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Abstract
We present the probability density function (PDF) for the residual wavefront variance of an
adaptive optics system that includes control error, the fitting error of a deformable mirror, and
Hartmann sensor detecting noise. The PDF is directly connected to adaptive optics system
parameters and the spatiotemporal strength parameters of atmospheric turbulence, and it can be
described as a generalized Chi square distribution. Our results provide a more precise theory for
adaptive optics systems compared to the current theory based on the ensemble average. Thus,
this study can contribute to the development of high-resolution and high-stability adaptive optics
systems for astronomy and optical communications in the atmosphere.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Adaptive optics (AO) systems are widely applied in astro-
nomical imaging and atmospheric optical communications
because of their ability to correct wavefront aberrations [1–6].
The current theory for AO systems is based on the ensemble
average, and it provides the relationship between system
parameters and average residual wavefront variance. Tyson
and Hardy [7, 8] presented most of the ensemble equations for
AO systems in their books. The effectiveness of ensemble
equations relies on a single fact: if we design an AO system
with a mean wavefront variance of 1 rad2, 50% of images
probably have a quality better than 1 rad. Moreover, there is a

certain probability (∼10−4) of obtaining excellent images
with a Strehl ratio of 0.9. However, the exact probability for
the distribution of wavefront variance or image quality can
never be determined using only current ensemble average
results.

A Strehl ratio of over 0.9 is required for the AO systems
used in large telescopes for extrasolar planet observations
[9, 10]. However, building an AO system with an average
Strehl ratio of 0.9 that uses visible wavelength, as expected in
next-generation AO (NGAO) systems, is a technical chal-
lenge [11]. Lucky imaging may be required for AO; this
would require research on how ‘lucky’ an AO system is. The
current ensemble equations of AO cannot provide the tem-
poral variation information of wavefront spatial variance,
which makes the stability and accuracy required by NGAO
difficult to analyze [11].

The stability of an AO system becomes extremely
important when it is applied in optical communications
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through the atmosphere. Optical communications systems
require high availability or stability. A given data package
cannot be discarded as in astronomical imaging. If the AO
characteristics for imaging and communications are com-
pared, the 1000th-qualified (for a given threshold) AO
wavefront compensation for imaging may be acceptable for a
quasi-static astronomical object. In contrast, such a perfor-
mance would mean an unacceptable bit error rate of 10–3 for
an optical communications link. Therefore, an AO system
for imaging can have low availability, but an AO system for
optical communications must have extremely high stability.

Generally, the large difference in information bandwidths
for imaging and communications requires different analysis
methods for AO systems in different scenarios. The frequency
of astronomical imaging has a magnitude of 1 Hz. The closed-
loop bandwidth of an AO system is hundreds of hertz, and the
bit rate for optical communications can be in gigahertz.
Imaging quality is approximately the average of hundreds of
frames with AO compensation. Thus, the ensemble method is
applicable to AO design. On the contrary, millions of signal
bits are contained in one sample interval of AO compensa-
tion. Hence, communications performance can only be pre-
cisely calculated with the probability distribution of the AO
compensation metric, which has a nonlinear correlation with
the bit error rate [12].

In 2008, Gladyz et al investigated the temporal varia-
bility and statistics for the instantaneous Strehl ratio of AO
compensation and presented a three-parameter gamma dis-
tribution model for AO wavefront variance [13], which they
used to discuss the distribution of the Strehl ratio. Canales and
Cagigal investigated the speckle statistics of partially com-
pensated AO system [14, 15]. Their works gave the patterns
of the AO correction performance indexes such as phase
variance, Strehl ratio and received speckle on image plane.
However, the relationship between the distribution model and
AO system parameters in the form of equations has not been
reported yet. In 2016, we presented the probability density
function (PDF) of an AO system as a function of the closed-
loop bandwidth and atmospheric Greenwood frequency [16].
In this study, we integrate control error, fitting error, and
Hartmann sensor detecting error to produce a comprehensive
PDF equation for an AO system with determined parameters.

The principle of this work is based on a linear system
description of an AO system, where the Zernike coefficients
of a reconstructed wavefront are a linear combination of
subaperture centroid vectors from different error sources. We
can analyze the probability distribution of wavefront error
from the randomness of the centroid errors corresponding to
residual wavefront error.

2. Hartmann sensor detecting error

The typical structure of an AO system is shown in figure 1. A
wavefront aberration is sensed by a Hartmann sensor. A
wavefront controller controls a tilt mirror (TM) and a

deformable mirror (DM) to correct atmospheric tilt and high-
order aberration separately in real time. The four main com-
ponents constitute the independent TM and DM closed-loops,
and the residual wavefront error of the AO system is mainly
determined by the error factors in these four components.

In general, only two main types of noise are analyzed in
the Hartmann sensor detecting error: photon shot noise and
readout noise [17]. We can neglect high-order aberrations and
assume that only tilt exists on the subapertures of the Hart-
mann sensor when the AO is in a closed loop. Thus, all spots
on the subapertures have an ideal Airy profile with different
center shifts. As shown in figure 2, the coordinate on a sub-
aperture is OXY after the Hartmann sensor is calibrated. The
other coordinate, oxy, is located at the center of the exact Airy
spot. Hence, r0 denotes the centroid shift on the subaperture.
Here, we only calculate the x value of centroid error. The
centroid error on the y axis is statically identical to that on the

Figure 1. Structure of a typical AO system.

Figure 2. Coordinate definition for the subaperture of a Hartmann
sensor.
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x axis. Therefore, the centroid error due to detecting error can
be calculated from the sums on all X coordinates as
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where K denotes the received photon count at coordinate X,
K0 denotes the corresponding photon count without noise,
and K− K0 is the photon fluctuation caused by noise. If we
define the spot centroid without noise as X0, then
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If the X coordinate is expressed as = +X X x,0 where the
zero point of the x coordinate is the centroid of the spot, then
equation (1) can be rewritten as
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Clearly, the centroid error due to the Hartmann sensor is
determined by the signal-to-noise ratio and spatial distribution
of noise.

Here, we want to focus the effect of noise, therefore, only
tilts on Hartmann subaperture are considered by assuming the
Hartmann sensor has adequate spatial sampling frequency.
Otherwise, the sampling error of Hartmann subapertures
should be included.

2.1. Photon shot noise

For photon shot noise, the received photon count, K, is ran-
domly distributed as a Poisson distribution with expectation

=E K K0( ) and variance =D K K .0( ) The expectation of the
photon count on the subaperture is centrosymmetric because
it is proportional to the intensity profile of the spot. Therefore,
we can calculate the centroid error caused by shot noise in
polar coordinates, as shown in figure 3. Then, we can express
centroid error as
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where I0 is the peak intensity, λ is the wavelength, f and dl are
the focal length and diameter, respectively, of the microlens
of the Hartmann sensor, and J1(·) is the first-order Bessel
function of the first kind.

For each subaperture, the denominator in equation (4) is
the total photon count in one frame image. It follows the
Poisson distribution, and its average is
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To calculate the value of the numerator in equation (4), we
consider the random variable series in the inner part of the sum

q-K K cos ,i i0{( ) } where subscript i denotes area qi rdrd( ) at
polar coordinates qr, .i( ) Clearly, random variable series

q= -P K K cosi i i0( ) are independent of each other, but they
have different PDF functions and a corresponding expectation,
m = =E P 0,i i( ) and variance, s q= =D P Kcos .i i i
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Figure 3. Photon count profile in polar coordinates.
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In equation (9), q p= d k2 0 when  ¥k . Then,
- <K K si n0∣ ∣ is always satisfied when ring width >dr 0.

Thus, the limit of equation (9) is zero when positive integer p
approaches infinity. Therefore, according to the Lyapunov
condition of the central limit theorem, the sum of the inner
term of the numerator in equation (4), i.e.å q-

q
K K cos ,0( )

is a Gaussian random variable, and the value of the numerator

in equation (4) is the linear combination of Gaussian random
variables, N s0, .n

2( ) Consequently, the value of the numerator
in equation (4) follows a Gaussian distribution with zero
mean and variance:
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We can calculate equation (10) in the integral form as
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where R is the radius of the area on the Hartmann sensor
corresponding to one subaperture. Considering that
equation (11) diverges when  ¥R , we can set the second
dark ring as the integral radius in which most photons of the
Airy spot are detected, i.e. l=R f d2.233 .l Then, we have
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For two independent random variables A and B, the variance
D A B( )/ approximately equals to D A E B2( ) ( )/ when

=E A 0( ) and ááD B E B2( ) ( ) [18]. In equation (4), the
numerator obeys Gaussian distribution with zero mean value;
the denominator obeys Poisson distribution, its variance and
expectation å å=D K E K( ) ( ) =V , and V 1 (namely

å åááD K E K2( ) ( )). Therefore, if the inequality of the total
photon count among all subapertures due to scintillation can
be neglected, every element in the centroid error vector, zph,
caused by photon shot noise has the same variance. Its value
can be calculated by connecting equations (4), (5), (7), and
(12),
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On other side, we have å å=D K E K( ) ( ) for the total
photon count of the subaperture spot on Hartmann sensor, the
variation ofåK is about several åK ,0 which meansåK

could be approximated as a constant (i.e.åK0) for a practical
AO system in which the subaperture spots have over hun-
dreds of photons. Therefore, the centroid error Dx in
equation (4) approximately obeys Gaussian distribution.

Note that the equivalent Gaussian width of the Airy spot
is s l= f d0.45 .A l Hence, equation (13) provides mostly the
same results as Cao and Yu [19]. The centroid error variance
of photon shot noise is inversely proportional to the total
photon count, and it is affected by the parameters for the
microlens of the Hartmann sensor according to equation (13).

Figure 4. Simulation of the fitting error: (a) configuration of the 61-
cell deformable mirror, (b) fitting errors of Z5 and Z5 5 on the X axis,
and (c) fitting errors of Z20 and Z2 20 on the x axis.
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2.2. Readout noise

The readout noise on Hartmann sensor pixels follows a
Gaussian distribution. Thus, the centroid error from readout
noise can be calculated according to equation (3):
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where Pij is the ideal photon count on pixel, nij is the noise
equivalent photon count on pixel ij, and xij is the coordinate
of pixel ij. The numerator in equation (14) is a linear com-
bination of Gaussian random variables. The sum also follows
a Gaussian distribution. Moreover, the centroid error caused
by readout noise can still be considered as a Gaussian random
variable, similar to the analysis of photon shot noise.

Note that the zero point of the coordinate is located at the
center of the spot. Thus, the mean value of the numerator in
equation (14) is zero, and its variance is [19]

s
s

=
-HL L

V

1

12
, 15r

rd2
2 2

2

( ) ( )

where srd
2 denotes the readout noise variance at each pixel and

L and H are the numbers of pixels in the X and Y directions,
respectively. The centroid variance caused by readout noise is
inversely proportional to the square of spot power and pro-
portional to readout noise variance.

3. Fitting error

An AO system is typically analyzed as a linear system. The
temporal characteristics of the fitting error of a DM can be
modeled in the same manner. This implies that (1) the fitting
error of a DM is the linear sum of each Zernike mode when
mode coupling is neglected, (2) the spatial shape is similar
when single modes with different magnitudes are fitted, and
(3) the magnitude of fitting error is proportional to the mag-
nitude of the fitted wavefront.

To examine these three assumptions, we modeled a 61-
cell DM to fit the Zernike mode, Z x y, .m ( ) The fitting error for
Z x y,m ( ) is [20]

å= -
=

s x y Z x y b H x y, , , , 16m m
k

k k
1

61

( ) ( ) ( ) ( )

where H x y,k ( ) indicates actuator influence functions and bk

denotes the related coefficients of actuators. The actuator
arrangement used in the simulation is shown in figure 4(a).
The white points denote the centers of the actuators. We used
this DM to fit the fifth-order and 20th-order Zernike modes,
Z5 and Z20, with different magnitudes. The residual errors on
the X axis in arbitrary units (AU) are presented in figures 4(b)
and (c). The linear characteristics of the DM can be clearly
observed. If the fitting error of Z5 is s x y, ,5( ) then the fitting
error of Z5 5 is equal to s x y5 , .5( ) The proportionality between
the curves is consistent at all points.

The fitting error function, s x y, ,m ( ) for the Zernike mode
of order m is determined by the configuration and actuator
influence functions of the DM. s x y,m ( ) can be measured
using an interferometer when the DM is used to fit each
Zernike mode. Then, the centroid error vector, cm, from
s x y,m ( ) can be determined when the configurations of the
DM and Hartmann subaperture are matched. cm comprises the
x and y centroid errors caused by s x y, ,m ( ) and it can be
expressed as the product of the average slope and focal length
of the microlens on each subaperture.
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Here, N is the number of subapertures of the Hartmann sensor
and f is the focal length of the microlens. á ñn· represents the
spatial average on subaperture n. Here, we assume that the
spatial frequency of the Hartmann sensor is unlimited; hence,
aliasing error is neglected.

According to Noll’s analysis, the Zernike coefficients
of Kolmogorov turbulence am have a Gaussian distribution
with an average of zero [21]. Therefore, the total centroid
error vector is the linear combination of all Zernike modes:

å= az c . 18f
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The variance of am is only determined by the radical
order, n, of the corresponding Zernike mode:
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where G(·) is the gamma function, D is the telescope dia-
meter, and r0 is the atmosphere coherent length (or Fried
constant). We assume that the fluctuations of the Zernike
modes are independent. Equations (18) and (19) indicate that
the centroid error vector caused by the DM follows a
Gaussian distribution. The variance vector corresponding to
zf is
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4. PDF for the residual wavefront variance

The Zernike coefficient vector, At, due to insufficient control
bandwidth has a Gaussian distribution [16], and the variance
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of each element is
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where fTG is the tilt Greenwood frequency of atmospheric
turbulence, -ft 3dB is the tilt-control system bandwidth (3 dB
cutoff frequency), fG is the Greenwood frequency of high-
order Zernike aberrations, -fd 3dB is the bandwidth of the DM
control loop, and M is the Zernike mode number in the
wavefront reconstruction.

We can obtain the Zernike coefficient vector by adding
control error, detecting error, and fitting error:

= + + +A R z z z A , 22ph r f t· ( ) ( )

where R is the constant reconstruction matrix of the AO
system.

All elements in the vectors on the right side of
equation (22) follow a Gaussian distribution. Consequently,
as the sum of a linear combination of Gaussian random
variables, each element in A follows a Gaussian distribution
with zero mean. Their variances, s ,m

2 can easily be calculated
by utilizing the above equations:
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In equation (23), the atmospheric fluctuations of Zernike
mode amplitudes are assumed to be approximately indepen-
dent. Our simulation shows that the effect of the covariance of
Zernike coefficients on the PDF of the residual wavefront is
negligible. However, a strict expression can be obtained using
Karhunen–Loève modes, in which equations (17) and (19) are
replaced by the results of the Karhunen–Loève expan-
sion [22, 23].

If we use the standard Zernike polynomials with unit
variance, the total residual wavefront (spatial) variance of an
AO system is equal to the sum of the squares of the elements
of A:

s = A A. 24wf
T2 ( )

According to probability theory, the temporal variation in the
residual wavefront (spatial) variance of an AO system follows
the generalized c2 distribution. Its PDF is extremely com-
plicated, and it could be approximated by a single-gamma
distribution with the same mean and variance [24].

We can also rewrite equation (24) in the following form:

ås =
=

A , 25wf
m

M

m
2

1

2 ( )

where element s~A N 0, .m m
2( ) Then, it is easy to determine

that Am
2 follows the gamma distribution, sGamma 1 2, 2 .m

2( )
The PDF is given by

s
s

=
G

--f A A
A2

1 2
exp

2
, 26m m m

m

m

2 2 2 1 2
2

2
( )

( )
( ) ( )

⎛
⎝⎜

⎞
⎠⎟

where G(·) is the gamma function. The PDF of swf
2 can be

obtained by the consecutive convolution of all f A .m
2( ) After

the PDF of the wavefront variance of an AO system is
obtained, the index of availability (or stability) could be
calculated by the integral of the PDF of wavefront variance
from zero to a given upper boundary, as discussed in our
previous work [16].

We examined the PDF equations using the residual
wavefront data of an AO system for a 1.8 m diameter tele-
scope operated by the Adaptive Optics Laboratory of the
Chinese Academy of Science [25, 26]. This AO system
consists of two closed loops to independently control its TMs
and DMs with 127 actuators using a proportional integral
controller. The Hartmann sensor runs at 0.55 μm with an
image acquisition frequency of 2000 Hz. The data were
measured for two stars with magnitudes of 2.9 and 1.6, and
the corresponding atmospheric coherent lengths were 7.9 cm
and 9.3 cm at 0.55 μm, respectively. Each measurement
consisted of 10 000 frames of wavefront data acquired in 5 s.

The wavefront data were reconstructed from the first 35
Zernike polynomials. We found that the histogram of every
Zernike coefficient strongly agreed with the Gaussian func-
tion with different variances. The PDFs of residual wavefront
variance were calculated using the wavefront data and
theoretical equations. The results are shown in figure 5.

As shown in figure 5, the theoretical analysis of the PDF
of residual wavefront variance agrees well with the closed-
loop AO system data. Comparing the PDF curves between
Mag=2.9 and Mag=1.6, their residual high-order aberra-
tions are almost the same. The difference mainly arises from
different tilt correction performances, which show a large tail
on the right of the PDF curve. The large tail would con-
siderably degrade long exposure image quality and receiving

Figure 5. PDFs for the residual wavefront variance obtained from the
measured wavefront data and theoretical analysis.
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efficiency in optical communication. Therefore, the primary
object of AO optimization is to eliminate the tail of the PDF
curve of wavefront variance. In other words, we should
improve the tilt correction ability of an AO system first by
increasing the control bandwidth of the TM, as discussed in
[14]. Then, we would expect the PDF curve to shift to the
centrosymmetric shape along with decrease in residual tilt.
This issue could be analyzed from the point of view of the
skewness of the PDF curve.

The skewness of the PDF curve of AO residual wave-
front variance can also be theoretically estimated from its
PDF equations. The skewness of f Am

2( ) is

g
m

s
=

-
=E

A

2
2 2 , 27m

m m

m

2

2

3

( )
⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

where mm is the expectation of Am
2 and sm is the root mean

square of A ,m
2 as given in equation (23). Then, the skewness

of residual wavefront variance is
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Substituting equation (27) into (28) gives
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According to equation (29), the PDF of residual wavefront
variance swf

2 is always positively skewed. The skewness
values according to the experimental data and equation (29)
are 1.70 and 1.78, respectively, for the curves of M=2.9,
and 2.02 and 2.32, respectively, for the curves of M=1.6.

If residual tilt can be neglected for a fine tilt correction
loop, residual higher-order Zernike terms dominate the resi-
dual wavefront, and sm

2 is almost the same for higher-order
terms, then the skewness of the PDF of residual wavefront
variance swf

2 is approximated by

g »
M

2 2
. 30wfs ( )

The PDF curve of residual wavefront variance approaches
centrosymmetry for large M. However, because of the nega-
tive exponential calculation from wavefront variance to the
Strehl ratio, the PDF of the Strehl ratio may have negative
skewness for a small average of s .wf

2 The negative skewness

converts to positive skewness as the average of swf
2 increases,

as shown by Gladysz et al [13].

5. Discussion and conclusions

In this work, we obtained the Gaussian characteristics of
Zernike coefficients of AO residual wavefront from the ran-
domness of error sources. Furthermore, we obtained the
connection between the distribution model and AO structure
parameters, which made it possible to predict the distribution
model at the beginning of system design.

The AO theory is mainly constructed according to the
ensemble average, which is used to estimate average AO
system performance and for system design in the past.
Through the linear system analysis for an AO system, we
developed a group of equations that connected the PDF of AO
residual wavefront variance with AO system parameters and
turbulence parameters. These equations could directly guide
AO design and optimization with higher precision. Moreover,
the PDF was a complete mathematical description for a ran-
dom process. Therefore, the results in this paper provide a
helpful framework for investigating the principle of AO
systems from the viewpoint of probability for all AO
applications.

In future, more error sources, such as aliasing error,
discrete sampling error, and isoplanatic error, must be con-
sidered for furthering investigating the probability character-
istics of the random process of AO compensation. Certain
other topics are also important, such as the errors due to non-
integral controllers and non-Hartmann sensing in AO sys-
tems. Moreover, the boundary conditions for each type of
error should be clarified for different AO application sce-
narios and specific configuration of AO system. This will help
to balance the error budget and optimize system performance,
and finally to construct the complete probability theory of the
AO system.
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