguish the cloud and surface objects effectively. To some extent, part of
a cloud is similar to the whole cloud, and the cloud cluster has some fractal similarity.
Accordingly, a new cloud-detection method is proposed that can distinguish the
energy characteristics of the Gabor texture of clouds and ground objects. Gabor
filters are similar in frequency and direction to human visual systems; thus, they are
often used for texture recognition ((Zhang et al. 2012). A Gabor transform is a type of
windowed Fourier transform, and a Gabor function can extract relevant features
under various scales and directions in the frequency domain. In the space domain,
a two-dimensional Gabor filter is the product of a Gaussian kernel function and a sine
plane; its formula is as follows:

INTERNATIONAL JOURNAL OF REMOTE SENSING 5



gðx; y; λ; θ;ψ; σ; γÞ ¼ exp � x02 þ γ2y02

2σ2

 !
exp i 2π

x0

λ
þ ψ

� �� �
(11)

Real

gðx; y; λ; θ;ψ; σ; γÞ ¼ exp � x02 þ γ2y02

2σ2

 !
cos 2π

x0

λ
þ ψ

� �
(12)

Imaginary

gðx; y; λ; θ;ψ; σ; γÞ ¼ exp � x02 þ γ2y02

2σ2

 !
sin 2π

x0

λ
þ ψ

� �
(13)

Where

x0 ¼ x cos θþ y sin θ
y0 ¼ �x sin θþ y cos θ

(14)

In this equation, λ represents the wavelength of the sinusoidal factor, θ represents
the orientation of the normal to the parallel stripes of the Gabor function, ψ is the
phase offset, σ is the sigma/standard deviation of the Gaussian envelope, and γ is the
spatial aspect ratio, which specifies the elliptical nature of the Gabor function sup-
port (Yang et al. 2003).

ðΔx;ΔyÞ represents the direction such that the horizontal distance has Δx pixels and
the vertical distance has Δy pixels. The definition of texture energy is used to measure
the uniformity of the image greyscale, which can be written as follows:

E ¼
X
x;y

ðgðΔx;ΔyÞÞ2 (15)

2.4. Algorithm description

The first SLIC algorithm of an IGB (false-colour composite) image obtains the super-
pixel sub-picture, extracts the features of the superpixel sub-picture, obtains the
classification model of the cloud superpixel sub-picture based on SVM training, and
detects the cloud test image. As shown in Figure 1, the classification algorithm is as
follows:

Figure 1. The classification algorithm.
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(1) Divide the images into twogroups: one for the training set and the other for the test set.
(2) First, SLIC is performed on two sets of IGB (pseudo-colour composite) images to

obtain a superpixel segmentation map, and the superpixel cloud in the manually
labelled training image is a positive sample.

(3) Extract all the features of the cloud superpixel and the green and near-infrared images
of the Gabor texture energy, and train the SVM to obtain the model parameters.

(4) The same method calculates the features of all superpixels in the extracted test
image, uploads the SVM classification parameters, and identifies positive classifi-
cation results as clouds. The algorithm is applied to remote sensing satellite cloud
detection. The method training process can be carried out on the ground, the
satellites are classified for decision making, and the training parameters are
transmitted to the satellite processor through the satellite ground connection.

In this way, the detection ability of satellite cloud images is created, and satellite
processing is simplified.

3. Results

To verify the algorithmproposed in theprevious section and its superiority anduniversality,we
compare it with the other two methods. As with the first method, the methods in this paper
pre-process the image extraction features before implementing the SVM algorithm. The
method (Li et al. 2015) is used to determine the sub-blocks of the cloud according to bright-
ness characteristics. In this paper, the superpixel subgraph is obtained by SLIC, and feature
extraction is performed by using the superpixel sub-picture as the unit. Another recent study
(Li et al. 2017) focused on cloud detection in multispectral high-resolution images – the
purpose of which is similar to that in this paper – using only spectra and greyscale from four
spectra. The algorithm in (Li et al. 2015) is reimplemented in this paper according to the
original description, and the algorithm verification in (Li et al. 2017) is obtained from the
images and algorithm programs provided by the author on the website. For comparison, we
use the same SVM method as (Li et al. 2015) and obtain the parameters via cross-validation.
The images selected herein include GF-1 PMS images, ZY-3 images, and GF-1 WFV images
provided in (Li et al. 2017). It is worth noting (Li et al. 2017), as the algorithmprogramprovided
by the author only supports image processing of GF-1 WFV. The host computer algorithm in
this paper was verified using a hardware environment with a 3.50 GHz Intel(R) Xeon(R) CPU,
64.0 GB RAM and Microsoft Windows 7 Service Pack 1 operating system. The experimental
development environment is MATLAB R2014a. The experiment settings are as follows.

3.1. GF-1 WFV imagery

The GaoFen-1 (Gao Fen means high resolution in Chinese) satellite was launched by
China. Detailed information on GF-1 satellites and WFV images can be found at http://
sendimage.whu.edu.cn/en/mfc-validation-data/. The GF-1 WFV image selected herein is
a Class 2A product produced by relative radiation correction and system geometry
correction. The level-1A data are raw digital products of homogenized radiation calibra-
tion, while the level-2A data are produced after systematic geometric correction, in
which the pixels are all resampled to a 16 m resolution with 10-bit data. The
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experimental scene selection includes five types of ports, snow, mountains, forests, and
cities to test the cloud-detection performance of the method under various scene types.
Images were taken from 2012 to 2017. The images used for training and testing include
both thick and thin clouds. For each scene, 100 different oaks are selected for training.
The images range in size from 256� 256 pixels to 1024� 1024 pixels, and 20 images are
selected for testing in each scene. Figure 2 shows four representative original images,

Figure 2. Experiment with GF-1 WFV imagery.(a)GF1 WFV4 E132.4 N53.2 20160507 L2A; (b)GF1
WFV1 E102.0 N28.0 20140302 L2A; (c)GF1 WFV1 E73.7 N56.3 20130712 L2A; (d)GF1 WFV1 E114.9
N23.5 20141008 L2A; (e)Result of SLIC in (a); (f)Result of SLIC in (b); (g)Result of SLIC in (c); (h)Result
of SLIC in (d); (i)Result of extracting the Gabor texture energy in (e); (j)Result of extracting the Gabor
texture energy in (f); (k)Result of extracting the Gabor texture energy in (g); (l)Result of extracting
the Gabor texture energy in (h); (m) (i)Our method,(ii)(Li et al. 2015),(iii)mask and (iv)(Li et al. 2017)
results of (a); (n) (i)Our method,(ii)(Li et al. 2015),(iii)mask and (iv)(Li et al. 2017) results of (b); (o) (i)
Our method,(ii)(Li et al. 2015),(iii)mask and (iv)(Li et al. 2017) results of (c); (p) (i)Our method,(ii)(Li
et al. 2015),(iii)mask and (iv)(Li et al. 2017) results of (d);

8 Y. SUI ET AL.



the segmentation results of SLIC processing, and the distribution of Gabor energy
features. The results were then compared to the methods in (Li et al. 2015) and (Li
et al. 2017). The algorithm program of document li(Li et al. 2017) can be downloaded
from http://sendimage.whu.edu.cn/en/mfc/, but the program can only be used for cloud
detection in MFV images.

3.2. GF-1 PMS imagery and ZY-3 imagery

To verify the ubiquity of the methods presented herein, comparative experiments were
performed using ZY-3 and GF-1 PMS images. The panchromatic/multispectral (PMS)
imaging system is another key instrument operating onboard the GF-1 satellite. This
system includes two cameras with an 8-m spatial resolution. The ZiYuan-3 satellite (Zi
Yuan means resource in Chinese) has an image resolution of 5.8-m, and the spectral
spectrum is the same as that of GF-1 PMS and GF-WFV. Detailed information about ZY-3
satellites and images can be found at http://sjfw.sasmac.cn/en/ZY-3.htm . The selection
method of the experimental image is the same as that of the WFV of the GF-1, and
Figure 3 shows five representative original images, the segmentation result of SLIC
processing, and the distribution of the Gabor energy features. In the process of dividing
cloud masks, we first converted the blue, green and near-infrared bands of the original
images into 24-bit colour images. Then, we used the Magic Wand tool and Lasso tool in
Adobe Photoshop to mark the position of the clouds in the image. Finally, the reference
mask was generated by setting the DN values of cloud and non-cloud pixels to 255 and
0, respectively. Figure 3 shows the cloud-detection results for the three remote-sensing
images using different methods.

4. Discussion

We compared our method with three other methods, including using the reference
mask to evaluate the efficiency of our cloud-detection algorithm. We compared one of
Li’s cloud-detection methods with the SVM method (Li et al. 2015) and another of Li’s
cloud-detection methods (Li et al. 2017). Their programs and dates can be downloaded
from http://sendimage.whu.edu.cn/en/mfc/, but the program can only be used for the
cloud detection of MFV images. In the process of dividing cloud masks, we first
converted the blue, green and near-infrared bands of the original images into 24-bit
colour images. Then, we used the Magic Wand tool and Lasso tool in Adobe Photoshop
to mark the position of the cloud in the image. Finally, the reference mask was
generated by setting the DN values of cloud and non-cloud pixels to 255 and 0,
respectively. Table 1 shows the cloud-detection results for the three remote-sensing
images using different methods.

Furthermore, four metrics were used to quantitatively evaluate the algorithms: right
rate (RR), error rate (ER), false alarm rate (FAR), and ratio of RR to ER (RER) (An and Shi
2015).

RR is defined as follows:

RR ¼ CC
GN

(16)
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where CC is the number of pixels correctly detected as a cloud and GN is the number of
cloud pixels in the ground truth. ER is defined as follows:

ER ¼ CNþ NC
TN

(17)

Figure 3. Experiment with GF-1 PMS imagery and ZY-3 imagery.(a)GF1 PMS1 E121.0 N31.920150328 L1A;
(b)GF1 PMS2 E121.3 N31.6 20151023 L1A; (c)GF1 PMS1 E113.9 N22.4 20150406 L1A; (d)ZY3 mynfavm
20130606 L1A; (e)ZY3 mux 20150915 L1A; (f)Result of SLIC in (a); (g)Result of SLIC in (b); (h)Result of SLIC in
(c); (i)Result of SLIC in (d); (j)Result of SLIC in (e); (k)Result of extracting the Gabor texture energy in (f); (l)
Result of extracting the Gabor texture energy in (g); (m)Result of extracting the Gabor texture energy in (h);
(n)Result of extracting the Gabor texture energy in (i); (o)Result of extracting the Gabor texture energy in (j);
(p) (i)Our method,(ii) (Li et al. 2015) and (iii)mask results of (a); (q) (i)Our method,(ii) (Li et al. 2015) and (iii)
mask results of (b); (r) (i)Ourmethod,(ii) (Li et al. 2015) and (iii)mask results of (c); (s) (i)Ourmethod,(ii) (Li et al.
2015) and (iii)mask results of (d); (t) (i)Our method,(ii) (Li et al. 2015) and (iii)mask results of (e);

Table 1. RR, FAR, ER and RER results for the different methods.
GF-1 WFV imagery GF-1 PMS imagery ZY-3 imagery

Method
RR
(%)

FAR
(%)

ER
(%)

RER
(%)

RR
(%)

FAR
(%)

ER
(%)

RER
(%)

RR
(%)

FAR
(%)

ER
(%)

RER
(%)

Li et al. (2015) 81.77 87.39 36.23 2.26 84.59 55.65 22.13 3.82 82.18 67.56 15.54 5.29
Li et al. (2017) 95.42 96.48 66.91 1.43 - - - - - - - -
Our method 88.97 26.74 10.82 8.22 91.32 18.64 5.45 16.76 95.38 11.13 7.64 12.48
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where CN is the number of cloud pixels detected as non-cloud pixels, NC is the number
of non-cloud pixels detected as cloud pixels, and TN is the total number of pixels in the
input image. FAR is defined as follows:

FAR ¼ NC
GN

(18)

RER is defined as the ratio of RR to ER:

RER ¼ RR
ER

(19)

As shown in Figures 2 and Figure 3, SLIC is a good way to separate thick clouds from
other backgrounds, and extracting features in superpixels can greatly reduce the
amount of computation in the process. The Gabor texture energy characteristics
proposed in this paper can effectively suppress most backgrounds, such as oceans,
houses and forests, and the method accurately identifies the difference between thick
clouds and thin clouds. As shown in Table 1 result, this method (Li et al. 2015) has
a higher false positive rate because it only considers the luminance characteristics and
does not use multispectral features. For the second method of (Li et al. 2017), using
the program on its website and comparing it with the method in this paper, the test
using the GF-1 MFV database shows that, when a cloud is identified in a snow field, the
ER of the method of (Li et al. 2017) is very high; because the texture of the cloud has
high energy and combines the information of multispectral spectral segments, the
proposed method has a better recognition rate and a lower false positive rate of thick
cloud and thin cloud under complex background, and maintains the recognition
accuracy. Thus, the proposed method has a wide range of applicability. Because all
the parameters required by the method in this paper are not affected by the image
parameters, the method in this paper can be applied under various image parameters.
All cloud and ground object detection accuracies are high; however, small clouds are
not recognized well. Notably, ground object sub-blocks should not be treated as
clouds.

5. Conclusions

In general, obtaining satisfactory cloud-detection results for clouds is difficult when images
that include visible and near-infrared spectral bands are used. In this paper, a cloud-
detection method based on Least squares support vector machines (LS SVM) is proposed
that uses SLIC superpixel segmentation to detect thick and thin clouds in four common
spectral remote sensing images. The research results of this paper are as follows:

(1) By making full use of the spectral information of four common spectral segments
and 10-bit grey-level information, a cloud-detection method based on Gabor
texture energy features and spectral features is proposed that compensates for
insufficient spectral information for cloud detection in various sensor images.

(2) Themethod presented in this paper has generality at various resolutions. Themodel of
SVM training, recognition and feature parameters is not affected by sensor parameter
differences. Good cloud-detection results are obtained for multispectral images.
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(3) The method presented in this paper is promising; it behaves well under most
cover conditions, even if the images contain a snow-covered area or a high-
illumination background area. The proposed method achieves high precision
with limited spectral bands and fewer characteristics.
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