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Differential optical transfer function (dOTF) is a promising
analytic image-based wavefront sensing approach, which is
simple in both hardware implementation and mathematical
operation. However, there is one deep-rooted problem in-
herent in this approach, i.e., the essential trade-off between
the signal ratio and resolution due to the effect of convo-
lution. In this Letter, a cross-iteration deconvolution strat-
egy is proposed to solve this problem with two different
dOTFs, based on the understanding of an underlying prior
knowledge when pupil blockage is used to introduce pupil
modification. This Letter contributes to the development of
a deterministic, efficient, and precise image-based wave-
front sensing technique. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.004283

Differential optical transfer function (dOTF) is a new and
promising image-based technique for measuring the complex
pupil field (phase and amplitude) of an optical system.
Unlike other image-based wavefront sensing methods, such
as phase retrieval which involves Gerchberg–Saxton iterative
transformation or iterative nonlinear optimization [1,2], the
dOTF algorithm is analytic and non-iterative. This method
is particularly suitable for the phasing of extra-large segmented
space telescopes. It can directly determine the phasing errors
(piston and tip-tilt) of all segments through a simple math-
ematical operation, while it is very hard for the iterative phase
retrieval algorithms to search the true set of phasing error
parameters, especially when the number of segments is particu-
larly large.

The principle of the dOTF wavefront sensing approach is
shown in Fig. 1 [3–6]. It is, in principle, a diversity technique
that works by collecting two star images with a localized modi-
fication introduced into the pupil of the telescope for one of the
star images. The pupil modification can be in phase, amplitude,
or both. The collected two point spread function (PSF) images
are Fourier transformed and subtracted from each other, result-
ing in a dOTF. The obtained dOTF includes the estimate of
the complex field over the majority of the pupil, along with a

second complex conjugated field image reflected about the
location of the pupil modification.

However, there is one deep-rooted problem inherent in this
method, i.e., the essential trade-off between the intensity of the
dOTF signal and the resolution of the recovered complex pupil
field. In effect, the complex pupil field included in the dOTF is
blurred by convolution with the complex conjugate of the pupil
modification. Considering that the OTF can be expressed
as auto-correlation of the pupil field, the dOTF can then be
given by

dOTF � �ψ � δψ� ⊗ �ψ � δψ�� − ψ ⊗ ψ�, (1)

where ⊗ represents correlation operation, and � means the
complex conjugate; ψ is the pupil field, and δψ is the pupil
modification. Equation (1) can further be rewritten as

dOTF � ψ ⊗ δψ� � ψ� ⊗ δψ � δψ ⊗ δψ�: (2)

We can see that the dOTF includes three overlapping terms.
Each term is a correlation between two field factors: either the
unmodified pupil field (ψ) or the pupil modification (δψ).
Cross-correlating the pupil modification with the pupil field
blurs the result and limits the spatial resolution of recovered
wavefront phase map.

Therefore, it seems that a smaller modification area will be
preferred if a higher resolution of the recovered wavefront map

Fig. 1. Illustration of the principle of the dOTF wavefront sensing
method.
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is required. However, a smaller modification area also means a
smaller change in OTF and, thus, a lower signal of dOTF will
be obtained, which can easily be submerged by image noise
(photon and detector noise are always present). Taking this fact
into consideration, in practice, we have to increase the area of
the modification in the pupil to increase the signal-to-noise ra-
tio (SNR) of the dOTF, while the resolution (or accuracy) of
the recovered wavefront phase map is restricted due to the blur-
ring effect inherent in this method.

The blurring effect due to convolution is illustrated in
Fig. 2. Here we are supposing that the dOTF is used to sense
the phasing error of a segmented telescope. Pupil modification
is introduced by blocking one segment near the edge of pupil.
Comparing the original phase shown in Fig. 2(c) and the phase
of the dOTF complex field (i.e., the recovered phase), we can
see that the recovered phase is very blurred, and the resolution
of the recovered phase is greatly decreased. Therefore, the
dOTF method cannot be directly used for high-resolution
phase recovery.

Fortunately, we can overcome this blurring problem using
the technique of deconvolution. Previously, a deconvolution
method was introduced to undo the detrimental effects of
the extended pupil field change [7], and simulations are per-
formed to demonstrate the effectiveness of it. However, the
premise of this deconvolution method is the accurate knowl-
edge of the complex pupil modification, which is actually
unknown to us in practice. While it may seem that we can in-
troduce a known phase change with a known piston or tip-tilt
change of a sub-aperture, in effect, the complex pupil modifi-
cation is still not known. Suppose that we use the vector ~p ≡
Aeiθ to represent an unknown complex number (A is the mag-
nitude and θ is the azimuth angle). Even if the phase change,
Δθ, is known to us, we still do not know the change of this
complex number, Δ~p (Δ~p ≡ Aei�θ�Δθ� − Aeiθ). Therefore, at
present, this deconvolution method can hardly be applied to
practical situations.

In this Letter, we propose a novel deconvolution strategy
without the need for accurate knowledge of the complex pupil
modification in advance. The first important step is choosing a

suitable type of pupil modification. In this Letter, the pupil
modification is introduced by blocking a portion of the pupil
near the edge of it. The most important reason for why we use
transmission blockage rather than local phase change to intro-
duce dOTF pupil change is that the complex field of pupil
modification has inherent relations with sn unmodified pupil
field in the area of pupil modification. The pupil field of the
modification area after blocking becomes zero and, therefore,
the complex field of pupil modification (the difference between
the modified pupil field after blocking and the unmodified
field) is the opposite of the unmodified pupil field in the area
of pupil modification, i.e.,

δψ�ρx , ρy� �
�
−ψ�ρx , ρy�, if �ρx , ρy� ∈ D,
0, if �ρx , ρy� ∉ D, (3)

where �ρx , ρy� represents the coordinate position of a point in
the pupil plane, and D represents the area of pupil blockage.
Revealing and understanding this underlying prior knowledge
is the basis of our deconvolution method.

Then a cross-iteration strategy is further proposed for the
deconvolution of the dOTF using an additional dOTF (which
corresponds to a different pupil modification). The schematic
diagram is shown in Fig. 3. The two different dOTFs can pro-
vide two estimated pupil fields with different regions of overlap.
The pupil field in the second modification region can be esti-
mated from the first dOTF. Then, utilizing Eq. (3), we can
estimate the second complex pupil modification, which can
be used for deconvolution of the second dOTF. Therefore,
the first step of this strategy is to estimate the second complex
pupil modification (δψ2) using the first dOTF according to
Eq. (3), and perform deconvolution for the second dOTF.
(The specific deconvolution process will be presented later.)
Meanwhile, we suppose that we know the position and size
of the blocked region, since pupil modification is usually arti-
ficially introduced by ourselves in practice. Note that the
accuracy of δψ2 is affected by the convolution inherent in
the first dOTF. Consequently, the performance of the first de-
convolution is restricted. On the other hand, we can gradually

Fig. 2. Illustration of the blurring effect due to convolution inherent
in the dOTF method. (a) shows the magnitude of the original pupil
function for a segmented telescope. (b) shows the magnitude of the
modified pupil function needed in the dOTF method. (c) shows
the phase of the original pupil function, and (d) shows the recovered
phase. We can see that the recovered phase is very blurred, and the
accuracy is low.

Fig. 3. Schematic diagram of the cross-iteration deconvolution
strategy for dOTF wavefront sensing. The amplitudes of the pupil
and OTF are not shown in this figure.
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improve the performance of deconvolution in a cross-iteration
form shown in Fig. 3. Therefore, the second step of this strategy
is to estimate the first pupil modification (δψ1) from the
initially deconvolved second dOTF according to Eq. (3),
and perform deconvolution for the first dOTF. Then we will
obtain a more accurate estimate of δψ2 from the deconvolved
first dOTF, which contributes to the deconvolution of the sec-
ond dOTF. This deconvolution process is iterative, but deter-
ministic. After each iteration, the accuracy of the estimated
pupil modification (δψ) is improved which, in turn, leads to
better performance of the subsequent deconvolution process.
After several times of iteration, an accurate pupil field free from
the effect of convolution can be obtained.

We continue to present the specific deconvolution process
with an estimated pupil modification (δψ). The deconvolution
of the dOTF is better performed in the frequency space. Using
Fourier transformation, Eq. (2) can be rewritten as [7]

FfdOTFg � ΨδΨ� �Ψ�δΨ� δΨδΨ�, (4)

where Ff·g represents Fourier transform operation, and Ψ and
δΨ are the Fourier transforms of ψ and δψ , respectively.
Equation (4) can be rewritten as

FfdOTFg
δΨ� � Ψ�Ψ� δΨ

δΨ� � δΨ, �δΨ� ≠ 0�: (5)

Then inverse Fourier transform is further performed, and we
have

F−1

�
FfdOTFg

δΨ�

�
� ψ � ψ� ⊗ δψ 0 � δψ , �δΨ� ≠ 0�,

(6)
where

δψ 0 � F−1

�
δΨ
δΨ�

�
, �δΨ� ≠ 0�, (7)

Comparing Eq. (6) with Eq. (2), we can see that the pupil field
ψ in Eq. (6) is no longer blurred by convolution with the com-
plex conjugate of the pupil modification, δψ�. More specifi-
cally, in the region excluding the overlap area, ψ can be
given by

ψ�ρx , ρy� � F−1

�
FfdOTFg

δΨ�

�
,

�δΨ� ≠ 0, �ρx , ρy� ∉ D�:
(8)

In practice, we can use a mask to obtain ψ from the
deconvolved dOTF.

In the presence of image noise, Eq. (5) should be modified;
otherwise, the recovered phase will contain some random sharp
peaks. According to the principle of Wiener filter, the term
1∕δΨ� can be modified as [7,8]

δΨW � 1

δΨ� ·
δΨ� · δΨ

δΨ� · δΨ� 1∕SNR
, �δΨ� ≠ 0�, (9)

where 1∕SNR is introduced to suppress the effect of noise near
the nulls of the dOTF signal. Then Eq. (5) can be modified as

Ψ̃�FfdOTFg ·δΨW

�FfdOTFg · 1

δΨ� ·
δΨ� ·δΨ

δΨ� ·δΨ�1∕SNR
, �δΨ� ≠ 0�: (10)

In noise-free conditions, 1∕SNR is equal to 0, and the value of
δΨ� ·δΨ

δΨ� ·δΨ�1∕SNR is equal to 1, i.e., Eq. (10) is the same as Eq. (5) in

this case. In the presence of image noise, the term 1∕SNR can
mediate the strong random sharp peaks, where the pupil modi-
fication is very small or even zero which will amplify the noise.
Considering that it is difficult to obtain a certain SNR in prac-
tice, the selection of an appropriate parameter Γ � 1∕SNR is
the key to ensure the accurate recovered phase without random
sharp peaks.

Note that in the cross-iterative deconvolution process the
estimate of the pupil modification (δψ) used for deconvolution
of the corresponding dOTF is actually obtained from another
dOTF with a different region of pupil modification. For exam-
ple, in the deconvolution of dOTF 2, δψ2 is estimated using
the first dOTF, according to Eq. (3):

δψ2�ρx , ρy� �
�
−ψ �1�

2 �ρx , ρy�, if �ρx , ρy� ∈ D2,
0, if �ρx , ρy� ∉ D2,

(11)

where D2 represents the region of the second pupil modifica-
tion, and ψ �1�

2 represents the pupil field in the region of second
pupil modification estimated from the first dOTF.

To simulate noise, we model each image to have Gaussian
CCD read noise with a standard deviation of 15e− and a dark
current of 0.1e−∕s over a 1 s integration time. The photon noise
which is dependent on intensity follows a Poisson distribution.
The peak pixel SNR (PSNR) is defined as

PSNR � 20 log10

0
B@ Speakffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Speak � σ2read � σ2dark

q
1
CA, (12)

where Speak is the peak pixel value of the noise-free image,
and σ2read and σ

2
dark are the variances associated with the readout

noise and the dark current noise at each pixel, respectively.
Simulations will be performed to evaluate the effectiveness

of the proposed cross-iteration deconvolution strategy in the
noisy conditions. The peak of the PSF is set to 0.1 million pho-
tons, which is restricted to full well electron numbers. Then the
final peak pixel PSNR is approximately equal to about 50 dB.
In this case, the results of dOTF wavefront sensing with the
proposed cross-iteration deconvolution strategy and Wiener fil-
ter are shown in Fig. 4. The residual root-mean-square errors
(RMSEs) between the recovered phase and original phase dur-
ing the cross-iteration deconvolution process are shown in
Fig. 5. We can see that due to the presence of noise, the re-
covered phase map becomes a little rugged and blurred.
However, the cross-iteration deconvolution strategy is still ef-
fective for a comparative large scale of phase aberrations (in-
cluding piston and tip-tilts of each segment randomly
selected in the range of �−0.5λ, 0.5λ� ). The final RMSE is about
0.01λ. The convergence efficiency is high, even in the presence
of image noise.

Monte Carlo simulations are further performed to validate
the effectiveness of the proposed deconvolution method. On
one hand, two different noise levels are considered, and the
PSNRs for these two cases are 60 and 40 dB, respectively.
For each case, 100 sets of piston and tip-tilt terms are randomly
generated within the range of �−0.5λ, 0.5λ�. For each set of
phasing errors, three PSFs corresponding to the full pupil
and two different modified pupils are generated according to
the principle of Fourier optics. These three PSFs are then used
to recover the introduced phasing error with the proposed
method. The results of the Monte Carlo simulations are shown
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in Fig. 6. We can see that the proposed deconvolution method
is effective for both of the cases, and an acceptable residual
RMSE can be obtained.

On the other hand, we further demonstrate the effectiveness
and accuracy of the proposed method for different phase scales
and different noise levels. The results are presented in Fig. 7,
which shows how the accuracy of the proposed approach
changes with the phase scale and noise level.

To conclude, this Letter proposes a novel and efficient ap-
proach for deconvolution of dOTF wavefront sensing using
two different dOTFS, without the knowledge of the complex
field of pupil modification. The key step is revealing and under-
standing an underlying prior knowledge when pupil blockage is
used to introduce pupil modification, i.e., the complex field of
pupil modification is the opposite of the unmodified pupil field
in the area of pupil modification. On this basis, a cross-iteration
strategy is further proposed to gradually improve the perfor-
mance of deconvolution. The cross-iteration deconvolution
process is deterministic and has a high convergence efficiency.
The effectiveness of the proposed approach has been validated
for different phase scales (mainly including piston and tip-tilts
of each segment) and different noise levels. It is shown that the
accuracy is higher than 0.025λ when the PSNR is higher than
40dB. This Letter can greatly improve the resolution and ac-
curacy of dOTF wavefront sensing and contributes to the de-
velopment of deterministic, efficient, and precise image-based
wavefront sensing technique.
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Fig. 4. Results of cross-iteration deconvolution in the noisy condi-
tion (PSNR ≈ 50 dB). (a) shows the original phasing errors of a seg-
mented pupil. (b) shows one intermediate result of the dOTF phase
during the cross-iteration process. (c) shows the final result after several
times of cross-iteration. Comparing (a) and (c), we can see that the
proposed approach is effective in noisy condition.

Fig. 5. Residual RMSEs between the recovered phase and original
phase during the cross-iteration deconvolution process in the noisy
conditions (PSNR ≈ 50 dB). We can see that the final RMSE after
several times of iteration is about 0.01λ in the noisy conditions.

Fig. 6. Monte Carlo simulations for dOTF wavefront sensing with
the proposed cross-iteration deconvolution strategy for the case of a
high PSNR (60 dB) and the case of a comparatively low PSNR
(40 dB). We can see that the proposed strategy can be applicable
to both cases, while the accuracy actually decreases for the case of
a low PSNR.

Fig. 7. Monte Carlo simulations for dOTF wavefront sensing with
the proposed cross-iteration deconvolution strategy for different phase
scales and different noise levels.
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