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a b s t r a c t 

Various factors such as identity-specific attributes, pose, illumination and expression affect the appear- 

ance of face images. Disentangling the identity-specific factors is potentially beneficial for facial expres- 

sion recognition (FER). Existing image-based FER systems either use hand-crafted or learned features 

to represent a single face image. In this paper, we propose a novel FER framework, named identity- 

disentangled facial expression recognition machine (IDFERM), in which we untangle the identity from a 

query sample by exploiting its difference from its references ( e.g ., its mined or generated frontal and 

neutral normalized faces). We demonstrate a possible ‘recognition via generation’ scheme which consists 

of a novel hard negative generation (HNG) network and a generalized radial metric learning (RML) net- 

work. For FER, generated normalized faces are used as hard negative samples for metric learning. The 

difficulty of threshold validation and anchor selection are alleviated in RML and its distance comparisons 

are fewer than those of traditional deep metric learning methods. The expression representations of RML 

achieve superior performance on the CK + , MMI and Oulu-CASIA datasets, given a single query image for 

testing. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Facial expression is the most natural and expressive nonverbal

hannel for humans to communicate their emotions [1] . Therefore,

acial expression recognition (FER) has been an important and ac-

ive topic for a wide range of applications including soft biomet-

ics, digital entertainment, health care, robot systems and human-

omputer interaction (HCI). Ekman and Friesen postulated the uni-

ersality of neutral (Ne) and six prototypical human facial expres-

ions, namely, anger (An), disgust (Di), fear (Fe), happiness (Ha),

adness (Sa) and surprise (Su) [2] . 

The performances of the FER systems usually depend heavily on

acial expression representations, which are affected by pose and

llumination variations as well as facial morphology variations (i.e. ,

dentity-specific factors). As some facial expressions involve subtle

acial muscle movements, the extracted expression-related infor-

ation from different classes (in this paper, class refers to expres-

ion) can be overwhelmed by high-contrast identity-specific geo-
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etric or appearance features degrading FER performance. As il-

ustrated schematically in Fig. 1 , we want the intra-class distances

f happy face images from different people to be smaller than the

nter-class distances between face images of different expressions

rom the same subject. However, the nuisance identity factors of-

en dominate the representation of the image in pixel space caus-

ng two images of the same subject with different expressions to

e closer to each other than the same-expression images from two

ifferent subjects. This is because the extracted facial representa-

ion often contains identity-specific information that is irrelevant

nd may be counter-productive for the FER task. These identity-

pecific factors may degrade the FER performance on new identi-

ies unseen in the training data. 

Aided by the advances in deep learning for computer vision [3] ,

uch progress has been made on extracting a set of features to

epresent a single facial expression image [4-5] . The hand-crafted

eatures are constructed by exploiting domain knowledge of the

pecific relationships within pixels so that the features are invari-

nt to some simple transformations ( e.g ., translation and scaling).

ore recently, feature-learning approaches are being investigated

ecause of their ability to produce features that are tolerant to

omplex transformations. In the case of FER, identity-associated
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Fig. 1. Illustration of the desired representations in the Face Expression Recognition 

(FER) feature space. The “class” here refers to the facial expression. 

Fig. 2. A schematic depicting the 6 basic facial expressions and their relationships 

to the neutral face. Representations in the outer ring correspond to higher-intensity 

facial expressions compared to those in the inner ring. 
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Oulu-CASIA data sets. 
factors may fall into this category. Yet, unfortunately, due to the

tight coupling of the various nuisance factors, when we try to re-

duce the sensitivity to identity with these state-of-the-art strate-

gies, we are unlikely to satisfactorily disentangle all variations in

facial morphology. 

Our preliminary work [6,7] proposed to improve the facial ex-

pression recognition performance by disentangling the identity fac-

tors in a face image through the metric learning method. To alle-

viate the slow convergence caused by trivial training samples in

metric learning, [6] compared the query image to a negative set

containing other facial expression images from the same subject

as shown in Fig. 3 . However, in practice, the structure of real-

world FER datasets results in a significant constraint: the dataset

may not contain images of every facial expression for every sub-

ject. Actually, we may not need to compare a query facial expres-

sion with any other class of facial expressions. According to some

psychology and anatomy research [8] , the muscle activities of dif-

ferent facial expressions initiate from the neutral face as illustrated

schematically in Fig. 2 . This is also the fundamental principle un-

derlying the action units (AUs) and Facial Action Coding System

(FACS) proposed by Ekman [2] . Since the expressive classes are nat-

urally more discriminative from each other than from the neutral

face, in the training stage, we may want to emphasize the neutral-

expressive distance more than requiring large distance between

those expressive classes. The neutral face images can be the ideal

hard samples which can improve the learning efficiency of met-

ric learning. However, expressive-neutral face image pairs of every
erson may not be always available in real world applications and

n some FER image datasets. 

The above insights suggest that we should generate the frontal

nd neutral normalized face image of the query image and disen-

angle the possibly counter-productive identity information and we

roposed identity-disentangled facial expression recognition machine

IDFERM) towards this goal. IDFERM consists of two main parts,

amely, the hard negative generation (HNG) network and the ra-

ial metric learning (RML) network. Specifically, given a query fa-

ial expression image, its normalized reference will be synthesized

sing an HNG network trained using expression-normalize face

mage pairs of the same subject. Then, the query-reference pairs

re fed into the radial metric learning (RML) network, which uses

n inception style convolutional (Conv) layers group and a unified

wo-branch fully connected (FC) layers framework to extract the

ontrast of query-reference pair by simultaneously optimizing the

oftmax loss and RML loss. By pushing the representation of fa-

ial expression images away from their generative references and

ulling them close to their cluster centers of each expression, the

ML can disentangle those nuisance factors to balance the intra-

nd inter- class variations. 

Unlike other image-based FER systems that produce a repre-

entation from a single input image, RML utilizes the expression-

eference pair to disentangle the identity-specific factors. In con-

rast to video-based FER methods [9,10] or real facial expression

mage pair-based methods [6,7,11] , our method employs syntheti-

ally generated references to address the real-world limitation that

ometimes the dataset does not contain all possible facial expres-

ion examples for some subjects. 

The preliminary versions of the concepts in this paper were

ublished in the 2017 Biometrics workshop of IEEE Conference on

omputer Vision and Pattern Recognition [6] and 2018 IEEE Interna-

ional Conference on Identity, Security and Behavior Analysis [7] . In

his paper, we extend those basic concepts in the following ways: 

1) We investigate the prior relationship of different expression

classes and propose a novel recognition via generation scheme

as a possible substitution of conventional hard sample mining. 

2) We design an end-to-end IDFERM to extract identity-

disentangled representations for FER without requiring real

expression-neutral pair inputs in the FER datasets. 

3) The number of needed distance comparisons for adapted RML

is orders of magnitude smaller than the number needed for

conventional metric learning approach. 

4) We conduct all experiments using the new architecture and test

on more datasets without neutral expression samples. 

In summary, this paper makes the following contributions. 

• We propose a generalized metric learning loss function with

adaptively learned reference threshold which alleviates the dif-

ficulty of threshold validation and anchor selection. 
• With the identity-aware HNG for hard negative generation, the

adapted RML learns distance metrics with fewer input itera-

tions and distance calculations, without sacrificing the perfor-

mance for identity-invariant FER. 
• We jointly optimize the softmax loss and metric learning loss in

a unified two-branch FC layer metric learning CNN framework

based on their characteristics and tasks. 
• The proposed HNG network is a novel approach to generate

photorealistic and identity-preserved normalized face image by

combining prior knowledge from data distribution and domain

knowledge of faces. 
• Using numerical experiments, we demonstrate that the pro-

posed method achieves promising results on CK + , MMI and
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Fig. 3. Failed case of (a) triplet loss, (b) ( N + 1)-tuplet loss, and (c) Coupled clusters 

loss. The preliminary ( N + M )-tuplet clusters loss (d) uses two thresholds to avoid 

the anchor selection issue and threshold-parameters i.e ., T and τ , do not need man- 

ual tuning [6,7] . We use x + (yellow points) and x − (squares) to denote the positive 

and negative examples of a query example x , meaning that x + is the same class of 

x , while x −is not. f ( · ) is an embedding kernel. 
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The rest of this paper is organized as follows. Section 2 briefly

eviews related work in the literature. Section 3 introduces in de-

ail the proposed normalized face generation with perceptron gen-

rative adversarial networks. Section 4 shows its application to

ER with RML network. Section 5 reports the experimental results

nd ablation study of the auxiliary parts in HNG network. Finally,

ection 6 provides our conclusions. 

. Related work 

Despite receiving considerable research attention, FER remains

ery challenging [12] . Research developments in deep learning, es-

ecially the success of convolutional neural networks (CNN), have

ade high-accuracy image classification possible in recent years.

eep learning-based FER methods have emerged starting with

engio et al. [13] who described the use of carefully designed CNN

o learn expression features from raw pixels. Despite its popular-

ty, current softmax loss-based approach does not explicitly reward

ntra-class compactness and inter-class separation, and identity-

elated factors remain major obstacles for FER. Machine recogni-

ion usually is based on similarity metrics, but those metrics may

e more sensitive to identity than expressions. To decouple these

wo types of similarity and exploit the appearance information,

ubstantial efforts have been dedicated to extracting features by

earning [14] . Given that the expressions are formed by relaxing or

ontracting some facial muscles that result in temporally deformed

acial features, identity-disentangled representations for FER nor-

ally separate a face with expression into a main component neu-

ral face that encodes identity cues and an action component that

ncodes motion cues (such as movements of eye brows, cheeks,

ips, eyelids and nose) which are related to the AUs and FACS [2] . 

FER is certainly not unique among computer vision applications

hat have to cope with nuisance factors causing variability in the

ata. Deep metric learning approaches have been shown to be suc-

essful for person and vehicle identification tasks [15-17] , which

lso exhibit large intra-class variations. The initial work in this do-

ain [18] involves training a Siamese network. Pairwise examples

re fed into two symmetric sub-networks and the network is up-

ated using contrastive loss function, i.e ., their extracted represen-

ations should be close to each other if the inputs have the same

lass label, otherwise the distance between these representations

hould be large. One improvement is the triplet loss [19] , in which,

he inputs are triplets, each consisting of a query, a positive exam-

le and a negative example. An anchor is chosen from the query

r positive examples, then the method requires the difference of

he distance from the anchor point to the positive or query ex-

mple and from the anchor point to the negative example to be

arger than a fixed margin τ . Recently, some variants of this of-

ering faster and more stable convergence have been developed.

he ( N + 1)-tuplet loss [20] incorporated multiple negative exam-

les while the coupled cluster loss (CCL) [15] incorporated multiple

ositive examples in a tuplet. The center of positive examples c + is
et as the anchor in CCL. By comparing each example with c + in-

tead of each other, the number of distance evaluations needed are

educed significantly. 

For the situation shown in Fig. 3 , the triplet loss, ( N + 1)-tuplet

oss and CCL are all 0, since the distances between the anchor and

ositive examples are indeed smaller than the distance between

he anchor and negative examples for a margin τ . This means

he loss function will learn to neglect such non-trivial samples.

e will need many more input iterations with properly selected

nchors to correct this situation. The fixed threshold in the con-

rastive loss was also proven to be sub-optimal [21] . The difficulty

f threshold validation and anchor selection have long been signif-

cant challenges until our initial work [6] , which included an adap-

ive ( N + M )-tuplet clusters loss function. 
Also, the traditional online or offline mini-batch sample selec-

ion is a large additional computational burden and can result in

oor local optima [22] . Generating all possible pairs or triplets

ould result in quadratic and cubic complexity, respectively and

ost of these pairs or triplets are not very useful for the train-

ng [6] . Our initial work [6] utilized identity-aware hard-negative

ining and online positive mining for FER, but it still suffers from

he dataset-sensitive and computationally-expensive example min- 

ng to provide nontrivial tuplets. 

Several approaches have been proposed for generative mod-

ls. Conventional methods such as Principal Components Analy-

is (PCA), Independent Components Analysis (ICA), Gaussian Mix-

ure Model (GMM), etc ., have difficulty in modeling complex pat-

erns of irregular distributions [23] . Recently, Restricted Boltzmann

achines (RBM), Hidden Markov Model (HMM), Markov Random

ield (MRF) etc., have been employed for modeling images of dig-

ts, texture patches, and well-aligned faces [24] . However, the lim-

ted ability of feature representations restricts further develop-

ent. Since deep hierarchical architectures of the recent generative

odels are capable of capturing complex structure of data, gener-

ted images from these deep hierarchical structures are more re-

listic. The denoising auto-encoder (DAE) pairs a differentiable en-

oder and decoder, which encodes an image sample x to a latent

epresentation z and then decodes the z back to another image x̃

25] . For the normalized face generation task, pose and expression

re regarded as the noise to be mitigated. The main limitation of

his approach is that the squared pixel-wise reconstruction error

ould cause the generated samples to look blurry as they gen-

rate the mean image of the distribution. Generative Adversarial

etwork (GAN) [26] simultaneously trains two networks: a gener-

tive network Gen to synthesize images (maps latents z to image

pace), and a discriminative network Dis to discriminate between

eal training images from generated images. With the GAN, an ex-

ected image can be generated from a randomly sampled vector z

rom a certain distribution. 

Normally, the GAN schemes are not well-matched to supervised

ecognition tasks. The GAN-generated results are expected to align

ith the central part of the data distribution, while the boundary
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Fig. 4. Framework of our IDFERM, in which, the left and right side are the HNG and RML network, respectively. We feed the input image x to an encoder-decoder structure 

and generate its transformed output ˜ x . The Dis is trained to determine if its input is from the guiding set (real image) or the encoder-decoder structure (generated image), 

thus encouraging the encoder-decoder structure to generate images more similar to the images in our guiding set. The guiding set contains all of the target images y , which 

is a compilation of numerous frontal and neutral real face images. The Light-CNN is used to extract the identity feature for identity similarity measurements, and the VGG- 

Face is adopted to embed image for feature level perceptual similarity measurements. The mined real expressive face images and their corresponding generted normalized 

face images are feeded to the RML, an adaptive deep metric learning framework, to disentangle the identity factors in a face image for FER by minimazing both the softmax 

(cross-entropy) loss and RML loss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

t  

i  

t  

t  

s  

I  

e  

f

3

 

i  

u  

m  

C  

5  

p  

f  

t  

p  

i  

l

L  

w  

a  

o

3

 

s

L  

w  

(  

t  

t  

o  

fl  
between classes in feature space is more important for classifica-

tion. Limited research has been devoted to this topic. The semi-

GAN [27] adds an extra task for a discriminator network to im-

prove semi-supervised recognition task. The face rotator schemes

proposed by Tran [28] generates a frontal face as the preprocess-

ing for the face recognition network. 

3. Hard negative generation 

As we are trying to disentangle identity-related factors from a

facial expression image x, a reference neutral face image from the

same subject is required to obtain the difference between the neu-

tral face and x for FER. However, such a neutral face reference im-

age is not always available in real world application scenarios. In-

stead of mining several negative samples, we directly use the gen-

erated normalized face image as negative sample. The goal of the

hard negative generation (HNG) network is to produce a photo-

realistic and identity-preserved normalized face image ˜ x from the

probe image x . The network architecture and loss functions are il-

lustrated in Fig. 4 . 

Our HNG network is composed of five major components: 1) an

Encoder network Enc , (2) a Decoder network Dec , (3) a Discrimina-

tor network Dis , (4) the Light CNN network and (5) the VGG-facenet .

The function of Enc and Dec network is the same as that in de-

noising auto-encoder [25] . In DAE, the output is not required to

be exactly the same as the input. For example, the denoising auto-

encoder takes in an image that has been corrupted by some form

of “noise”, and is forced to output a denoised version of that image

by requiring the output image to be similar to the original “clean”

image. In our application, a face image with expression (input im-

age x ) can be regarded as a copy of neutral face image (target im-

age y) that has been corrupted by expressions. The denoising (dis-

entangling expression from a face image) is achieved by requiring

our output ˜ x to be close to the target image y, as the DAE requires

its generated image to be close to a clean target image instead of

the original noisy image. The Enc maps the input sample image x

to a latent representation z through a learned distribution P( z|x ),

while the Dec generates predicted a facial image ˜ x corresponding

to z . The function of the Dec and Dis is the same as that in the

GAN [26] . The Dec network tries to generate the real distribution

by the loss of Dis which learns to distinguish between generated

image ˜ x and real image in the guiding set g . The guiding set con-

tains all of the target images y , which is a compilation of numerous

frontal and neutral real face images. The input-target pairs { x , y }
i i 
rom multiple identities are required to learn the parameters θ of

he differentiable encoder θEnc and decoder θDec , where x is a face

mage with expression and y is the frontal neutral face image of

hat person. In our experimental setting, five different loss func-

ions are used to combine the advantages of high quality GAN and

table auto-encoder which encodes the data into a latent space z .

n this section, we show how the multiple objective functions are

mployed for different parts to generate the facial reference images

or FER. 

.1. Feature space perceptual loss 

The squared error loss between the CNN feature representations

s adopted to represent the feature-level perceptual loss. We make

se of the independently-trained and fixed VGG-FaceNet [29] to

odel this semantic feature-level loss. Although it comprises 14

onv layers and 3 FC layers, we omitted the deeper layers after the

th Conv layer because their limited spatial resolution cannot sup-

ort good image reconstruction performance. Denoted by ϕl , the

eature map of the l th convolution layer of VGG-FaceNet is used

o extract the feature representations using the standard forward-

ropagation process. The semantic perceptual loss between two

mages ˜ x and y on the l th convolutional layer is defined as the fol-

owing squared-error loss between the two feature maps. 

 f eat ( ̃  x , y ) = 

1 

W l × H l 

∑ W l 

n =1 

∑ H l 

m =1 
‖ 

ϕ l,n,m 

( ̃  x ) − ϕ l,n,m 

( y ) ‖ 

2 
2 (2)

here W l and H l denote the width, height of the l th feature map

nd ϕl, n, m 

is the value of the l th feature map at point ( n, m ). In

ur experiment, l = 5 based on empirical testing. 

.2. Symmetry loss 

Symmetry is an inherent property of normal human faces. The

ymmetry loss of a face image takes the form: 

 sym 

( ̃  x ) = 

1 

H × W/ 2 

∑ W/ 2 

n =1 

∑ H 

m =1 

∣∣ ˜ x n,m 

− ˜ x W −( n −1 ) ,m 

∣∣ (3)

here W and H are the width and the height of the images and

 n, m ) denotes the pixel of the generated image. The | •| denotes

he absolute value. For simplicity, when training our model with

he symmetry loss, all the inputs are aligned and detected if the

ccluded parts are on the right side of image. If not, images are

ipped so that the occluded parts are on the right side. Real-world
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Algorithm 1 Training the HNG network. 

θEnc, θDec, θDis ← initialize network parameters 

Repeat 

X ← random mini-batch from dataset 

Z ← Enc ( X ) 
˜ X ← Dec ( Z ) 

L f eat ← 

1 
2 W l ×H l 

W l ∑ 

n =1 

H l ∑ 

m =1 

ϕ l,n,m ( ̃ x ) − ϕ l,n,m (y ) 2 2 

L sym ← 

1 
W/ 2 ×H 

W/ 2 ∑ 

n =1 

H ∑ 

m =1 

| ̃ x n,m − ˜ x W−( n −1 ) ,m | 
L GAN−Dis ← −log( Dis ( g i ) ) − log( 1 − Dis ( ̃  x j ) ) 

L GAN−Dec ← −log( Dis ( x i ) ) 

L id ← 

2 ∑ 

l=1 

1 
W l ×H l 

W l ∑ 

n =1 

H l ∑ 

m =1 

| φl,n,m ( ̃ x ) − φl,n,m (x ) | 

L pixel ← 

1 
W×H 

W ∑ 

n =1 

H ∑ 

m =1 

| ̃ x n,m − y n,m | 
// Update parameters according to gradients 

θEnc ← −∇ θEnc 
( L f eat + λ1 L id + λ2 L pixel ) 

θDec ← −∇ θDec 
( L f eat + λ1 L id + λ2 L pixel + λ3 L sym + ηL GAN−Dec ) 

θDis ← −∇ θDis 
( L GAN−Dis ) 

Until deadline 

Fig. 5. Input-output pairs of the proposed reference generation (HNG) network 

from the CK + , MMI and Oulu-CASIA dataset. Top row in each pair: a subject in 

a database with different expressions (from left to right: angry, disgust, fear, happy, 

neutral, sad and surprise). Bottom row in each pair: generated normalized face im- 

ages from the input of the expressive face images in the row above. 
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mages may not exhibit the strict symmetry of pixel values. Con-

idering the consistency of the pixel difference inside a local area,

nd the gradients at a point along all directions are largely pre-

erved under different illuminations, minimizing a symmetry loss

n the Laplacian space should emphasize human faces. 

.3. Adversarial loss 

We introduce a discriminator Dis which serves as a supervisor

o push the synthesized image to reside in the manifold of frontal

eutral face images. It can reduce the blur effect and produce vi-

ually pleasing results. 

The Dis aims to discriminate the predicted frontal neutral face

mage ˜ x i from real ones g i in the guiding set, and is trained con-

urrently with the transform network ( Enc and Dec ). The transform

etwork tries to “trick” the Dis to classify the generated images as

eal. Formally, the discriminator is trained to minimize the follow-

ng binary cross entropy loss: 

 GAN−Dis 

(
g i , ̃  x j 

)
= −l og ( Dis ( g i ) ) − l og 

(
1 − Dis 

(˜ x j 
))

(4)

With respect to Dec , the parameters are trained by minimizing

he following loss: 

 GAN−Dec 

(˜ x j 
)

= −log 
(
Dis 

(˜ x j 
))

(5) 

.4. Identity-Preserving loss 

Synthesizing the frontal neutral face image while preserving the

dentity is a critical part of IDFERM. We introduce a direct supervi-

ion to reward the perceptual similarity between input and gener-

ted images using the face verification network. In our approach,

e use the pre-trained Light CNN, a compact network that has

nly 4 convolution layers with Max-Feature-Map operations and 4

ax-pooling layers [30] . In this work, the identity-preserving loss

s defined based on the activations of the last two layers of the

ight CNN: 

 id = 

∑ 2 

l=1 

1 

W l × H l 

∑ W l 

n =1 

∑ H l 

m =1 
| φl,n,m 

( ̃  x ) − φl,n,m 

( x ) | (6) 

here W l , H l denotes the width and height of the l th layer,

l, n, m 

is the value of the feature map ( n, m ) point and | •| denotes

he absolute value. 

.5. Pixel-wise loss 

Adversarial training is known to be sensitive to hyper parame-

ers. Adding the following pixel-wise L1 loss 

 pixel = 

1 

W × H 

∑ W 

n =1 

∑ H 

m =1 
| ̃  x n,m 

− y n,m 

| (7) 

n the image space with a relatively small weight is one method

o stabilize the training and accelerate the optimization. ˜ x n,m 

and

 n, m 

are the pixel level gray values of the ( n, m ) th pixel. 

Using judicious selection of aforementioned loss functions, we

rain the Enc, Dec and Dis simultaneously. The error signal from ad-

ersarial loss and symmetry loss are not back-propagated to Enc .

everal tradeoff parameters constrained between 0 and 1 are used

o balance the aforementioned loss functions. The weights λ1 and

2 shown in Algorithm 1 are the tradeoff parameters for L f eat , L id 

nd L pixel for the Enc and Dec . The parameter λ3 is used to weight

he L sym 

in Dec . As Dec also receives the error signal from the Dis ,

 parameter η is used to weight the ability of fooling the discrim-

nator. 

We show some of the input-output pairs of our HNG network

n Fig. 5 . As the common quantitative metrics (e.g., log-likelihood

f a set of validation samples) are often not very informative for
erceptual generative models [31] , we provide a qualitative com-

arison of visual quality and a quantitative evaluation of identity-

reservation in Section 5 . 

Unlike previous generative methods that utilize their interme-

iate features for the recognition tasks, the resulting expression-

nd pose- disentangled face image has potential for several down-

tream applications, such as facial expression or face recognition,

nd attribute estimation. 

. Radial metric learning 

The proposed RML only requires the comparison of the repre-

entation of the query sample f i with the representation of its gen-

rated reference ˜ f i and its cluster center C y i . We introduce a dis-

ance T from the query sample x to control the relative boundary

( T − τ
2 ) and ( T + 

τ
2 ) for the intra-class center and generated ref-

rences, respectively. The RML loss function is formulated as fol-

ows. 

L 

({ x i } K i =1 , { ̃  x i } K i =1 ; f 
)

= 

1 

K 

∑ K 

i =1 

{ 

max 

(
0 , D ( f i , C y i ) − T + 

τ

2 

)
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Fig. 6. The proposed radial metric learning (RML) framework. A small circle with- 

out border is the representation of a sample ( i.e ., facial expression image) and the 

different classes are represented by different colors. The small gray circles with col- 

ored border are their corresponding generated references (i.e. , normalized face im- 

ages). The orange points with colored border are the cluster centers of each classes. 

The big dashed circles are the boundaries of each classes in the feature space, which 

are expected to have small radius and far away from each other. 
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+ max 

(
0 , 

τ

2 

+ T − D 

(
˜ f i , C y i 

))} 

(8)

Only if the distances from all online mined examples f i to its

updated C y i are smaller than ( T − τ
2 ) and the distances from all the

generated references ˜ f i to its updated C y i are larger than ( T + 

τ
2 ) ,

the loss L ( { x i } K i =1 
, { ̃  x i } K i =1 

; f ) can get a zero value. A simplified ge-

ometric interpretation of this is shown in Fig. 6 . 

By assigning different values for T and τ , we define a flexible

learning task with adjustable difficulty for the network. We do not

use the special case that requires inter-class variation to be zero

(i.e. , T = τ/ 2 ) as the center loss [32] for the FER training set usually

contains some unreliable labels [33] . However, these two hyper-

parameters need manual tuning and validation. In here, we formu-

late the reference distance T to be a function S( · , · ) which should

be trained automatically, instead of a constant. Inspired by the Ma-

halanobis distance matrix M in Mahalanobis distance D ( Eq. 9 ),

which is a positive semi-definite (PSD) matrix and can be calcu-

lated via the linear fully connected layer as in [34] , we try to auto-

matically train both S and D. Since the difference of the reference

distance and the distance function need to be calculated in two

terms in Eq. 8 , a possible solution is to calculate (S −D) function

via the linear FC layer. 

D ( f 1 , f 2 ) = ‖ 

f 1 − f 2 ‖ 

2 
M 

= ( f 1 − f 2 ) 
t 
M ( f 1 − f 2 ) (9)

Since the metric M itself is quadratic, we assume that S has a

simple quadratic form: 

S ( f 1 , f 2 ) = 

1 

2 

f 1 
t ˜ A f 1 + 

1 

2 

f 2 
t ˜ A f 2 + f 1 

t ˜ B f 2 + c t ( f 1 − f 2 ) + b (10)

where ˜ A and 

˜ B are both the d × d real symmetric matrices (not

necessarily positive semi-definite), c is a D -dimensional vector, and

b is the bias term. 

Then, a new quadratic expression H( f 1 , f 2 ) = S ( f 1 , f 2 ) −
D( f 1 , f 2 ) is defined to combine the reference distance function

S and the Mahalanobis distance metric function D. Substituting
( f 1 , f 2 ) and D( f 1 , f 2 ) into H( f 1 , f 2 ), we get: 

 ( f 1 , f 2 ) = 

1 

2 

f 1 
t 
(

˜ A − 2M 

)
f 1 + 

1 

2 

f 2 
t 
(

˜ A − 2M 

)
f 2 + f 1 

t 
(

˜ B + 2M 

)
f 2 

+ c t ( f 1 − f 2 ) + b (11)

 ( f 1 , f 2 ) = 

1 

2 

f 1 
t 
A f 1 + 

1 

2 

f 2 
t 
A f 2 + f 1 

t 
B f 2 + c t ( f 1 − f 2 ) + b (12)

here A = ( ̃  A − 2M ) and B = ( ̃ B + 2M ) . Suppose A is PSD and B is

egative semi-definite (NSD), A and B can be factorized as L T 
A 

L A 

nd L T B L B . Then H( f 1 , f 2 ) can be rewritten as follows: 

 ( f 1 , f 2 ) = 

1 

2 

f 1 
t 
L t A L A f 1 + 

1 

2 

f 2 
t 
L t A L A f 2 + f 1 

t 
L t B L B f 2 + c t ( f 1 − f 2 ) + b

(13)

 ( f 1 , f 2 ) = 

1 

2 

( L A f 1 ) 
t 
( L A f 1 ) + 

1 

2 

( L A f 2 ) 
t 
( L A f 2 ) + ( L B f 1 ) 

t 
( L B f 2 ) 

+ c t ( f 1 − f 2 ) + b (14)

Motivated by the above, we propose a general, computationally

easible loss function. Following the notations in the preliminaries

nd denoting (L A , L B , c ) 
t as W which can be learned via the linear

ully connected layer, we have: 

L 

(
W , { x i } K i =1 , { ̃  x i } K i =1 ; f 

)
= 

1 

K 

∑ K 

i =1 

{ 

max 

(
0 , 

τ

2 

− H ( f i , C y i ) 

)

+ max 

(
0 , H 

(
˜ f i , C y i 

)
+ 

τ

2 

)} 

(15)

Moreover, we simplify τ
2 to be the constant 1, since changing

t to any other positive value results only in the matrices being

ultiplied by a corresponding factor. Our hinge-loss like function

s given as follows. 

L 

(
W , { x i } K i =1 , { ̃  x i } K i =1 ; f 

)
= 

1 

K 

∑ K 

i =1 
{ max ( 0 , 1 − H ( f i , C y i ) ) 

+ max 
(
0 , H 

(
˜ f i , C y i 

)
+ 1 

)}
(16)

By doing this, the adaptive threshold can be seamlessly fac-

orized into a linear-fully connected layer for end-to-end learning

34] . The RML loss can also be easily used as a drop-in replace-

ent for the triplet loss and its variants, as well as used in tan-

em with other performance-boosting approaches and modules,

ncluding modified network architectures, pooling functions, data

ugmentations or activation functions. 

For a training batch consisting of K query samples, the number

f input passes required to evaluate the necessary embedding fea-

ure vectors in our application is K , and the total number of dis-

ance comparisons can be 2 K . Normally, K is much larger than 2.

n contrast, triplet loss and ( N + 1)-tuplet loss require O ( K 

3 ) com-

arisons, the contrast loss and CCL require O ( K 

2 ) comparisons, and

he ( N + M )-tuplet cluster loss requires 2( N + M ) ∗K comparisons af-

er a strict example mining scheme using the special structure of

ome FER datasets (i.e. , each subject has all 6 expressions). Here

 and M are the number of mined positive samples and the num-

er of mined negative samples, respectively. Even for a dataset of a

oderate size, it is computationally impractical to load all possible

eaningful triplets into the processor memory for model training.

ith predefined anchors (i.e. , C y i and 

˜ f i ), we also alleviate the dif-

culty of anchor selection [6] . 

……The inception convolutional FER network and two-branch

C layer joint metric learning architecture proposed in our prelim-

nary paper [6] are used in our framework in Fig. 4 . The convolu-

ional groups are made up of a 1 × 1, 3 × 3 and 5 × 5 Conv layers

n parallel. 

Combining the metric learning loss and softmax loss is an in-

uitive idea to possibly achieve better performance [35] . However,
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Algorithm 2 Disentangled feature learning algorithm. 

Input 

Randomly chose K query examples { x i } K i =1 

and their generated references { ̃  x i } K i =1 

Output: The parameters of the FER network θFER 

1. while not converge do 

2. map examples to feature plane with CNN to get: { f i } K i =1 
and { ̃ f i } K i =1 

3. calculate the cluster centers C i for each class 

4. L RML ← 

1 
K 

K ∑ 

i=1 

{ max ( 0 , −H( f i , C y i ) + 1 ) + max ( 0 , H( ̃  f i , C y i ) + 1 ) } 
5. L softmax ← −log ( e f yi −max ( f j ) / 

∑ 

j 

e f j −max ( f j ) ) 

6. Compute the joint loss L softmax + α L RML 

7. Compute the backpropagation error 

8. Update the parameters 

End while 
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Fig. 7. Samples from the VGG-Face dataset. Each row contains the face images of 

the same person. 

Fig. 8. Samples from the CMU Multi-PIE dataset. Each row contains images of the 

same person. 
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ombining them directly on the last FC layer is sub-optimal. The

asic idea of building two-branch FC layers after the deep convolu-

ion groups is to combine two losses at different levels of tasks. We

earn the detailed features shared between the same expression

lass with the expression classification (EC) branch, while exploit-

ng semantic representations via the metric learning (ML) branch

o handle the significant appearance changes from different sub-

ects. The connecting layer embeds the information learned from

he expression label-based detail task to the identity label-based

emantic task, and balances the weights in the two task streams.

his type of combination can effectively alleviate the interference

f identity-specific attributes. The inputs of connecting layer are

he output vectors of the former FC layers- FC 2-2 and FC 2-3 , which

ave the same dimension denoted as D input . The output of the con-

ecting layer, denoted as FC 4 with dimension D output , is the feature

ector fed into the second layer of the ML branch. The connecting

ayer concatenates two input feature vectors into a larger vector

nd maps it into a D output dimension space: 

 C 2 −4 = P 

t [ F C 2 −2 ; F C 2 −3 ] = P 

t 
1 F C 2 −2 + P 

t 
2 F C 2 −3 (17)

here P is a (2 D input × 2 D output ) matrix, P 1 and P 2 are

 input × D output matrices. 

Regarding the sampling strategy, every training image is used

s a query example in an epoch. In practice, the softmax loss will

nly be calculated for the query examples. The relative importance

f the two loss functions is managed by a weight α. During the

esting stage, this framework takes one query image and its gen-

rated reference image as input, and determines the classification

esult through the EC branch with the softmax loss function. Our

isentangled feature learning scheme is described in Algorithm 2 . 

. Numerical experiments 

In this section, we compare the IDFERM with state-of-art meth-

ds on three benchmark datasets, i.e., CK + , MMI and Oulu-CASIA

atasets. Details of our training data are provided in Section 5.1 ,

ollowed by our preprocessing methods in Section 5.2 , and the

mplementation details in Section 5.3 . In Section 5.4 , we report

 series of ablation experiments to analyze the function of our

uxiliary networks. Numerical experiment results are shown in

ection 5.5 . 

.1. Training data 

Besides the FER datasets, a variety of large datasets of facial

mages for face recognition are publicly available online. We give

ome samples from the VGG-Face dataset Fig. 7 . We use the VGG-

ace dataset [29] to extend our data for neutral face generation.

t contains approximately 2.6 million face images, but very few of
hese fit our requirements of neutral expression, front-facing, hav-

ng no occlusion, and of sufficient resolution for face region. We

se the Google Cloud Vision API to remove those images that look

lurry, with high emotion score or eyeglasses or tilt or pan angles

eyond 5 °. These frontal and neutral face images are used as our

arget and guiding set samples. Their corresponding non-compliant

mages from the same subject are used as the inputs. All the sam-

les are aligned and cropped to 64 × 64 Gy images. After filtering,

e have about 12 K target images ( < 0.5% of the original set) and

0 K input-target pairs. These data are used for pretraining to ini-

ialize the network parameters and then fine-tuned using the CMU

ulti-PIE [36] . 

The CMU Multi-PIE itself is a facial expression dataset, but the

acial expression labels it uses are slightly different from mod-

rn expression classification system. There are 4 expressions are

seable (114,305 neutral images, 19,817 surprise images, 22,696

isgust images and 47,388 happy images), while the squint and

cream are not regarded as expression now. Some samples are

hown in Fig. 8 . It contains more than 750,0 0 0 images of 337 peo-

le taken from fifteen directions, and in nineteen illumination con-

itions. There are four recording sessions in which subjects were

nstructed to display neutral, happy, disgust and surprise facial ex-

ressions. It is more close to our FER dataset in testing stage than

he filtered VGG face dataset. We selected only the five groups of

he nearly frontal view faces ( −45 ° to + 45 °). The neutral images

rom the 0 ° view are used as our target image and the guiding set.
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5.2. Preprocessing 

We follow the [6] to locate the 49 facial landmarks. Then, face

alignment is done to reduce in-plane rotation and crop the region

of interest based on the coordinates of these landmarks to a size

of 64 × 64. An augmentation procedure is employed to increase the

number of training images and alleviate the chance of over-fitting.

We crop five 60 × 60 size patches from the center and four corners,

flip them horizontally and transfer them to grayscale images. All

the images are processed with the standard histogram equalization

and linear plane fitting to remove unbalanced illumination. Finally,

we normalize them to have zero mean and unit variance. In the

testing phase, a single center crop with the size of 60 × 60 is used

as input data. 

5.3. Implementation details 

We use 64 × 64 Gy images as the input-target pairs for the neu-

tral face generation training. The filtered VGG-FaceNet and Multi-

PIE images are used to pre-train the neutral face generation net-

work. We construct the guiding set using the filtered VGG-FaceNet

frontal neutral view and the 0 ° view neutral images from the

Multi-PIE. Following the experimental protocol in [6] , we pre-train

our inception style convolutional groups, two branch FC layers on

with 204,156 frontal view ( −45 °to 45 °) face images selected from

the CMU Multi-PIE dataset for 300 epochs, optimizing the joint

loss using stochastic gradient descent with a momentum coef-

ficient of 0.9. The initial network learning rate, batch size, and

weight decay parameter are set to 0.1, 128, 0.0 0 01, respectively

based on optimizing the parameter choices using the validation

set. If the training loss increased by more than 25% or the vali-

dation accuracy does not improve for ten epochs, the learning rate

is halved and the previous network with the best loss is reloaded.

We select the highest accuracy training epoch as our pre-trained

model. In the fine-tuning stage, the mini-batch set size is fixed to

two times the number of expression classes of the dataset. Random

search is employed to select 2 images from each expression class

to form the mini-batch set. The tuplet-size is set to 12. In all our

experiments, we set η = 0.1, λ1 = 3 × 10 −2 , λ2 = 10 −2 , λ3 = 0 . 3

determined by manual tuning. The weight of joint learning α = 1 .

In the testing phase, only the convolutional groups and expression

classification branch with softmax are used to recognize a single

facial expression image. 

The details of the encoder of HNG can be found in [7] . We fixed

the latent vector dimension to be 256 and found this configuration

to be sufficient for generating images for FER. A series of fractional-

stride convolutions (FConv) transforms the 256-dim vector z ∈ R 

256 

into a synthetic image ˜ x ∈ R 

64 × 64 , which is of the same size as x.

To further incorporate the prior knowledge of the frontal neutral

face’s distribution into the training process, we introduce a dis-

criminator Dis to distinguish the generated face image from the

real images in the guiding set. 

The Leaky ReLU nonlinearities [37] are used in some Conv lay-

ers, where LReLU( x ) = max ( x, 0 ) + σmin ( x, 0 ) . In our experiments,

we set σ = 0 . 1 . Optimizing this minimax objective function will

continuously push the output of the generator to match the tar-

get distribution of the guiding set thus making the synthesized fa-

cial images to be more photorealistic. All the CNN architectures are

implemented with the widely used deep learning tool “Tensorflow

[38] .”

5.4. Ablation study 

The Light CNN and the first five layers of the VGG-FaceNet are

used to embed the input, target or output images for the similarity

measurements in different feature spaces. It is obvious that these
wo networks incur additional computation cost. We show in this

ection that they are needed. 

The difference of our models trained with and without the L id 

s subtle in visual appearance, as can be seen in Fig. 9 , but its ef-

ect on improving the identity likeness of the generated faces can

e measured by evaluating the similarity of the input-outputs pairs

sing VGG-FaceNet. Fig. 10 shows the distributions of L2 distances

etween the embeddings of the facial expression images and their

orresponding synthesized results, for models trained with and

ithout this loss. Schroff et al. [18] consider two FaceNet embed-

ings to encode the same person if their L2 distance is less than

.242. All of the synthesized images using the identity-preserving

oss pass this test using FaceNet, but about 2% of the images would

e identified as a different subject by FaceNet when not using the

dentity-preserving loss. We investigated the effect of the weight

f identity preserving loss and show the identity inconsistent per-

entage in Table 1 . 

The VGG-FaceNet is employed to calculate the feature level

erceptual loss, which is expected to make the generated result

o keep more perceptually important image attributes, for exam-

le sharp edges and textures. This loss was empirically given the

argest weight in our experiments. In practice, without this part,

e could never avoid the collapse of the adversarial training to

enerate the human face structure. 

We also analyzed the effect of different hyper-parameter values

n RML. The parameter α is used to balance the softmax loss and

etric learning loss. We can see from the Fig. 11 (reproduced be-

ow) that the highest accuracy is achieved when α ε [0.95,1]. As

an be seen in Fig. 12 below, the networks were not sensitive to σ
[0.075, 0.125]. 

.5. Experimental results of FER 

To evaluate the effectiveness of the proposed method, exten-

ive experiments have been conducted on four well-known pub-

icly available facial expressions datasets: CK + , MMI and Oulu-

ASIA. Resulting IDFERM confusion matrices are shown in Fig. 13 . 

CK + Dataset [39] : We conducted both seven-class and eight-

lass expression recognition experiments ( i.e ., without or with neu-

ral expression). In the setting without neutral sample, we directly

ompare to the most nontrivial hard negative samples (i.e., gener-

ted normalized face), which not only relaxes the requirements on

he dataset ( i.e ., needing images of all different expressions of the

ame person) to extract the identity-disentangled expression rep-

esentation but also reduces the number of comparisons in train-

ng stage. The training time of metric learning part is largely re-

uced as shown in Table 2 . We note that [7] and IDFERM do need

n additional training stage (around 6 hours) for normalized face

eneration, but the trained HNG network works for all of the FER

atasets in our experiments without fine-tuning and can be re-

arded as a ready-made tool for several down-stream tasks. 

In the testing stage, IDFERM recognizes a query facial expres-

ion image in about 50 ms, which is satisfactory for many applica-

ions. Video-based methods normally need a relatively longer sam-

ling time ( > 0.25 s) to collect the whole expression change session.

From Table 3 , we can see that the identity-disentangled rep-

esentation with adaptive metric learning methods achieve higher

ccuracy than previous works. Therefore, comparing the query

ample with its generated normalized face rather than all its other

xpressive query faces as in [6] is more efficient, which is con-

istent with the relationship of those expressions as analyzed in

ig. 2 . However, just adding the generated neutral face images to

riginal dataset enlarged the number of comparisons [7] . As an ef-

cient hard negative mining scheme, the HNG offers the most non-

rivial hard negative samples and the RML can efficiently utilizes

hem and outperforms the other methods. 
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Fig. 9. Examples of input, target, generated normalized face by RG network, generated normalized face by RG network without identity-preserving loss and reconstructed 

neutral face using only the auto-encoder (AE) structure. Real images are from CK + dataset which has an additional calss called contempt (Co) class. 

Table 1 

Percentage of identity errors as a function of the λ1 , the weight of identity-preserving loss term. 

λ1 0 0.001 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.05 

Percentage (%) 2.13 1.77 1.06 0.32 0.13 0.11 0.1 0.1 0.1 0.1 0.1 

Table 2 

Comparation of the metric learning training time on the datasets with a Titan X GPU. 

Metric Learning Training Time CK + (7-class) CK + (8-class) MMI Oulu-CASIA VIS 

Triplet Loss 5 h 24mins – 3 h 14mins –

2B(N + M) Softmax [6] 1 h 47mins – 54 mins –

Data Augmentation [7] 3 h 11mins – 2 h 8mins –

IDFERM 42 mins 1 h 4 mins 30 mins 56 mins 

Fig. 10. Histogram of VGG-Face net L2 error between the input face and the nor- 

malized pairs on the FER data collection. Blue: with the identity preserving loss 

which calculated by the Light CNN. Orange: without the identity preserving loss. 

The 1.242 threshold was used by Schroff et al. [18] to cluster identities in the LFW 

dataset. Without the Light CNN, about 2% of the generated neutral faces would not 

be considered from the same subject as the query faces. 
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Table 3 

Performance compares of the rank-1 recognition accuracy 

on the CK + dataset in terms of 7 expressions and the MMI 

dataset (without neutral expression). 

Methods CK + (seven-class) MMI 

MSR [13] 91.4% N/A 

BNBN [42] 96.7% N/A 

IBCNN [4] 95.1% N/A 

STM [43] 96.3% N/A 

CER(video) [44] 92.34% 70.12% 

CDMML(video) [45] 96.6% N/A 

STMExplet(video) [9] 94.19% 75.12% 

DTAGN(video) [10] 97.25% 70.2% 

IACNN [11] 95.37% 71.55% 

2B(N + M) Softmax [6] 97.1% 78.53% 

Data Augmentation [7] 97.49% 80.26% 

IDFERM 98.35% 81.13% 

Table 4 

Performance comparison of the 

rank-1 recognition accuracy on the 

CK + dataset in terms of the 8 expres- 

sions (with neutral expression). 

Methods CK + (eight-class) 

AUDB [46] 93.70% 

CNN + AD [47] 96.4% 

FN2EN [5] 96.8% 

IDFERM 97.76% 
The improved accuracy compared to the other methods is ap-

ealing in the image-based 7-class CK + , MMI and Oulu-CASIA set-

ing which do not have real-neutral samples as training data. It

lso generalized well in dataset with neutral expressions as shown

n Table 4 . With the added generated samples, the accuracy of neu-

ral class is improved to 99% as shown in Fig. 13 (b). 

Benefitting from the generated data, the proposed IDFERM

utperforms our earlier approach [6] by 2.6% on MMI dataset
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Fig. 11. Facial recognition accuracy on CK + (7-class) dataset as a function of α, the 

parameter used to balance the softmax loss and metric learning loss. 

 

 

 

 

 

Fig. 12. Facial recognition accuracy on CK + (7-class) dataset as a function of pa- 

rameter σ in LReLU. 

t  

w  

s  

d  

[

and 1.25% on CK + dataset. Using the same generated images as

in [7] , we achieve 0.87% and 0.86% improvements on MMI and

CK + datasets respectively, and the number of comparisons per

training batch is reduced from 2( N + M ) K (the N and M in MMI

are 5 and 5 respectively [7] ) to 2 K. As a consequence, the training
Fig. 13. Confusion matrix of the proposed IDFERM evaluated in the (a) CK + seven-class, (

the ground truth labels are shown in the ordinate and abscissa, respectively. 
ime of the earlier approach [7] for MMI dataset is 2hours 8mins,

hile the IDFERM needs only 30mins on a single Titan X GPU as

hown in Table 2 . Considering the improved performance and re-

uced training time, the IDFERM is significantly more efficient than

7] to utilize the generated data. 
b) CK + eight-class, (c) MMI and (d) Oulu-CASIA database. The predicted labels and 
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Table 5 

Comparation of the performance with/without pre-training using Multi-PIE on CK + dataset. 

2B(N + M) [6] IDFERM 

Without Pre-training With Pre-training Without Pre-training With Pre-training 

CK + (7-class) 97.03% 97.10% 98.32% 98.35% 

MMI 78.46% 78.53% 81.11% 81.13% 

Table 6 

Performance comparison of the rank-1 

recognition accuracy on the Oulu-CASIA 

VIS dataset in terms of the 6 expressions 

(without neutral expression). 

Methods Oulu-CASIA VIS 

STM-ExpLet(video) [9] 74.59% 

DTAGN(video) [10] 81.46% 

PPDN [48] 84.59% 

FN2EN [5] 87.1% 

IDFERM 88.25% 
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Limited training data has long been a challenge for facial

xpression recognition. For example, [11] utilized the FER-2013

ataset for pre-training and then fine-tuned their facial expression

ecognition network in CK + /MMI datasets. The FER-2013 dataset

s even larger than the Multi-PIE dataset. We chose the Multi-

IE pretraining for fair comparison with previous works [6] . We

dded a comparison of recognition accuracy with/without the pre-

raining, and show the results in Table 5 . We can see that the pre-

raining can improve the performance consistently. 

MMI Dataset [40] : This dataset consists of 213 sequences, 208

equences from this data set containing frontal-view faces of 31

ubjects were used in our experiment as in [6] . Since the actual

ocation of the peak frame is not provided, we collect three frames

n the middle of each image sequence and associate them with

he labels, which results in 624 images in our experiments as in

6,11] . We divided the MMI dataset into 10 subsets for person-

ndependent ten-fold cross validation. The sequence-level predic-

ions are obtained by choosing the class with the highest aver-

ge score of the three images. Consequently, 10-fold cross valida-

ion was conducted. This dataset could be suitable to measure the

ecognition performance in realistic situations when compared to

ther datasets. 

With the identity-disentangled FER representation, the pro-

osed methods achieve substantial improvements over the previ-

us best performance in MMI dataset as shown in Table 3 and

ig. 13 (c). The HNG can further boost the accuracy by incorporat-

ng the prior information of normalized face and the relationships

f expressions within an applicable framework. Note that the im-

ge sequences in the MMI dataset contain a full temporal pattern

f expressions, i.e ., from neutral to apex, and then relaxed, and are

specially favored by these methods exploiting temporal informa-

ion. 

Oulu-CASIA VIS Dataset [41] : This dataset consists of 480 im-

ge sequences of 80 individuals. This dataset is captured under

he visible (VIS) normal illumination conditions and is a subset

f Oulu-CASIA NIR-VIS dataset. Each individual poses six basic ex-

ressions as in MMI dataset. Only the last three frames are used

or individual-independent 10-fold cross validation, and the total

umber of images is 1440 as in [5] . 

In Oulu-CASIA dataset, the IDFERM performs well in recognizing

ear and happy expressions, while angry is the hardest expression,

hich is mostly confused with disgust as shown in Fig. 13 (d). The

erformance results are shown in Table 6 and are similar to those

n the CK + and MMI datasets. 
. Conclusions 

We proposed and investigated a novel recognition via gener-

tion scheme termed IDFERM to disentangle the identity factors

rom other factors that are responsible for facial expression. The

nchor-selection and threshold-tuning problems present in pre-

ious approaches have been addressed in our proposed adaptive

eep metric learning paradigm. The identity-preserving neutral

ace image generation is efficient for hard negative mining which

equires fewer similarity comparisons. However, our gray-scale im-

ge processing can lead to information loss as the image qual-

ty is not emphasized in our framework as in conventional image

eneration methods. Also, the adversarial game at image-level is

sually time-consuming. In future work, we intend to apply some

ommonly used visual quality assessment methods for the gener-

ted images on top of our model for better texture. Recent fea-

ure -level GAN’s backbone can be utilized to extend our frame-

ork for faster, more stable convergence training, and more com-

lex data structure (e.g., color images). We also expect that the

pplication of recognition via generation idea can facilitate several

ther closely related tasks, e.g., face recognition, person re-ID, and

ose-invariant classification. 
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