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A B S T R A C T

Based on the characteristic analysis of the traditional block-based compressed sensing system, an improved
compressed sensing theory model is proposed in this paper, and its hardware implementation scheme and the
overall system workflow are specified according to the model requirements. Compared with the traditional block-
based compressed sensing system, the linear array detector is used instead of the area array detector in the system,
and the one-dimensional encoding is adopted instead of the two-dimensional encoding to simplify the encoding
process. The experimental results show that the system proposed by this paper can significantly improve the
image quality compared with the block-based compressed sensing system under the same system conditions,
and eliminate the block effect that is common in the block-based compressed sensing system. On the basis of
the proposed system, a weighted iterative restoration strategy based on frequency estimation is proposed. By
adaptively adjusting the restoration process and optimizing the distribution of computing resources, the image
quality is further improved.

1. Introduction

E. J. Candès et al. proposed the compressed sensing theory for the
first time in 2006, which specifics that if a signal is sparse in a certain
transform domain, then the original signal can be accurately recovered
from a small number of measurements with high probability by solving a
convex optimization problem [1–3]. This theory breaks the limitation of
the traditional Nyquist–Shannon sampling theorem and greatly reduces
the amount of data. It has been widely concerned in the fields of
data compression [4], medical imaging [5,6], radar [7,8] and space
remote sensing [9,10]. And there are also potential applications in 3D
imaging [11,12] and super-resolution imaging [13,14].

Compressed sensing theory can be divided into two stages: com-
pressed sampling and signal recovery. Therefore, there are two im-
portant technical paths for better performance: one is to optimize the
measurement matrix at the sampling end to improve the sampling
efficiency; the other is to propose a recovery algorithm that can obtain
higher image quality in a shorter time. Amit Ashok described a hybrid
measurement basis design that exploits the power spectral density
statistics of natural scenes to minimize the reconstruction error by
employing an optimal combination of a nonrandom basis and a purely
random basis [15]. A matrix formulation in the compressed spectral
imaging sensing problem has been proposed by Jonathan Monsalve,
which reduces computational complexity and allows to design sensing
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matrices using principal components analysis, leading to improved
reconstructions [16]. Abhijit Mahalanobis presented a methodology for
designing a set of measurement kernels (or masks) that satisfy the
photon constraint and are optimum for making measurements that
minimize the reconstruction error in the presence of noise [17]. By
solving an equality-constrained optimization problem, Jun Ke obtained
a binary sensing matrix, which has a smaller dynamic range requirement
to system sensors under the similar reconstruction performance [18].
The signal recovery algorithms mainly include the basis pursuit (BP)
algorithm [19], the gradient projection for sparse reconstruction (GPSR)
algorithm [20], Total Variation(TV) Minimization [9], etc., and their
various improved forms.

If the compressed sensing theory is introduced into the imaging
system, it is indispensable to give a hardware implementation based on
its theoretical model. The coded sampling methods that have been pro-
posed in the compressed sensing imaging system mainly include Digital
Micromirror Devices (DMD) [21,22], moving random exposure [23],
charge transfer random exposure [24], Complementary Metal Oxide
Semiconductor (CMOS)-based approach [25], etc., among which DMD is
the most commonly used at present. M. F. Duarte proposed a DMD-based
single-pixel camera as the first hardware-implemented compressed sens-
ing imaging system [21]. However, both the encoding time and the
image reconstruction time increase rapidly as the image size increases,
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so the practicality is limited. In order to overcome this problem, a block-
based compressed sensing imaging system has been proposed by John P.
Dumas, in which an area array detector is used instead of the single-pixel
sensor, and the image is processed in parallel blocks, which effectively
reduces the sampling and reconstruction time [22].

On the basis of block-based compressed sensing system, in order
to further improve the image quality, several adaptive sampling and
image recovery methods are proposed. The main idea is to predict the
characteristics of the imaging target and then take adaptive processing
to different regions of the target, thereby improving image quality
under limited resources. Ying Yu proposed a saliency-based compressed
sampling scheme for image signals. The key idea is to exploit the
saliency information of images, and allocate more sensing resources
to salient regions but fewer to non-salient regions [26]. Based on the
fact that low frequency components are relatively more crucial to the
perceptual quality of images than high frequency components, Yi Yang
proposed a novel sampling scheme for compressed sensing framework
by designing a weighting scheme for the sampling matrix [27]. By taking
full advantage of the characteristics of the block-based compressed
sensing, Zheng Hai-bo presented a sampling adaptive block compressed
sensing strategy, which assigns a sampling rate depending on its texture
complexity of each block [28].

Whether it is the optimization of measurement matrix and recovery
algorithm in compressed sensing theory, or the implementation scheme
of hardware system, and the adaptive processing of coded sampling and
recovery strategy, the essence are all based on the theoretical model
of compressed sensing. The model itself has not been optimized to
accommodate the two-dimensional imaging field.

The basic model of compressed sensing theory is mainly for one-
dimensional signals. If the theory is introduced into the imaging sys-
tem, the two-dimensional image needs to be integrated into a one-
dimensional signal first, and then the theoretical model of compressed
sensing and the corresponding restoration algorithm can be applied
mechanically. Such processing obviously weakens the sparsity of the
signal in a certain transform domain, which is the foundation of
compressed sensing theory, thus limiting the improvement of imaging
quality in the compressed sensing system. In view of the above problem,
we have established a theoretical model of compressed sensing based
on two-dimensional image signal architecture, and also proposed an
implementation scheme of hardware system based on this model.

Compared with the block-based compressed sensing system, the com-
pressed sensing system proposed by this paper adopts one-dimensional
coding mode and replaces the area array detector with linear array
detector. Furthermore, on the basis of the proposed system, a weighted
iterative restoration strategy based on frequency estimation is proposed.
By adaptively adjusting the restoration process and optimizing resource
allocation, the image quality is further improved.

The main innovations of this paper are summarized as follows:
(a) Based on compressed sensing theory, the improved compressed

sensing theoretical model for two-dimensional images is established.
(b) The implementation scheme of the hardware system is proposed

for the above model, and the correspondence with the model is specified.
(c) A weighted iterative restoration strategy based on frequency

estimation is proposed on the basis of the above model, which optimizes
the restoration process, improves the image quality.

The rest of this paper is organized as follows. The characteristics of
the block-based compressed sensing system are analyzed in Section 2. In
Section 3, we established the improved theoretical model of compressed
sensing, and proposed an implementation scheme of hardware system
based on this model. On the basis of the proposed system, the weighted
iterative restoration strategy based on frequency estimation is proposed
in Section 4, and the overall system composition and imaging workflow
are also presented. Experimental verification and data analysis are
completed in Section 5. After summarizing the above contents, the
conclusion is given in Section 6.

Fig. 1. Distribution of the sparsity 𝛿 under different number of blocks. (a) 16 × 16, (b)
32 × 32, (c) 64 × 64, (d) 128 × 128.

Fig. 2. Sparse matrix maps with different sparse basis transformation. (a) One-
dimensional DCT, (b) Two-dimensional DCT.

2. Characteristic analysis of block-based compressed sensing sys-
tem

Based on the bottleneck of matrix size and computational complexity
in practical imaging applications, the block-based compressed sensing
system is proposed to process image blocks in parallel, which shortens
the encoding time and reduces the time of image restoration. But the
problems that come with it are:

(a) After being processed by blocks, the image’s integrity is weak-
ened, so that the sparsity of each image block is deteriorated. As shown
in Fig. 1, for a target image with a resolution of 2048 × 2048, the discrete
cosine transform (DCT) base is used for block-based sparse transform.
The ratio of the number of elements larger than a certain threshold in
the sparse vector to the size of the whole vector is defined as the sparsity
𝛿. As the number of blocks increases, the number of pixels in each block
gradually decreases, and the sparsity 𝛿 also deteriorates significantly.
Therefore, the block processing of the block-based compressed sensing
system will result in a degradation in the quality of the restored image,
and there will also be some mosaic block effect.

(b) From the above-mentioned transformation relationship between
the actual sampling process and the theoretical model, it can be known
that the original two-dimensional image needs to be reorganized into a
one-dimensional signal in the theoretical model, which also destroys the
natural property of the image as a two-dimensional signal, resulting in
further deterioration of the sparsity. Taking the Lena image with a reso-
lution of 128 × 128 as an example, the one-dimensional DCT transform
and the two-dimensional DCT transform are performed respectively, and
the obtained sparse matrices are shown in Fig. 2.
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It can be seen from Fig. 2 that the significant elements of the sparse
matrix transformed by one-dimensional DCT are mainly concentrated in
the upper half of the matrix, while the significant elements of the sparse
matrix transformed by two-dimensional DCT are mainly concentrated
in the upper left corner of the matrix, and it is obvious that the latter
has fewer significant elements and a better matrix sparsity. Therefore,
if the integration process from two-dimensional image signal to one-
dimensional signal is removed, and the two-dimensional image signal is
directly applied to the compressed sensing theory model for processing,
then the sparsity of the matrix can be improved after two-dimensional
sparse transformation, thereby improving the imaging quality.

3. Improved compressed sensing theory and imaging system

3.1. The improved theoretical model of compressed sensing

The traditional compressed sensing theory is mainly aimed at one-
dimensional signals, which has more or less limitations for imaging
systems whose target is two-dimensional image. Based on this, if the
target image is regarded as a two-dimensional signal matrix 𝑋 ∈ R𝑁×𝑁 ,
and the sparse representation after two-dimensional transformation is
𝛩 ∈ R𝑁×𝑁 , then there is 𝑋 = 𝛹T𝛩𝛹 , where 𝛹 is a sparse basis. The
measurement matrix is 𝛷 ∈ R𝑀×𝑁 and the sampling result matrix is
𝑌 ∈ R𝑀×𝑁 . The entire coded sampling process can be expressed as:

𝑌 = 𝛷𝑋 = 𝛷𝛹T𝛩𝛹 (1)

Since 𝛹 is an orthogonal matrix, there is 𝛹T = 𝛹−1, and the above
equation can be further organized as:

𝑌 ′ = 𝑌 𝛹T = 𝛷𝛹T𝛩 = 𝛺𝛩 (2)

where 𝑌 ′ ∈ R𝑀×𝑁 is called the equivalent two-dimensional sampling
result matrix, and the two-dimensional sensing matrix 𝛺 = 𝛷𝛹T.

Since the two-dimensional matrix cannot be restored directly, the
above equation needs to be split by column, then 𝑌 ′ can be expressed
as:

𝑌 ′ = [𝑌 ′
𝑐1 𝑌 ′

𝑐2 ⋯ 𝑌 ′
𝑐𝑁 ] (3)

And 𝛩 can be expressed as:

𝛩 = [𝛩𝑐1 𝛩𝑐2 ⋯ 𝛩𝑐𝑁 ] (4)

Then Eq. (11) can be disassembled as:

𝑌 ′
𝑐𝑖 = 𝛺𝛩𝑐𝑖(𝑖 = 1…𝑁) (5)

Each of the above sub-equations can be iteratively calculated by
solving the following optimization problems:

𝛩̂𝑐𝑖 = argmin ‖
‖

𝛩𝑐𝑖
‖

‖𝓁1
𝛩𝑐𝑖∈R𝑁

subject to 𝑌 ′
𝑐𝑖 = 𝛺𝛩𝑐𝑖(𝑖 = 1…𝑁) (6)

A total of N sets of iterative calculations are required. After acquiring
the sparse vectors 𝛩̂𝑐𝑖, they will be integrated into a two-dimensional
sparse matrix 𝛩̂, and then the restored target image 𝑋̂ can be obtained
by the following equation:

𝑋̂ = 𝛹T𝛩̂𝛹 (7)

3.2. Compressed sensing imaging system

According to the above compressed sensing theory model, the hard-
ware implementation scheme is presented here. The compressed sensing
system based on the improved model is similar to the block-based
compressed sensing system. As shown in Fig. 3, the hardware structure
is mainly composed of the imaging target, the front-end optical lens,
the coded aperture, the back-end optical lens and the linear array
detector. The incident light passes through the front-optical lens, the
coded aperture template, the back-end optical lens successively, and
finally reaches the focal plane of the detector.

Fig. 3. The composition of compressed sensing imaging system based on the improved
model.

Unlike the block-based compressed sensing system, the coded aper-
ture in the system is one-dimensionally coded along the 𝑦-axis direction
in the figure, and the optical signal is focused on the linear array detector
through the back-end optical lens after being encoded by the aperture.
There is a strict correspondence between the detector and the coded
aperture template, and one detector pixel corresponds to one column of
the coded aperture template. If the size of the whole image is N × N, then
the size of the coded aperture template is N × 1 and the pixel number
of the linear array detector is 1 × N.

It is assumed that the target image is matrix 𝑋 ∈ R𝑁×𝑁 , the sampling
result of the detector is vector 𝐸(𝑝) ∈ R𝑁 (𝑝 = 1…𝑚), and the encoded
template is vector 𝐶(𝑝) ∈ R𝑁 (𝑝 = 1…𝑚), in which p represents the p-th
encoding, then the entire coded sampling process can be expressed as:
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Then the elements of the measurement matrix 𝛷 in the theoretical
model are organized as follows:

𝛷 =
[

𝐶(1) 𝐶(2) ⋯ 𝐶(𝑚)
]T (9)

The elements of the sampling result matrix 𝑌 in the theoretical model
are organized as follows:

𝑌 =
[

𝐸(1) 𝐸(2) ⋯ 𝐸(𝑚)
]T (10)

After the above matrix corresponding transformation is completed,
the image restoration can be performed according to the proposed
theoretical model.

3.3. System comparison and supplementary explanation

Compared with the block-based compressed sensing imaging system,
the system adopts one-dimensional encoding method, which simplifies
the system complexity.

If the ratio between the amount of sampled data and the total amount
of image data is defined as the compression ratio 𝜂, the number of
coded sampling 𝑚𝑏 in the block-based compressed sensing system can
be expressed as:

𝑚𝑏 = 𝜂 × (𝑟 × 𝑐) (11)

And the number of coded sampling 𝑚𝑡 in the system proposed in this
paper can be expressed as:

𝑚𝑡 = 𝜂 ×𝑁 (12)

It can be seen that the number of coded sampling of both are
proportional to the compression ratio. The number of coded sampling
in block-based compressed sensing system is independent of the overall
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image size, and is only related to the size of each block. The larger the
size of each block, the more the number of sampling is required. The
number of sampling in this paper is only related to the overall image
size.

It should be noted here that it seems that the compressed sensing
imaging system proposed only encodes and samples each column of the
target image during the sampling process, and does not directly acquire
all the pixel information of the two-dimensional image. However, due
to the two-dimensional sparse transformation of the target image in the
theoretical model, it can be seen from Eq. (2) that when the system
model is organized into the standard form of the compressed sensing
theory, each element of 𝑌 ′ as the equivalent sampling result matrix
has realized the aliasing and sampling of all the pixels in the two-
dimensional image, so the coverage of image information collection is
theoretically guaranteed, which ensures the effectiveness of the method.

4. Weighted restoration strategy

4.1. The necessity of image restoration optimization

The real-time performance of image acquisition is an important
technical index in imaging system. The acquisition time of a single image
in compressed sensing imaging system mainly includes coded sampling
time, data processing and transmission time, and image restoration time.
The process of image restoration occupies a lot of time, which is the
decisive factor affecting the real-time performance of the system. The
time of image restoration is closely related to the number of iterations
which can be verified in the following experimental results. Therefore, it
is worth exploring how to obtain a higher quality image in the case that
the total number of iterations is constant during the image restoration
process. Or from another point of view, how to reduce the number
of iterations and thus shorten the restoration time in the same image
quality.

4.2. Weight coefficient generation method

In order to improve the image restoration quality within a limited
time, we consider assigning different weights to the iterative restoration
process of each column under the framework of the compressed sensing
system proposed above. It can be seen from Fig. 2 of Section 2 that
after the two-dimensional DCT transform, the significant elements of the
sparse matrix are mainly concentrated in the upper left corner of the
matrix. Therefore, with the column number increasing, the frequency
component of the signal represented by the element gradually increases,
and the value decreases rapidly. Based on the above analysis, more
restoration weights should be given to columns with smaller column
number in the sparse matrix. In addition, from the perspective that the
human eye is more sensitive to low-frequency information, the same
approach should be taken.

Based on this, we propose a weight coefficient generation method
based on frequency distribution estimation. The main idea is to obtain
the first column restoration results of sparse matrix, and then estimate
other columns of sparse matrix according to the results of this column,
and finally the moduli of other columns are taken as their own weight
coefficients. The specific method is described as follows:

In the sparse matrix 𝛩 after two-dimensional DCT transformation,
the different elements 𝜃𝑖,𝑗 represent the amplitudes of the different
frequency signals contained in the image. If the magnitudes of the same
frequency components in the image are considered to be substantially
identical, as shown in Fig. 4, the other columns of the sparse matrix
can be approximately equivalent to the known first column, that is, the
elements in the same color in the figure are equivalent. Although each
column has more elements at the bottom of the column vector than the
equivalent elements in the first column, the element value drops sharply
as the frequency gradually increases, so this part is negligible.

Fig. 4. The schematic diagram of element equivalent in sparse matrix.

According to the above equivalent analysis, the modulus of each
column can be approximated as:
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It can be known from the above estimation algorithm that the moduli
of other columns can be estimated as long as the elements in the first
column are obtained, and thus we can get the weight coefficient of each
column. The algorithm implementation flow is presented as follows:

Step1: The sampling result matrix 𝑌 is known, and 𝑌 ′ can be
calculated according to the equation 𝑌 ′ = 𝑌 𝛹T.

Step2: Calculating 𝛩̂𝑐1 according to Eq. (6), wherein the number of
iterations is the maximum value 𝑆max.

Step3: Calculating ‖

‖

‖

𝛩𝑗
‖

‖

‖

(𝑗 = 2…𝑁) according to Eq. (13).
Step4: Weight coefficient 𝑊𝑗 = 20 log(‖‖

‖

𝛩𝑗
‖

‖

‖

+ 1)(𝑗 = 2…𝑁).

4.3. Weight distribution strategy

The more iterations, the more time it takes, but the higher the quality
of the restored image. Based on the above premise, the image restoration
time can be equivalently converted to the total number of iterations
according to the computational performance of the system, and then
the number of iterations in each column is determined by the weight
coefficient.

Assuming that the total number of iterations is I, the maximum
number of iterations for each column is set to 𝑆max, and the minimum
number of iterations is 𝑆min, then the number of iterations per column
can be calculated according to the flow shown in Fig. 5.

First, the initial iterations of each column are calculated based on
weight coefficients.

𝐼𝑗 = (𝐼 − 𝑆max) ⋅
𝑊𝑗

∑𝑁
𝑗=2 𝑊𝑗

(𝑗 = 2…𝑁) (14)

Then, the number of iterations for each column is constrained
according to the maximum and minimum iterations.

𝐼𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑆max 𝐼𝑗 > 𝑆max
𝑆min 𝐼𝑗 < 𝑆min

round(𝐼𝑗 )
(15)

Furthermore, the relationship between the total number of iterations
and the given values is summarized.

𝛥 =
𝐼𝑟 − 𝐼 ′𝑟

𝐼𝑟
(𝐼 ′𝑟 =

𝑁
∑

𝑗=2
𝐼𝑗 ) (16)

where 𝛿 is a small constant. If |𝛥| > 𝛿, Eq. (17) is executed, and the
result is returned to Eq. (15). The process is reiterated until 𝛥 ≤ 𝛿 is
satisfied, then the whole iteration process is finished, and 𝐼𝑗 is output
as the number of iterations per column.
{

𝑆min = 𝑆min ⋅ (1 + 𝛥)
𝐼𝑗 = 𝐼𝑗 ⋅ (1 + 𝛥)

(17)
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Fig. 5. The flowchart for generating the number of iterations per column.

4.4. The overall framework and workflow of the system

Taking the improved compressed sensing imaging system applied in
the field of space remote sensing as an example, the whole system com-
position and workflow are shown in Fig. 6. The system on the satellite
platform mainly performs compression coded sampling of the target,
which is realized by the electric control box to complete the driving
control of the coded aperture and the data acquisition of the linear array
detector, and then the data is transmitted to the ground station via the
air-ground transmission chain. Both the weighted iterative algorithm
and the image restoration are performed by the computer on the ground
station.

Firstly, the first column 𝛩̂𝑐1 of the sparse matrix is restored according
to the received data Y, and the weight coefficient of each column 𝑊𝑗 is
generated based on the weight coefficient generation method described
in Section 4.2, and then the number of iterations for each column 𝐼𝑗
is obtained according to the weight distribution strategy described in
Section 4.3, which will guide the subsequent iterative restoration. After
the restoration of each column of the sparse matrix 𝛩̂𝑐𝑖 is completed, it
is integrated with the first column 𝛩̂𝑐1 into a complete sparse matrix 𝛩̂,
so that the final restored image can be obtained according to Eq. (7).

In the conventional imaging system, the wireless data transmission
can also be replaced by a wired data interface, the system on the satellite
platform and the ground station can also be integrated into an integrated
imaging control and data processing system, but the whole internal data
flow and algorithm remain the same.

Fig. 6. The hardware composition and workflow of the improved compressed sensing
imaging system.

5. Experimental results and analysis

In order to verify the effectiveness of the theoretical model, system
and restoration strategy proposed in this paper, the simulation exper-
iment environment is built based on Intel i5 dual-core processor and
Matlab R2017a software platform.

The target images include people, scenes and other types with a
resolution of 256 × 256. Under the premise of this parameter, the
pixel number of linear array detector in the compressed sensing system
proposed in this paper is 256, while the pixel number of area array
detector in the block-based compressed sensing system is related to the
number of blocks, which is selected as 256 here, and each block has a
size of 16 × 16 for a convenient comparison with the former.

In the experimental system, the DCT basis is selected as the sparse
transform base, and the orthogonal matching pursuit (OMP) algorithm is
used for image restoration. Considering the implementation limitation
of the coded aperture, the random Bernoulli matrix is selected as the
measurement matrix.

In order to quantitatively evaluate the quality of the restored image,
three image quality assessment criteria are adopted, including peak
signal to noise ratio (PSNR), structural similarity (SSIM), and feature
similarity (FSIM). Among them, PSNR is the most commonly used
method in image quality assessment, which simply compares the pixel
gray value of reference image and restored image, so it is not always
consistent with human subjective feeling. Based on the fact that human
visual system is good at extracting the structure information in the scene,
SSIM assesses the image by evaluating the degradation of the structural
information in the restored image, mainly including the comparison of
the brightness, contrast and structure information. From the perspective
that the human visual system mainly understands the image based
on low-level features in the image (such as step edge, zero-crossing
edge, etc.), FSIM extracts image phase consistency information and
image gradient information, and effectively acquires features of human
interest.

Through the above three image quality evaluation criteria, we can
give a more objective and comprehensive quality evaluation to the
restored image.

5.1. Parametric analysis of image restoration quality

In order to verify the universal applicability of the proposed model
and system, four target images are selected for experiment. The mean
value of 100 experimental results was used as the final output in order
to eliminate the randomness of measurement matrix.

First of all, the effects of compression ratio and number of iterations
on imaging quality were analyzed in the non-weighted compressed
sensing system based on the improved model. Figs. 7 and 8 show the
restored images of Lena and Boat under different compression ratios
and iterations, respectively. Intuitively, the restored image quality of
both improve with the increase of compression ratio. And when the
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Fig. 7. The restored images of Lena under different parameters. The number of iterations
is 256 × 80 in (a), (b), (c), and (d), where the compression ratio varies from 0.5 to 0.8.
The number of iterations is 256 × 120 in (e), (f), (g), and (h), where the compression ratio
varies from 0.5 to 0.8.

Fig. 8. The restored images of Boat under different parameters. The number of iterations
is 256 × 80 in (a), (b), (c), and (d), where the compression ratio varies from 0.5 to 0.8.
The number of iterations is 256 × 120 in (e), (f), (g), and (h), where the compression ratio
varies from 0.5 to 0.8.

same compression ratio is adopted, the image quality improves with
the number of iterations increasing.

The specific experimental results under different parameters are
recorded in Table 1. From the overall trend, the image quality of the four
targets improved with the increase of compression ratio and number of
iterations, which is consistent with the subjective evaluation results.

Only some of the data is recorded in the above table, and more
comprehensive experimental results are drawn in Figs. 9 and 10. Since
the results of the three quality assessment criteria are consistent, PSNR
will be used as the representative of image quality for the following
analysis. It can be seen from Fig. 9 that the quality of all types of images
has the same trend with the compression ratio and number of iterations,
and the peaks are obtained at the highest compression ratio and the
maximum number of iterations.

However, the PSNR obtained by different types of images is not
the same, and the PSNR of Lena and Pepper is higher, while the
PSNR of Boat and House is lower. This is mainly due to the fact that
the images of Lena and Peppers are simpler than those of the latter,
the frequency components are concentrated in the middle and low
frequency bands, and the information such as high frequency texture
is less, thus achieving better image quality.

The relationship between the PSNR and the compression ratio for the
four images is plotted in Fig. 10, when different number of iterations are
taken. On the one hand, PSNR increases gradually with the increase of
compression ratio. On the other hand, the more the number of iterations,
the higher the PSNR of the image, and with the increase of compression
ratio, the PSNR increase due to the increase in the number of iterations
becomes more significant.

Fig. 9. The PSNR of the restored images varies with the compression ratio and the number
of iterations. (a) Lena, (b) Boat, (c) Peppers, (d) House.

Fig. 10. The relationship between the PSNR of the restored images and the compression
rate, when taking different number of iterations. (a) Lena, (b) Boat, (c) Peppers, (d) House.

5.2. The results of the weight distribution strategy

On the basis of the proposed compressed sensing imaging system, the
weighted processing method proposed in Section 4 is used to optimize
the distribution of the iterations for each column in the sparse matrix,
and the results are shown in Fig. 11. With the Lena image as the target,
the compression ratio is 0.8, and the number of iterations varies from
256 × 40 to 256 × 140 with a total of six curves drawn in the figure.
It can be seen from the curves that the number of iterations decreases
gradually with the increase of the column number. As the number of
iterations increases, the overall curve rises, and the minimum number
of iterations also increases, which are in accordance with the design idea
of the algorithm strategy.
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Table 1
The experimental results of the four images at different compression ratios and number of iterations.

Images Number of iterations 256 × 40 256 × 80 256 × 120

Compression ratio PSNR (dB) SSIM FSIM PSNR (dB) SSIM FSIM PSNR (dB) SSIM FSIM

Lena

0.5 24.33 0.9460 0.7745 24.39 0.9470 0.7744 24.52 0.9494 0.7676
0.6 25.65 0.9603 0.8059 26.10 0.9647 0.8096 26.41 0.9670 0.8193
0.7 26.79 0.9695 0.8395 27.85 0.9762 0.8540 28.21 0.9781 0.8616
0.8 27.39 0.9733 0.8512 29.30 0.9829 0.8855 30.28 0.9864 0.9047
0.9 27.69 0.9752 0.8621 30.14 0.9859 0.9041 31.68 0.9901 0.9294

Boat

0.5 20.09 0.8536 0.7122 20.49 0.8679 0.7216 20.77 0.8747 0.7253
0.6 21.89 0.9021 0.7553 22.35 0.9143 0.7684 22.42 0.9156 0.7758
0.7 22.77 0.9196 0.7796 23.88 0.9386 0.8067 24.21 0.9443 0.8176
0.8 23.36 0.9301 0.7953 25.10 0.9537 0.8380 26.23 0.9645 0.8580
0.9 23.85 0.9370 0.8060 26.19 0.9640 0.8589 27.85 0.9756 0.8923

Peppers

0.5 21.78 0.9264 0.7149 22.13 0.9322 0.7254 22.67 0.9389 0.7482
0.6 23.64 0.9509 0.7738 24.16 0.9574 0.7745 24.38 0.9593 0.7850
0.7 24.60 0.9608 0.7998 25.77 0.9703 0.8241 26.40 0.9744 0.8291
0.8 25.11 0.9649 0.8141 27.14 0.9784 0.8481 28.38 0.9836 0.8748
0.9 25.61 0.9687 0.8277 27.89 0.9817 0.8682 29.68 0.9879 0.9019

House

0.5 19.88 0.8533 0.7220 20.04 0.8655 0.7347 20.06 0.8641 0.7375
0.6 21.17 0.8920 0.7545 21.50 0.9009 0.7699 21.62 0.9038 0.7723
0.7 22.12 0.9123 0.7744 22.89 0.9269 0.8104 23.58 0.9336 0.8261
0.8 22.48 0.9183 0.7887 23.98 0.9435 0.8322 24.81 0.9532 0.8521
0.9 22.83 0.9247 0.7967 24.88 0.9532 0.8507 26.33 0.9716 0.8803

Fig. 11. The results of the number of iterations per column under different total iterations.

5.3. Image restoration quality comparison when using different methods

In order to evaluate the performance of the proposed system and
weighted iterative restoration strategy, the traditional block-based com-
pressed sensing imaging system (BCS), the improved compressed sens-
ing imaging system (ICS) and the improved compressed sensing imaging
system with weighted iterative strategy (WICS) are compared and
analyzed by experimental results.

In order to eliminate the randomness of the measurement matrix,
the same generated measurement matrix is applied to the three methods
simultaneously, which ensures the comparison of the three is performed
under the same measurement matrix, avoiding the inequality due to the
randomness of the measurement matrix. Meanwhile, the mean value of
100 experimental results was also used as the final output in order to
eliminate the randomness of measurement matrix.

Taking the Lena image as an example, the restored images under
different parameters are shown in Fig. 12. Each set of images from left
to right are the results obtained by using BCS, ICS, and WICS methods,
respectively. Intuitively, WICS is superior to ICS, and ICS is superior to
BCS. And the system proposed by this paper eliminates the block effect
existing in the BCS system.

The detailed experimental results under different parameters are
recorded in Table 2. For further comparing the effects of the three meth-
ods on image quality, the color map of PSNR is drawn in Fig. 13, where
the 𝑥-axis represents the compression ratio and the 𝑦-axis represents the
number of iterations. To facilitate comparison of the three methods, the
color bars in the three sub-figures are in the same range of values. The

Fig. 12. The restored images obtained by the three methods. Each set of images from left
to right are the results obtained by using BCS, ICS, and WICS methods, respectively. The
number of iterations is 256 × 80 and the compression ratio is 0.6 in (a), (b), (c), which
are 256 × 120 and 0.6 in (d), (e), (f), and 256 × 120 and 0.8 in (g), (h), (i).

color maps in the figure from left to right are obtained by using BCS,
ICS, and WICS methods, respectively. It can be seen from the figure that
ICS is significantly better than BCS, and WICS has a slight improvement
compared with ICS.

When the compression ratio is constant, the relationship between
the PSNR of the restored image and the number of iterations are shown
in Fig. 14. PSNR increases with the increase of iterations, and there are
always the results that WICS is better than ICS, and ICS is better than
BCS under all compression ratio conditions.

When the number of iterations is constant, the relationship between
the PSNR of the restored image and the compression ratio are shown
in Fig. 15. PSNR increases with the increase of the compression ratio,
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Table 2
The experimental results obtained by the three methods under different compression ratios
and number of iterations.

Compression ratio Number of iterations 256 × 40 256 × 80 256 × 120
Imaging system PSNR (dB) PSNR (dB) PSNR (dB)

0.5
BCS 20.88 21.32 21.74
ICS 24.33 24.39 24.52
WICS 24.34 24.43 24.67

0.6
BCS 23.19 23.52 24.04
ICS 25.65 26.10 26.41
WICS 25.70 26.19 26.52

0.7
BCS 24.39 25.53 25.96
ICS 26.79 27.85 28.21
WICS 26.92 27.97 28.38

0.8
BCS 24.81 26.96 27.98
ICS 27.39 29.30 30.28
WICS 27.71 29.60 30.44

0.9
BCS 25.21 27.77 29.25
ICS 27.69 30.14 31.68
WICS 28.13 30.36 31.81

Fig. 13. The PSNR’s color map of the three methods. (a) BCS, (b) ICS, (c) WICS.

Fig. 14. The relationship between the PSNR of the restored images and the number of
iterations, when taking different compression ratios. (a) The compression ratio is 0.6, (b)
The compression ratio is 0.8.

and there are always the results that WICS is better than ICS, and ICS is

better than BCS under all number of iterations.

Fig. 15. The relationship between the PSNR of the restored images and the compression
ratios, when taking different number of iterations. (a) The number of iterations is 256 × 80,
(b) The number of iterations is 256 × 120.

Table 3
The restoration time (in seconds) of the three methods under different iterations.

Number of iterations 256 × 40 256 × 60 256 × 80 256 × 100 256 × 120

BCS 1.1490 2.1441 3.7688 6.0522 8.9329
ICS 1.1136 2.1648 3.7781 6.0331 9.2703
WICS 1.2118 2.3116 4.0366 6.3516 9.5195

According to the above analysis, the compressed sensing imaging
system proposed in this paper is significantly better than the tradi-
tional block-based compressed sensing imaging system under the same
parameters. And by using the weighted iterative restoration strategy,
the quality of the restored image is further improved. However, when
the weighted restoration strategy is adopted, the weight coefficient
generation and the number of iterations generation are added in the
image restoration process, which will inevitably result in the increase
of image restoration time, thus having a certain negative impact.

5.4. Analysis of image restoration time

In the case of different compression ratios, the computational com-
plexity of the restoration process is also different because of different
matrix sizes. In order to quantitatively compare the time costs of the
three methods, the verification is performed on the above-mentioned
software and hardware platform, and the restoration time of the three
methods under different iterations is recorded in Table 3 when the
compression ratio is 0.8. The relationship between the restoration time
and the number of iterations is plotted in Fig. 16.

It can be seen from Fig. 16 that the restoration time is positively
correlated to the number of iterations. At the same number of iterations,
the time consumption of BCS and ICS is basically the same, and that of
WICS is slightly longer. According to the previous analysis, the weighted
restoration strategy in WICS takes a little time, thus causing the above
phenomenon. On the one hand, it is verified that it is feasible to equate
the restoration time with the number of iterations in the above analysis.
On the other hand, the time consumed by the weighted processing
algorithm accounts for a very low proportion of the total restoration
time, and does not vary significantly with the increase of the number of
iterations. Therefore, it is meaningful to exchange this small time cost
for a further improvement of image quality.

6. Conclusions

Based on the traditional compressed sensing theory model, an im-
proved compressed sensing theory model is proposed in this paper, and
its hardware implementation scheme and the overall system workflow
are specified. Compared with the traditional block-based compressed
sensing system, one-dimensional encoding is adopted instead of the two-
dimensional encoding to simplify the encoding process. The experimen-
tal results show that the system proposed by this paper can significantly
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Fig. 16. The relationship between the time consumption and the number of iterations.

improve the image quality compared with the block-based compressed
sensing system under the same system conditions, and eliminate the
block effect that is common in the block-based compressed sensing
system. On the basis of this proposed system, a weighted iterative
restoration strategy based on frequency estimation is proposed, which
further improves the image quality with extremely small time cost. The
method and system proposed in this paper are more cost-effective than
the traditional block-based compressed sensing system, and provide a
better solution for the realization of the compressed sensing imaging
system.
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