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Given that a single remote sensing image dehazing is an ill-posed problem, this is still a challenging task. In order to improve
the visibility of a single hazy remote sensing multispectral image, we developed a novel and effective algorithm based on a learning
framework. A linear regressionmodel with the relevant features of hazewas established. And the gradient descentmethod is applied
to the learning model.Then a hazy image accurate transmission map is obtained by learning the coefficients of the linear model. In
addition, we proposed amore effectivemethod to estimate the atmospheric light, which can restrain the influence of highlight areas
on the atmospheric light acquisition. Compared with the traditional haze removal methods, the experimental results demonstrate
that the proposed algorithm can achieve better visual effect and color fidelity. Both subjective evaluation and objective assessments
indicate that the proposed method achieves a better performance than the state-of-the-art methods.

1. Introduction

Remote sensing images are widely applied to various fields
because of its high spatial resolution and stable geometric
location [1–3].However, the process of remote sensing images
acquisition is vulnerable to the atmospheric conditions (e.g.,
hazy or foggy), resulting from the fact that light is absorbed
and scattered by the turbid medium such as particles and
water droplets in the atmosphere [4–6]. Consequently, the
technique of haze removal has received more attention in
improving the visibility of satellite imagery. Nevertheless,
how to achieve a single remote sensing image haze removal
is still a challenging task since the regions spoiled by haze
contain both ground features and haze components.

In the past decades, along with the development of
computer and computer vision, the investigations on haze
removal for satellite imagery have got some progresses.
Chavez et al. [7, 8] improved dark-object subtraction (DOS)
method to correct optical data for atmospheric scattering.
This method assumes that the reflectivity of the pixels is very
low, but, owing to the existence of haze, the number (DNs)
in these pixels is nonzero. Therefore, the values of the DNs
can be taken as the haze thickness. Then the DNs value is

subtracted from a hazy image to achieve haze removal. Based
on the researches by Chavez, Makarau et al. [9] searched
for dark objects locally in the whole image to construct
a haze thickness map (HTM). Therefore, subtracting the
HTM from a hazy image leads to haze removal. Zhang et
al. [10] proposed a haze optimized transformation (HOT)
algorithm, to achieve haze region removal based on analyzing
the features of visible-band space. But this method is not
suitable for bright surfaces. Ni et al. [11] developed a method
based on using linear intensity transformation (LIT) and
local property analysis (LPA). However, this method strongly
depends on the accurate estimation of LIT and LPA for haze
removal.

Recently, the processing of single hazy image has a sig-
nificant progress. Some methods based on polarization have
been developed. Schechner et al. [12] created a scene’s dis-
tancemap by utilizing the fact that one of the sources of image
degradation in haze is partially polarized. Wang et al. [13]
proposed a single image dehazing method based on adaptive
wavelet fusion, which could preserve the most discriminant
scene depth. Liu et al. [14] developed a polarization dehazing
method by processing the low spatial frequency parts and
the high spatial frequency parts separately. Regarding the
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Figure 1: The atmosphere scattering model for different weather conditions. (a) Sunny weather. (b) Hazy weather.

image fusion method, Li et al. [15] proposed a single image
dehazing approach based on a multiscale pyramid fusion
scheme. In addition, with the development of deep learning,
some researchers employed convolutional neural networks
for single hazy image processing. Ren et al. [16] created a
multiscale convolutional neural network model to learn the
transmission map. After that, Li et al. [17] present a truly
end-to-end network, combining the transmission map with
the atmospheric light to produce the results. Nevertheless,
these methods are complex and time consuming. Tang et al.
[18] analyzed four types of haze relevant features and utilized
Random Forests to learn the transmission map. Jiang et al.
[19] proposed a method for gray-scale image dehazing, but
it was not suitable for inhomogeneous scenes. Gu et al. [20]
developed a dehazing method based on average saturation
prior, which improved the atmospheric scattering model to
cope with the inhomogeneous atmospheric light.

Some single image dehazing methods based on the
physical model also have been promoted. Tan et al. [21] firstly
proposed a single image dehazing method by maximizing
the local contrast of the image. Although Tan’s approach is
able to produce color over saturation with images with dense
haze, Fattal et al. [22] removed the haze from color images
based on Independent Component Analysis (ICA), but the
approach is not suitable for the gray scale image haze removal.
He et al. [23] summarized a rule that was called dark channel
prior (DCP) based on observing the statistical characteristics
pertaining to a large number of hazy free images. Then the
real scene radiance is recovered based on DCP. Among the
abovemethods,He’smethod is simple and effective.However,
the DCPmethod is based on the statistics of the outdoor hazy
images, while remote sensing images have a different imaging
distance with the outdoor images. As a result, the color drift
is easily caused when applied to the remote sensing image.

In this paper, we proposed a novel haze removal method
for single remote sensing images. By analyzing the haze
relevant features (including luminance component, satura-
tion component, and saliency component), we have estab-
lished a linear regression model with multiple variables. The

correlation between the hazy image and its corresponding
transmissionmap is detected effectively based on learning the
coefficients of the linear model. In addition, the atmospheric
light was estimated by an improved method, which can
reduce the influence of highlight areas on the atmospheric
light acquisition. With the recovered transmission informa-
tion and the estimation of the atmospheric light, the haze-free
image can be recovered. Compared with the traditional haze
removal technology on remote sensing images, the algorithm
can achieve better results.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the details of our method, including physical
hazy image degradation model, atmospheric light estimation,
and linear regression model training. The experimental
results are listed in Section 3; we present both subjective
evaluation and objective assessments. Finally, conclusion is
present in Section 4

2. Proposed Method

2.1. The Physical Hazy Image Degradation Model. Nayer
and Narasimhan [24, 25] have a detailed description and
derivation of the atmospheric scattering model, as shown
in Figure 1, and the model is widely referenced by later
researchers.They divide the influence of the light reflected by
the atmosphere into two parts: direct attenuation and veiling
light. The formation of a hazy image can be described as

I (𝑥) = J (𝑥) 𝑡 (𝑥) + A (1 − 𝑡 (𝑥)) (1)
where 𝑥 represents the position of the pixel in the image, I(𝑥)
is the observed hazy image, J(𝑥) is the scene radiance,A is the
global atmospheric light usually assumed to be constant, and
𝑡(𝑥) is the medium transmission, which describes the radio
of the light that is not scattered and gets to the camera. The
medium transmission can be expressed as

𝑡 (𝑥) = 𝑒𝛽𝑑(𝑥) (2)
where d(x) is the scene depth and 𝛽 is the scattering
coefficient of the atmosphere. The goal of dehazing is to
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estimate the (𝑥); we can obtain the real scene J(𝑥) since we
have an estimate of A and 𝑡(𝑥) by

J (𝑥) = I (𝑥) − A
𝑡 (𝑥)

+ A (3)

2.2. Estimation of the Atmospheric Light. Most of the haze
removal algorithms are based on the pixels associated with
a single image to obtain an estimation of the atmospheric
light. When the step of remote sensing image acquisition is
under the condition of hazy weather, we commonly ignore
the influence of sunlight. Tan et al. [21] utilized the maximum
value of the pixels in the hazy image as estimation of atmo-
spheric light, while the maximum values of the luminance
component may belong to the highlighted object regions. In
He’s work [23], the top 0.1% pixels in dark channel are taken
as the atmospheric light. Although thismethod is robust, only
taking one point into account may cause that the A value of
each channel is too high to lead to color drift. Conventional
ways tend to be hard to achieve a satisfactory result when the
highlight areas exist in image.

Based on the work of He and others, we developed a
method that can reduce the influence of highlight areas on
the atmospheric light acquisition. First of all, it is required
to take the minimum channel map of the degraded remote
sensing images. The minimum channel map is calculated as

𝑀(𝑥) = min
𝑐𝜖(𝑟,𝑔,𝑏)

(I𝑐 (𝑥)) (4)

Based on the weighted quad-tree search method [23], the
minimum channel map of the hazy image is divided into four
average areas by location and then the score of each region is
obtained:

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑀𝑖 − 𝛿2𝑖 , 𝑖 = 1, 2, 3, 4 (5)

where 𝑖 is the index of each region, 𝑠𝑐𝑜𝑟𝑒𝑖 is the score of
region 𝑖, 𝑀𝑖 represents the mean value of the region 𝑖, and
𝛿2𝑖 represents variance in the region 𝑖. Then take the region
with the highest score as the candidate iterative region, and
it is further divided into four smaller regions. This process
continues to iterate until the size of the candidate region is
smaller than the preset size threshold. The average of each
channel in the last candidate region is selected as the result
of A.

2.3. Transmission Estimation. According to eq. (1), we can
recover the real scene if we have acquired the estimation of
atmospheric light and the transmission map. Thick haze can
cause high brightness, flatness, and unsaturation in the image.
We developed a linear regression model to estimate the haze
concentration based on investigating various haze relevant
features. Saliency represents which regions stand out from
the neighbors and are the most attractive [26]. Due to the
influence of haze, a large amount of information (color, edge,
etc.) in the image is damaged, and the saliency of the target
is also greatly affected. So the luminance component I𝐿, the
saliency component S𝑎, and the saturation component I𝑠 have

a strong relationship with the distribution of haze [15, 26, 27].
The concentration of haze F(x, y) is described as follows:

𝐹 (𝑥, 𝑦) = 𝜃0 + 𝜃1𝐼𝐿 (𝑥, 𝑦) + 𝜃2𝐼𝑠 (𝑥, 𝑦) + 𝜃3𝑆𝑎 (𝑥, 𝑦) (6)

where 𝜃𝑖, i ∈ (0, 1, 2, 3), represents the nonnegative coeffi-
cients of the linear regression model with multiple variables
in eq. (6). As a result of transmission is inversely proportional
to the haze density, a linear model between transmission and
the haze concentration feature was developed as follows:

𝑡 (𝑥, 𝑦) = 1 − 𝛽𝐹 (𝑥, 𝑦) (7)

where 𝛽 is a nonnegative coefficient; for computational and
description convenience, we rewrite Eq. (6) as

𝐹𝜃 (𝑋) = 𝜃0𝑋0 + 𝜃1𝑋1 + 𝜃2𝑋2 + 𝜃3𝑋3 (8)

where 𝑋0 = 1, 𝑋1 = 𝐼𝐿(𝑥, 𝑦), 𝑋2 = 𝐼𝑠(𝑥, 𝑦), 𝑋3=𝑆𝑎(𝑥, 𝑦).
The gradient descent method is applied to learn 𝜃𝑖 and a cost
function 𝐽(𝜃𝑖), which is the sum of squares of all modeling
errors; the cost function can be described as

𝐽 (𝜃) = 1
2𝑚

𝑚

∑
𝑖=1

(𝐹𝜃 (𝑋
𝑖) − 𝑦𝑖)

2
(9)

where m represents the total number of training samples
and 𝑦𝑖 indicates the actual value of the sample. Then, by
minimizing the cost function, we can obtain the series of coef-
ficients. At the beginning, we randomly select a combination
of parameters (𝜃0, 𝜃1, 𝜃2, 𝜃3) to calculate the cost function.
Thenwe traced the next combination of parameters to ensure
that the value is reduced at the most rapid rate. Continue
to do the above steps until the cost function reaches a local
minimum.The derivative of the cost function is calculated as
follows:

𝜕
𝜕𝜃𝑗

𝐽 (𝜃) = 𝜕
𝜕𝜃𝑗

− 1
2𝑚

𝑚

∑
𝑖=1

(𝐹𝜃 (𝑋
𝑖) − 𝑦𝑖)

2
(10)

And according to the gradient descent algorithm we have

𝜃𝑗 fl 𝜃𝑗 − 𝛼 𝜕
𝜕𝜃𝑗

𝐽 (𝜃) (11)

In the gradient descent algorithm, 𝜃 is updated during gradi-
ent descent. Then we can acquire the following expression:

𝜃0 fl 𝜃0 − 𝛼 1
𝑚

𝑚

∑
𝑖=1

(𝐹𝜃 (𝑋
𝑖) − 𝑦𝑖) (12)

𝜃1 fl 𝜃1 − 𝛼 1
𝑚

𝑚

∑
𝑖=1

𝐹𝜃 ((𝑋
𝑖) − 𝑦𝑖)𝑋(𝑖)1 (13)

𝜃2 fl 𝜃2 − 𝛼 1
𝑚

𝑚

∑
𝑖=1

𝐹𝜃 ((𝑋
𝑖) − 𝑦𝑖)𝑋(𝑖)2 (14)

𝜃3 fl 𝜃3 − 𝛼 1
𝑚

𝑚

∑
𝑖=1

𝐹𝜃 ((𝑋
𝑖) − 𝑦𝑖)𝑋(𝑖)3 (15)
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(a) Haze-free images (b) Random depth map (c) Artificial hazy images

Figure 2:The procedure of building training samples.

where the notation fl represents setting the value 𝜃𝑗 in the
left side of the equation to be the value of the right side
and 𝛼 is the learning rate, which determines the efficiency of
the gradient descent algorithm. If learning rate is too small,
we would need a large number of steps to reach the global
minimum.Conversely, the cost function is unable to converge
when learning rate is too large.Thus, it is significant to choose
the right learning rate, and the calculation of the learning rate
is shown as follows:

𝛼 = 𝛼𝑆 ∗ 𝛼𝐷
(𝑔𝑙𝑜𝑏𝑎𝑙−𝑠𝑡𝑒𝑝)/(𝑑𝑒𝑐𝑎𝑦−𝑠𝑡𝑒𝑝) (16)

where 𝛼𝑆 is initial learning rate, 𝛼𝐷 indicates the attenuation
rate of each round of learning, 𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑠𝑡𝑒𝑝 represents the
current number of learning steps which is equivalent to how
many times we put batch into the learner, and 𝑑𝑒𝑐𝑎𝑦 − 𝑠𝑡𝑒𝑝 is
the number of steps per round of learning which is equal to
the total number of samples divided by the size of each batch.

2.4. Training Data Preparation. In order to learn the coef-
ficients in eq. (6) accurately, we prepared the training data
based on the method proposed by Tang et al. [18]. Tang
assumed that the image content is independent of scene depth
or media transmission, and depth is locally constant. We
illustrated the procedure of generating the training data in
Figure 2. At first, we generated a random depth map with
equal size for each unblemished image, and the pixel values
in the synthetic depth map were extracted from the standard
uniform distribution in the open interval (0, 1). Then we
generated random atmospheric light A (m, m, m), where m
is between 0.8 and 1. Finally, according to equation (1) and
equation (2), we can obtain the hazy image I by utilizing
the random depth map d and the random atmospheric light
A. For transmission to be revealed better, we randomly
collect 600 haze-free remote sensing images from the Google
Earth for generating the training data. The procedure of
preparing training samples is shown in Figure 2. The best
learning result is that 𝜃0= 0.1217, 𝜃1= 0.9571, 𝜃2= 0.7806,
𝜃3= -0.54138, 𝛽= 0.82178. Due to the fact that acquisition
of these coefficients is based on the statistical characteristics
of the training data, these coefficients ultimately represent
the common characteristics of remote sensing hazy images.
Through a large number of experiments on the real remote
sensing hazy images, we found that these coefficients can be

applied for a single remote sensing image to achieve thin
haze removal and obtained good results. And we will give a
discussion of the experiments in Section 3.

2.5. Scene Radiance Restoration. Since the transmission map
and the atmospheric lightwere known, the scene radiance can
be recovered according to (1). However, the direct attenuation
term J(𝑥)𝑡(𝑥) can be very close to zero when the transmission
𝑡(𝑥) is close to zero. That will bring a lot of noise. Inspired by
Zhu et al.’s method [27], we restrict the transmission to an
extent. Thus, the scene radiance restoration can be expressed
as

J (𝑥) = I (𝑥) − A
min {max {𝑡 (𝑥) , 0.1} , 0.9}

+ A (17)

3. Experiments and Evaluation

In this section, in order to verify the effectiveness of the
method, multiple hazy visible images of several satellites data
were tested. The performance of the proposed method is
compared withDCP [23],HOT [10], Qin et al.’s [3], Liu et al.’s
[4], and Multiscale Retinex [28] methods both qualitatively
and quantitatively. All the experiments are carried out on
the MatlabR2014a environment with a 2.5GHz PC and 4GB
RAM.

3.1. Subjective andComparative Evaluation. Thetransmission
map results are compared between He’s original dark channel
prior [23] results and our algorithm, as shown in Figure 3.
As we can see, the transmission map obtained in this paper
can capture sharp edge discontinuity points and outline the
outline of the object, and halo and block artifacts have been
effectively suppressed.

As shown in Figure 4, these hazy images data are collected
from Google Earth and NASA Earth Observatory website.
Figure 4(a) represents the input hazy images with uniform
haze. Figure 4(b) represents the results of Multiscale Retinex
method, which can achieve the effect of haze removal. But
when the original image does not satisfy the gray-scale
assumption, it will lead to color distortion. Figure 4(c)
is the DCP method results; constrained by the inherent
problem of dark channel priors, He’s algorithm cannot be
applied to regions where brightness is similar to atmospheric
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(a)

(b)

Figure 3: The transmission map comparisons. (a) DCP method results. (b) Our results.

(a) (b) (c) (d) (e) (f) (g)

Figure 4: Qualitative comparison of differentmethods in processing imageswith uniformhaze. (a)Thehazy images. (b)MSRmethod results.
(c) DCP method results. (d) HOT method results. (e) Qin’s method results. (f) Liu’s method results. (g) Our results.
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(a) (b) (c) (d) (e) (f) (g)

Figure 5: Qualitative comparison of different methods in processing images with uneven haze. (a)The hazy images. (b) MSRmethod results.
(c) DCP method results. (d) HOT method results. (e) Qin’s method results. (f) Liu’s method results. (g) Our results.

light. Therefore, the DCP method is often unreliable when
dealing with nonhomogeneous images. Figure 4(d) is the
HOT method results; most of hazes have been removed, but
the recovered image has a slight color distortion, and the
resolution of the image will be lower than that of the original
image. By observing the images in Figures 4(e) and 4(f), we
can find that the results of Qin’s [3] and Liu’s [4] are blurred,
along with color distortion. Figure 4(g) is our method results;
as can be seen, the mist is effectively removed and the color
fidelity is preserved well. What is more is that our method
achieves a better visual effect.

Figure 5 shows the comparison of dehazing results with
the five state-of-the-art dehazing techniques [3, 4, 10, 23, 28]
on remote sensing images with uneven haze distribution.
To evaluate the availability of this method in dealing with
uneven distribution haze, several representative images were
selected. Compared with the results of Qin’s [3] and Liu’s
[4], our method achieves better results in removing haze.
Similarly, as can be seen fromFigures 5(b) and 5(d),MSR [28]
results and HOT [10] results have a common phenomenon
of color distortion. Figure 5(c) shows He’s [23] results; the
visual effect of the hazy images has been improved, but the
color shift phenomenon still exists in the region with white
objects. Furthermore, as shown in Figure 5(g), our algorithm
has better performance in terms of haze removal ability, the
overall contrast, and color fidelity. Nevertheless, our method
is not suitable for thick haze removing.

3.2. Objective and Comparative Evaluation. In order to
objectively evaluate the algorithms, we select some classical
evaluation indexes, including mean squared error (MSE),
the ratio of new visible edges (e), the gain of visibility level
r, the structural similarity (SSIM), the peak signal to noise
ratio (PSNR), and the fog aware density evaluator (FADE).
The MSE value can be utilized as a more convenient way to
evaluate the degree of data variation [29]; a high value of
MSE indicates that the haze removal algorithm is not effective
while a low value of MSE represents that the recovered image

is valuable.The value of e evaluates the ability of haze removal
method to recover the edges which are not visible in a hazy
image. The value of r represents the average ratio of gradient
specifications before and after dehazing [30]. The high SSIM
value indicates that the haze removal image is highly similar
to the real image on the ground [27]. PSNR is calculated
based on the error of the corresponding pixels, and the larger
PSNR value indicates the slighter distortion [31]. Fog Aware
Density Evaluator [32] (FADE) is a contrast descriptor which
indicates the visibility of a foggy scene through measuring
the statistical regularity deviation of hazy images and haze-
free images. A low value of FADE implies better performance
of visibility enhancement. The values of MSE, SSIM, PSNR,
e, r, and FADE are listed in Table 1. Four images belonging
to Figures 4 and 5 are selected for illustration. To sum up,
our method achieves better results of MSE, FADE, e, SSIM,
PSNR, and r.Therefore, the results of these experimental data
indicate that our algorithm achieves better performance on
contrast enhancement, visible edge enhancement, and haze
removal.

When the linear coefficients are obtained, we display the
time consumption comparison with DCP [23], HOT [10],
Qin et al.’s [3], Liu et al.’s [4], and Multiscale Retinex [28]
methods. As shown in Table 2, our research is faster than
others.

4. Conclusion

In this paper, a novel and effective dehazing algorithm
was developed to achieve single remote sensing image haze
removal. A linear regression model with multiple variables is
established and the gradient descent method is applied to the
coefficients of the linear model. Then a hazy image accurate
transmission map is obtained. In addition, we proposed a
more valid method to estimate the atmospheric light, which
can restrain the influence of highlight areas. Compared with
the traditional methods, the experimental results demon-
strate that the developed algorithm has a good performance
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Table 1: The corresponding values of MSE, SSIM, PSNR, e, r, and FADE.

Image SSIM e r FADE PSNR MSE

Original images

0.717 2.517 2.265 0.368 20.15 3.854
0.695 0.668 2.168 0.706 16.26 4.126
0.653 1.654 2.463 0.856 18.34 5.021
0.732 1.786 1.952 0.757 24.32 3.908

MSRCR method

0.754 2.806 1.971 0.269 22.31 3.785
0.732 0.927 1.932 0.472 19.32 4.103
0.812 1.781 1.685 0.863 20.08 3.953
0.795 1.953 1.613 0.617 26.62 3.784

HOT method

0.763 2.763 1.646 0.341 18.31 2.357
0.742 0.715 2.235 0.620 15.32 2.132
0.769 1.793 2.361 0.831 16.08 3.416
0.746 1.851 1.859 0.624 17.62 2.317

DCP method

0.712 2.782 1.836 0.316 21.53 2.365
0.746 0.757 1.757 0.608 19.56 2.143
0.812 1.463 2.307 0.741 18.49 3.446
0.795 1.673 2.135 0.738 25.43 2.512

Qin’s method

0.723 2.402 2.158 0.377 23.13 3.613
0.734 0.745 2.034 0.712 18.31 3.815
0.681 1.593 2.207 0.796 19.43 4.236
0.762 1.810 1.604 0.763 24.69 3.752

Liu’s method

0.743 2.532 2.242 0.330 21.26 2.854
0.754 0.716 2.093 0.691 17.57 3.867
0.703 1.803 2.283 0.637 18.96 4.351
0.764 1.931 1.759 0.743 23.71 3.648

Ours

0.787 2.794 1.825 0.313 25.13 2.244
0.795 0.783 1.792 0.496 21.41 2.032
0.823 1.869 1.785 0.756 24.36 3.132
0.812 2.103 1.654 0.761 27.28 2.137

Table 2: Time consumption comparison with DCP [23], HOT [10], Qin et al.’s [3], Liu et al.’s [4], and Multiscale Retinex [28] methods.

Image resolution MSRCR method DCP method HOTmethod Qin’s method Liu’s method Ours
512×512 9.75s 9.69s 9.31s 9.45s 8.65s 5.42s
1080×720 23.83s 19.36s 20.35s 19.65s 18.56s 9.85s
1280×1080 31.42s 28.67s 32.38s 23.56s 26.78s 14.67s

in thin haze removal and color fidelity remaining. Both
subjective evaluation and objective assessments indicate that
the proposed method can recover a haze-free remote sensing
image with good visual effect and high quality. Further-
more, our future research will turn to the removal of thick
haze.
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