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Abstract: Experiments and thermal modeling of indium tin oxide transparent conductive thin 
film and polyimide alignment thin film coated on fused silica substrates damaged with a 1064 
nm high-repetition-rate laser are described. High-repetition-rate laser irradiation results in 
damaged morphologies of the bulge at low laser power density and formation of a pit in the 
center of the bulge at higher laser power density. The damage process that is consistent with 
the observations as a function of laser power density and irradiation time is related to thermal 
effect. Simulation of the temperature-rise by exposure to high-repetition-rate laser describes 
the thermal effect with different pulse oscillation. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Mechanical systems like gimbaled mirrors mostly accomplish optical beam steering and 
pointing in optical systems, but they suffer from the disadvantages of being large, heavy, and 
complex. Therefore, liquid crystal (LC) based electro optical beam steering components with 
a potential to replace traditional mechanical counterparts are emerging for application in 
various fields such as free-space optical communication [1, 2], remote sensing, optoelectronic 
countermeasure [3–6], and laser-based imaging system and so on [7–11]. The LC optical 
device mainly consists of glass substrate (SUB), indium tin oxide (ITO) transparent 
conductive layer, polyimide (PI) alignment layer, and LC layer. Laser induced damage 
processes of the different components of an LC optical device such as ITO film [12–15] and 
PI film [16–18] have been investigated, but mostly under the irradiation of single-pulse and 
multiple-pulse laser. With potential applications of LC optical devices in high power laser 
system, its damage process with high-repetition-rate laser should be researched. However, 
performance of the devices under the irradiation of high-repetition-rate laser, which is of 
significant use in optical beam steering systems, has been rarely focused on; hence, it is of 
paramount importance to study the interlayer coupling effect of LC optical devices under 
high-repetition-rate laser. 
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direction that is perpendicular to the surface and its intensity distribution at the surface is as 
follows. 

 2 2
0 0( , ) [2 ( ) / ( )]exp[ 2( / ) ]I r t P t r r rπ= −  (1) 

where 0r  is the 1/e2 times the radius of the Gaussian laser beam source, ( )P t  is the deposited 

time-dependent laser power given by the following: 
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where 0P  is the peak power of each pulse, τ  is the pulse width of square pulse, f  is the 

pulse repetition rate, and N  is all the number of pulses within irradiation time in one laser 
spot area. The temperature field of the sample as a function of time t, radial position from the 
center of the beam r, and vertical depth into the sample z satisfied the heat conduction 
equation given below [24]. 

 2 2 2 2( / ) ( , , ) ( / ) ( , , ) ( / ) ( , , )i
i i i

k
C t T r z t r T r z t k z T r z t Q

r
ρ ∂ ∂ ∂ ∂ ∂ ∂= + +  (3) 

where 1,2,3i = , stand for the parameters of PI film, ITO film, and fused silica substrate, 

respectively, and iρ , iC , and ik  stand for the density, specific heat, and thermal conductivity 

of materials, respectively, ( , , )T r z t  is the temperature field depending on r, z, and t, and Q  is 

the surface heat source given by the equation below. 

 ( , )(1 )Q I r t Rα= −  (4) 

where α  is the laser absorption coefficient for 1064 nm laser and R  is the reflectivity. 
To simplify the temperature-rise modeling, the data used for this sample neglected any 

temperature dependence of these thermo-optical parameters. Heat transfer boundary 
conditions for laser heating problems typically include evaporative cooling, radiation, and 
surface convection [25], but radiative and evaporative cooling from the surface can be shown 
to be negligible [26, 27]. Considering the thickness of the substrate is much larger than that of 
ITO layer and PI layer, Dirichlet boundary condition was imposed only along the film surface 
and all the other mechanical boundaries were treated as air convection; these were expressed 
as follows. 
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 0( , , 0)T r z t T= =  (8) 

where γ  is the surface heat interchange coefficient, h is the thickness of the sample, and 0T  is 

the initial surface temperature. Material properties were taken from the data provided by the 
vendor or data used in previous calculations, and are tabulated in Table 1. 
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The details about bulge and pit on the surface of the sample could not be observed by 
scanning electron microscope (SEM) and optical microscope. In order to reveal the damage 
details as much as possible, we remove the damaged PI/ITO films from the surface of the 
sample by tweezers and then comparing compare the damage of the substrate in 
corresponding areas. As shown in Fig. 6, no damage was found in the substrate in the 
corresponding damaged regions, which demonstrated that the bulge and pit of the damage 
were within the PI/ITO films rather than the substrate, and the damage was related to the 
PI/ITO films. The circular profile on the surface of substrate as shown in Fig. 6(b) is a trace 
left after removal of the PI/ITO films. 

Fig. 7. 
Radial temperature distribution in 30 s under 3000 W/cm2 laser irradiation in one spot area, (a) 
is the curve of temperature changing over time at several points in the radial direction, (b) is 
the distribution of several points in the radial direction and the black curve is the Gaussian 
distribution of the laser beam along the x direction. 

The effects of temperature-rise in the sample under high-repetition-rate laser irradiation 
on the formation of bulge and pit were analyzed. Surface temperature of the sample rose 
sharply to its maximum value within about 2 s and was basically stable after about 30 s (data 
not shown). In this case, we only simulated temperature-rise of sample within first 30 s. The 
simulation results of radial temperature distribution in 30 s under 3000 W/cm2 (near LIDT) 
laser irradiation are depicted in Fig. 7. The figure shows the temperature-rise at four different 
locations on the surface of the sample. Line A in Fig. 7(a) indicates the temperature-rise at the 
center of the laser spot. Lines B, C, and D indicate the temperatures at the point B, C, and D, 
respectively in Fig. 7. The black curve is the Gaussian distribution of the laser beam along the 
x direction, the center of the beam corresponds to the center of sample. As is seen from Fig. 
7(a), the temperature of the surface rises rapidly in first 2 s, and eventually stabilizes within 
20 s. The maximum temperature of the irradiated center of the surface was ~950 K, which 
was far from the melting temperature of the material (about 1900 K for ITO) [28]. For the 
region within ~0.1 mm radius, the temperature distinction was between 950 K and 850 K, at 
which the damage would just occur. For regions beyond 0.1 mm radius, the temperature 
decreased rapidly, and the temperature at a distance of 0.3 mm from center had reduced to 
about 500 K, at which the damage would not occur. Furthermore, thermosetting PI was 
known for thermal stability, good chemical resistance, and excellent mechanical properties, 
and exhibited very low creep and high tensile strength [29]. These properties were retained at 
temperatures as high as 673 K, but the higher irradiation laser power density resulted in 
thermally induced degradation when the surface temperature exceeded 923 K [27, 30], which 
probably resulted in material thermal deformation that manifested itself as a bulge in the 
surface. This should be the main reason for the damage diameter to be within ~0.1 mm under 
laser irradiation near damage threshold, as shown in Fig. 5(a). 
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Fig. 8. (a) Temperature distribution along radial direction under a series of laser power density 
irradiations within 30 s. (b) Diameter of the damaged zones in PI/ITO/SUB sample as a 
function of irradiation power density exposure at 10 kHz. 

Figure 8 shows the temperature distribution along the radial direction under a series of 
laser power density irradiations within 30 s and diameter of the damage zones as a function of 
irradiation power density. The surface temperature distribution in Fig. 8(a) is nearly a 
Gaussian distribution due to the Gaussian beam profile. The damage diameter in the 
simulation is defined as the area in which the temperature has risen above the thermal 
degradation temperature of PI film (923 K). Then the damage diameter in the simulation has 
been compared to the damage diameter in the experimental, as shown in Fig. 8(b). The black 
square points represent the result of simulated damage diameter, and the red round points 
represent the result of measured damage diameter. The comparison between simulation 
results and experimental results in Fig. 8(b) indicate that the area with temperature higher 
than 923K and the bulge area are comparable. 

 

Fig. 9. Vertical temperature distribution in first 30 s under 3000 W/cm2 laser irradiation, (a) is 
the curve of temperature changing over time at several points in the vertical direction, (b) is the 
distribution of several points in the vertical direction. 

The vertical temperature distribution in first 30 s under 3000 W/cm2 laser irradiation is 
depicted in Fig. 9(a), which illustrates the temperature-rise at five different locations along 
the z-direction. Line A in Fig. 9(a) indicates the temperature-rise at the center of the surface. 
Lines H, I, J, and K indicate temperatures at points 80 nm, 80 nm + 25 nm, 80 nm + 25 nm + 
0.75 mm, 80 nm + 25 nm + 0.75 mm + 1.5 mm away from point A, respectively; these points 
are shown in Fig. 9(b). The highest temperature at all the three points A, H, and I was about 
950 K; the temperature curves of H and I are nearly indistinguishable suggesting that the 
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Fig. 11. (a) The relationship between the damage probability and irradiation power density in a 
range of irradiation times with a 10 kHz repetition rate laser. (b) The LIDT versus irradiation 
time. 

The result of 1-on-1 test performed on the PI/ITO/SUB sample with 10 kHz repetition rate 
is depicted in Fig. 11. It suggests that the LIDT of this sample decreased with increasing 
irradiation time, which confirmed the influence of the thermal accumulation effect under 
high-repetition-rate laser irradiation. 

 

Fig. 12. The temperature-rise in case of (a) 10 pulses and (b) 20 pulses with a 10 kHz 
repetition rate laser irradiation. 

The cumulative heating effect from a pulse train is illustrated with the simulation of 
temperature, and the temperature-rises when 10 and 20 pulses are applied at 10 kHz and 3000 
W/cm2 are shown in Fig. 12. There was a minute cumulative heating and the peak 
temperature-rise reached 299.9 K by the 10th pulse and 300.1 K by the 20th pulse. It 
suggested that the temperature-rise of the sample accumulates with the increase in the number 
of pulses, and in this case, the temperature was projected to about 690 K within 2 s (time of 
dramatic temperature-rise), which was insufficient to cause damage. When irradiated for 
longer than 2 s, the temperature-rise accumulated by laser irradiation was too small to reach 
the temperature than can produce damage. 

5. Conclusions 

We described experiments and thermal modeling of the damage of PI/ITO/SUB sample using 
the fundamental 1064 nm high-repetition-rate laser. Micron-scale-size bulge and pit features 
in this sample were observed by using optical profiler, and the morphologies were associated 
with laser power density and irradiation time closely. Size of the damage increased steadily to 
a certain value with increasing laser power density and irradiation time, but it did not 
degenerate into the features of thermal degradation such as melting and evaporation because 
of the low temperature-rise. It was found that the LIDT of this sample was related to the 
irradiation time, as it decreased with increasing irradiation time for the same pulse duration 
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and irradiation power of single-pulse. Simulation of the temperature-rise by exposure to high-
repetition-rate laser helped describe the cumulative heating effect. 
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