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Abstract: The wave-front phase expanded on the Zernike polynomials is estimated from a 
pair of images by the use of a maximum-likelihood approach, the in-focus image and the 
defocus image, which contaminated by noise, will greatly reduce the solution accuracy of the 
phase diversity (PD) algorithm. In the study, we introduce the deep denoising convolutional 
neural networks (DnCNNs) into the image preprocessing of PD to denoise the in-focus image 
and defocus the image containing gaussian white noise to improve the robustness of PD to 
noise. The simulation results show that the composite PD algorithm with DnCNNs is better 
than the traditional PD algorithm in both RMSE of phase estimation and SSIM, and the mean 
of the RMSE of the phase estimation of the improved PD algorithm is reduced by 78.48%, 
82.35%, 71.09% and 73.67% compared with the mean of the RMSE of the phase estimation 
of the traditional PD algorithm. The well-trained DnCNNs runs fast, which does not increase 
the running time of traditional PD algorithms, and the compound approach may be widely 
used in various domains, such as the measurements of intrinsic aberrations in optical systems 
and compensations for atmospheric turbulence. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Wavefront sensing is an important part of adaptive optics systems. There are some wavefront 
sensing methods which depend on the external hardware facilities [1,2]. The others are based 
on the measured images, only. The PD algorithm [3] is in this second category. It has the 
advantage of the simple optical path. With phases expanded in Zernike polynomials [4] and 
with a pair of images, the PD algorithm can estimate both the unknown phase and the object 
under observation. The PD algorithm was proposed by Gonsalves in 1982 [3] and was 
improved by Paxman, et al. in 1994 [5] and by Lee, et al. in 1997 [6]. The theory is enhanced 
papers by Akaike [7] and Sobieranski, et al [8]. The main goal of PD is to reconstruct the 
wavefront by solving an optimization problem. For the past many years, this method has 
reached a wide range of applications [9]. However, noise-contaminated images will greatly 
reduce the accuracy and success rate of the PD algorithm. In the real environment, Gaussian 
noise is a very common image noise, especially when most sources of noise are thermal 
noise. Therefore, in this paper, we mainly verify the processing ability of the improved PD 
algorithm for in-focus images and defocus images containing Gaussian white noise. 

2. Principles 
For a space-invariant incoherent imaging system, the relations of the focus image collected in 
the focus surface and the object in the spatial domain in this optical system are [7]: 

 ( , ) ( , ) ( , ).i x y o x y PSF x y= ∗  (1) 

the relationship in the frequency domain is: 
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 ( , ) ( , ) ( , ).I u v O u v OTF u v= •  (2) 

And ( , )PSF u v can be obtained by the inverse Fourier transform of generalized pupil function 

 
2

( , ) ( ( , )) .PSF x y FT P u v−=  (3) 

In the above equations, the variables ,x y are all variables in the spatial domain. ( , )o x y  is 

the distribution functions of the two-dimensional object. ( , )i x y  is the intensity distribution of 

the image on the ideal focal plane . ( , )PSF x y  is optical system point spread function 

corresponding to the intensity distribution of an ideal focal plane image. ( , )P u v  is 

generalized pupil function for an optical system. ()FT −  is a two-dimensional inverse Fourier 

transform operation. 
The pupil function of the optical system can be represented by the modulus value ( , )A u v

and the phase ( , )u vφ . The equation is: 

 ( , ) ( , ) exp( ( , )).P u v A u v i u vφ=  (4) 

Assuming that the pupil of the optical system is an ideal pupil, the module value is in the 

range of 2 2u v D+ ≤ , ( , ) 1A u v = , the module value is in the range of 2 2u v D+ > ,

( , ) 0A u v = . In the equation, ( , )u vφ  is the unknown wavefront aberration. The phase diversity 

function can be developed by the Zernike polynomials with orthogonality in the unit circle 
[8]. 

 ( , ) ( , ).
N

i i
i

u v a c u vφ =  (5) 

Where N  is the number of the selected Zernike polynomials. The coefficients 1 3c c−  

stand for piston, tip, and tilt of the wavefront aberration, which have no effect on the quality 
of the image and can be eliminated by spatial positional transformation, so in this article we 
don't consider 1 3c c− . Of course, we can also consider 1 3c c− , and the experiment shows that 

the comparison results are similar. 
Similarly, the relations of the defocus image collected in the defocus surface and the 

object in the spatial domain in this optical system are: 

 ( , ) ( , ) ( , ).d di x y o x y PSF x y= ∗  (6) 

the relationship in the frequency domain is: 

 ( , ) ( , ) ( , ).d dI u v O u v OTF u v= •  (7) 

 
2

( , ) ( ( , )) .d dPSF u v FT P u v−=  (8) 

 ( , ) ( , ) exp ( ( , ) ( , )).d dP u v A u v i u v u vφ φ= +  (9) 

In the above equations, ( , )d u vφ  is the known defocus amount introduced which can be 

represented by the fourth term representing the defocus amount in the Zernike polynomial, b
is a known constant in the experiment: 

 4( , ) ( , ).d u v b c u vφ =   (10) 

The evaluation function is defined according to the maximum likelihood theory [9] to 
evaluate the degree of correlation between the reconstructed image and the actual image. The 
evaluation function's expression is given by Eq. (11). 
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 [ ] [ ]2 2
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) .d dE o a i x y o x y PSF x y i x y o x y PSF x y= − ∗ + − ∗  (11) 

according to Parseval theory and convolution theory 

 [ ] [ ]2 2
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) .d dE O a I u v O u v OTF u v I u v O u v OTF u v= − + −  (12) 

under the following conditions 

 
( , )

0,
E O a

O

δ
δ

=  (13) 

further derivation [5] 

 

2

2 2
,

( , ) ( , ) ( , ) ( , )
( ) .

( , ) ( , )

d d

u X V Y d

I u v OTF u v I u v OTF u v
E a

OTF u v OTF u v∈ ∈

−
=

+
  (14) 

If there is noise, then (1) becomes 

 ( , ) ( , ) ( , ) ( , ).i x y o x y PSF x y n x y∗ = ∗ +  (15) 

further derivation 

 ( , ) ( , ) ( , ) ( , ).d d di x y o x y PSF x y n x y∗ = ∗ +  (16) 

further derivation 

 

2

2 2
,

( , ) ( , ) ( , ) ( , )
( ) .

( , ) ( , )

d d

u X V Y d

I u v OTF u v I u v OTF u v
E a

OTF u v OTF u v

∗ ∗

∈ ∈

−
=

+
  (17) 

Here, ( , )i x y  is the intensity distribution of the image with noise on the focal plane,

( , )di x y∗  is the intensity distribution of the image with noise on the defocus plane. 

From Eq. (16) and Eq. (17), we can see that the noise data in the in-focus image and the 
noise data in the defocus image participate in the settlement of the PD algorithm, but the 
noise is not in accordance with the operation in the PD algorithm, this will greatly reduce the 
settlement accuracy of the PD algorithm. So the denoising algorithm could be applied to 
noisy focused and defocused images as a preprocessing stage to improve the robustness of the 
PD algorithm to noise. 

further derivation 

 

2

2 2
,

( , ) ( , ) ( , ) ( , )
( ) .

( , ) ( , )

d d

u X V Y d

S u v OTF u v S u v OTF u v
E a

OTF u v OTF u v∈ ∈

−
=

+
  (18) 

Here, we record the in-focus image obtained by the denoising algorithm as ( , )s x y , 

defocus image obtained by the denoising algorithm as as ( , )ds x y , ( , )S u v is the Fourier 

transform of the ( , )s x y , ( , )dS u v is the Fourier transform of the ( , )ds x y . 

Image denoising is an indispensable step in many practical applications,the purpose of 
image denoising is to recover data x  from a noise observation y  that follows the image 

degradation model y x v= + ,according to Bayesian, when the likelihood is known, the priori 

modeling of the image will play a central role in image denoising. In the past few decades, 
various models have been used for image prior modeling, sparse models [10–13], Markov 
random field (MRF) models [14,15], nonlocal self-similarity (NSS) models [16], gradient 
models [17].Although they have achieved good denoising effects, such algorithms are 
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difficult to achieve high performance without sacrificing computational efficiency. The prior 
model obtained can get rid of the iterative optimization process in the test phase with the 
introduction of the cascade of shrinkage fields (CSF) and the trainable nonlinear reaction 
diffusion (TNRD), but they are limited in the overall characteristics of the captured image 
structure and the scope of level of noise application. In [18], blocking-matching and 3D 
filtering is introduced in the wavefront sensing field as a preprocessing stage, this method 
realizes the denoising of unknown noise by directly modeling the priori of image by the noise 
image. However, the image prior modeling of this algorithm relies on artificial experience, 
and the complete features of the image are difficult to obtain. This means that although the 
algorithm has certain effects, there is still much room for improvement. In [19], several 
metrics that utilize regularizations based on the object and noise power spectra have been 
introduced into the PD algorithm of low signal-to-noise ratio, but the metrics also rely on 
artificial experience, so this algorithm has the same problem. 

Deep denoising convolutional neural networks (DnCNNs) [20] was first used as an image 
denoiser, the proposed very deep CNN [21] regard image denoising as a simple 
discriminative learning problem, implicitly removes the latent clean image with the 
operations in the hidden layers. 

In this study, a denoising strategy based on deep convolutional neural networks with 
residual learning is first introduced into the PD technique to improve the robustness of PD 
algorithm to gaussian white noise. This neural network structure evolved from the VGG 
network. The model training uses residual learning formulas and combines with batch 
standardization to achieve fast training and improve denoising performance. 

This network structure consists of three types of neural network layers: 
( )i  Conv + ReLU:This type of neural network layer is used in the data input layer, which is 

used to generate 64 feature maps using 64 filters of size 3*3*c, and rectified linear units 
(ReLU, max(0; ·)) are then utilized for nonlinearity。  

( )ii  Conv + BN + ReLU: This type of neural network is used in the middle layer of the entire 

neural network, which includes 64 filters of size 3*3*64, and BN is added between the 
Conv and the ReLU. 

( )iii  Conv: This type of neural network layer is used for the output layer of the entire neural 

network, and c filters of size 3*3*64 is used to reconstruct the output. 

Here c represents the number of image channels, i.e., c = 1 for gray image and c = 3 for 
color image. The structure of the used deep denoising CNN is shown in the Fig. 1. 

 

Fig. 1. The structure of the used denoising deep CNN. 

For DnCNNs, we train a residual mapping by adopting the residual learning formulation 
( ) .R y v≈ ,and then we have ( ).x y R y= − Formally, the trainable parameters Θ  in DnCNNs 

can be learned by the loss function which is the averaged mean squared error between the 
desired residual images and estimated ones from noisy input, here 1{( , )} .N

i i iy x = represents N 

noisy-clean training image (patch) pairs. 
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2

1

1
( ) ( ; ) ( ) .

2

N

i i i
i F

l R y y x
N =

Θ = Θ − −  (19) 

We clip 400 images of size 180 × 180 in the BDS500 data set to 32 × 6400 patches of size 
64 × 64, these images are used as training data set, and the standard deviation of gaussian 
white noise for the data set is set to [0 0.21].σ ∈ − We train the three channels of the data set 

at the same time, so that the well-trained DnCNNs can be applied to RGB image denoising, 
this ability will increase the settlement range of the PD algorithm [22]. However, in the 
subsequent simulation experiments, we only used the first channel of the well-trained 
DnCNNs for the denoising of gray images. An additional hundred images of the BDS500 data 
set that did not participate in the network training were used as test data set, and some 
representative test results are given below for clarity. 

The number of network layers is 20, and the weights are initialized by the method in [23], 
and we use SGD with weight decay of 0.0001, the momentum is 0.9, and the small batch size 
is 32. The learning rate is exponentially decayed from 1e-1 to1e-4. 

The CPU we used is Intel(R) Core(Tm) i5-4460 K, and the frequency is 3.20 GHz; the 
graphics processing unit (GPU) we used is NVDIA GeForce GT 730. The software version of 
Python is 3.5.2, and the software version of the Tensorflow is tensorlow-gpu-1.41, the 
training time is about 25 hours. The Fig. 2 shows the training results of this neural network 
recorded using the Tensorboard . 

 

Fig. 2. The training results of deep denoising convolutional neural networks. 

3. Numerical simulation 
In the simulation experiment, we train DnCNNs with data at different noise levels, and the 
well-trained DnCNNs has blind denoising ability in the noise training range. Therefore, it is 
not necessary to perform noise evaluation on the image contaminated by noise before image 
processing. This ability is not available in many other algorithms. 

We randomly introduce four sets of coefficients within certain range. The number of 
Zernike polynomials is 7 (c4–c10 of the fringe Zernike coefficients), the range of aberration 
coefficients is [ ]0.25 ,0.25λ λ− .For the set of aberration coefficients, we can use them to 

generate the in-focus and defocus PSF images with Fourier optics. Gaussian noise is added to 
the in-focus and defocus images to simulate the real noise conditions. We settle the PD 
algorithm through improved variable step size adaptive cuckoo search optimization algorithm 
with 30p = , 0.25aP = , the number of nest is 40, the maximum number of iterations is 1000 

[9]. The experimental parameters of the numerical simulation are set as follows, the aperture 
diameter of the optical system is 8 mm , the focal length of the lens is 180 mm , the defocus 
distance is 1.5 mm , the wave length is 632 nm , and the pixel size of the detector is 5500 nm ,

( , )d x yφ λ= . 

The root mean square error (RMSE) between calculated Zernike coefficients and true 
Zernike coefficients is calculated as Eq. (20). Where n  is the number of the aberration 
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Table 4. The average SSIM values between the defocus images contaminated by noise 
and the ideal defocus images and the average SSIM values between the defocus denoised 
images and the ideal defocus images, within the PSNR range of 40-20 dB for four sets of 

aberration coefficients. 
 

Case1 Case2 Case3 Case4 

PSNR before after before after before after before after 

20 0.2048 0.9722 0.1982 0.9738 0.2042 0.9728 0.2097 0.9744 

22 0.2741 0.9792 0.2692 0.9785 0.2791 0.9788 0.2761 0.9786 

24 0.3577 0.9832 0.3590 0.9836 0.3638 0.9836 0.3670 0.9828 

26 0.4515 0.9864 0.4539 0.9868 0.4585 0.9866 0.4629 0.9861 

28 0.5454 0.9888 0.5574 0.9892 0.5633 0.9891 0.5639 0.9886 

30 0.6434 0.9907 0.6555 0.9908 0.6559 0.9904 0.6580 0.9906 

32 0.7326 0.9921 0.7392 0.9916 0.7466 0.9918 0.7408 0.9919 

34 0.8054 0.9929 0.8140 0.9924 0.8158 0.9923 0.8159 0.9922 

36 0.8651 0.9934 0.8698 0.9927 0.8701 0.9921 0.8699 0.9925 

38 0.9085 0.9930 0.9097 0.9926 0.9112 0.9925 0.9111 0.9923 

40 0.9401 0.9939 0.9391 0.9934 0.9394 0.9935 0.9395 0.9933 

 

Fig. 3. The RMSEs between the true Zernike coefficients and calculated Zernike coefficients 
under different PSNR for four sets of aberration coefficients. 

4. Conclusion 
Image noise will have a great impact on the accuracy of PD algorithm. To improve the 
robustness of traditional PD algorithm to noise, we use the deep denoising convolutional 
neural network to preprocess the noise-contaminated in-focus image and defocus in the PD 
algorithm. The simulation results show that the improved PD algorithm which is added to the 
DnCNN has better performance than the traditional PD algorithm in RMSE of phase 
estimation and SSIM across noise levels ranging from 40 dB to 20 dB for several sets of 
aberration coefficients. In the future, we will carry out related experiments for further 
verification. 

                                                                                       Vol. 27, No. 16 | 5 Aug 2019 | OPTICS EXPRESS 22853 



Funding 
National Natural Science Foundation of China (NSFC) (11703027). 

References 
1. J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. 

Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. 
E. Winters, and B. W. Woods, “Experimental comparison of a Shack-Hartmann sensor and a phase-shifting 
interferometer for large-optics metrology applications,” Appl. Opt. 39(25), 4540–4546 (2000). 

2. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light: Sci. Appl. 3(4), e165 
(2014). 

3. R. A. Gonsalves, “Phase Retrieval And Diversity In Adaptive Optics,” Opt. Eng. 21, 215829 (1982). 
4. P. M. Johnson, M. E. Goda, and V. L. Gamiz, “Multiframe phase-diversity algorithm for active imaging,” J. Opt. 

Soc. Am. A 24(7), 1894–1900 (2007). 
5. R. Paxman, B. Thelen, and J. H. Seldin, “Phase-diversity correction of turbulence-induced space-variant blur,” 

Opt. Lett. 19, 1231–1233  (1994). 
6. D. J. Lee, B. M. Welsh, M. C. Roggemann, and B. L. Ellerbroek, “Diagnosing unknown aberrations in an 

adaptive optics system by use of phase diversity,” Opt. Lett. 22(13), 952–954 (1997). 
7. H. Akaike, “Information Theory and an Extension of the Maximum Likelihood Principle,” in Selected Papers of 

Hirotugu Akaike, E. Parzen, K. Tanabe, and G. Kitagawa, eds. (Springer New York, 1998), pp. 199–213. 
8. A. C. Sobieranski, F. Inci, H. C. Tekin, M. Yuksekkaya, E. Comunello, D. Cobra, A. von Wangenheim, and U. 

Demirci, “Portable lensless wide-field microscopy imaging platform based on digital inline holography and 
multi-frame pixel super-resolution,” Light Sci. Appl. 4(10), e346 (2015). 

9. D. Li, S. Xu, X. Qi, D. Wang, and X. Cao, “Variable step size adaptive cuckoo search optimization algorithm for 
phase diversity,” Appl. Opt. 57(28), 8212–8219 (2018). 

10. M. Elad, and M. Aharon, “Image Denoising Via Sparse and Redundant Representations Over Learned 
Dictionaries,” IEEE Trans. Image Process. 15, 3736–3745  (2007). 

11. G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis, “Single-cell RNA-seq denoising using a 
deep count autoencoder,” Nat. Commun. 10(1), 390 (2019). 

12. L. Nasser and T. Boudier, “A novel generic dictionary-based denoising method for improving noisy and densely 
packed nuclei segmentation in 3D time-lapse fluorescence microscopy images,” Sci. Rep. 9(1), 5654 (2019). 

13. D. Wu, C. Yang, P. Zhang, Z. Xu, H. Xu, X. Zhang, Z. Cao, Q. Mu, and L. Xuan, “Phase diversity technique 
with sparse regularization in liquid crystal adaptive optics system,” J. Astro. Tele., Instr., Syst. 4, 1–8 (2018). 

14. S. Huang, W. Huang, and T. Zhang, “A New SAR Image Segmentation Algorithm for the Detection of Target 
and Shadow Regions,” Sci. Rep. 6(1), 38596 (2016). 

15. S. Li, Markov Random Field Modeling in Image Analysis (Springer, 2001). 
16. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising by Sparse 3-D Transform-Domain 

Collaborative Filtering,” IEEE Trans. Image Process. 16(8), 2080–2095 (2007). 
17. Y. Weiss and W. T. Freeman, “What makes a good model of natural images?” in 2007 IEEE Conference on 

Computer Vision and Pattern Recognition (2007), pp. 1–8. 
18. H. Yu, C. Yang, X. Zihao, P.-G. Zhang, H. Xu, Z. Cao, Q. Mu, and l. Xuan, “Analysis and reduction of errors 

caused by Poisson noise for phase diversity technique,” Opt. Express 24, 22034-22042 (2016). 
19. M. R. Bolcar and J. R. Fienup, “A Comparison of Regularized Metrics for Phase Diversity,” in Frontiers in 

Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing (Optical 
Society of America, 2008), p. FMM1. 

20. K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser: Residual Learning of Deep 
CNN for Image Denoising,” IEEE Trans. Image Process. 26(7), 3142–3155 (2017). 

21. K. Simonyan, and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” 
arXiv:1409.1556 (2014). 

22. D. Li, S. Xu, D. Wang, and D. Yan, “Large-scale piston error detection technology for segmented optical mirrors 
via convolutional neural networks,” Opt. Lett. 44(5), 1170–1173 (2019). 

23. K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on 
ImageNet Classification,” in 2015 IEEE International Conference on Computer Vision (ICCV) (IEEE, 2015), pp. 
1026–1034. 

 

                                                                                       Vol. 27, No. 16 | 5 Aug 2019 | OPTICS EXPRESS 22854 




