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Abstract: Efficient harbor extraction is essential due to the strategic importance of this target in
economic and military construction. However, there are few studies on harbor extraction. In this
article, a new harbor extraction algorithm based on edge preservation and edge categories (EC) is
proposed for high spatial resolution remote-sensing images. In the preprocessing stage, we propose
a local edge preservation algorithm (LEPA) to remove redundant details and reduce useless edges.
After acquiring the local edge-preserve images, in order to reduce the redundant matched keypoints
and improve the accuracy of the target candidate extraction method, we propose a scale-invariant
feature transform (SIFT) keypoints extraction method based on edge categories (EC-SIFT): this method
greatly reduces the redundancy of SIFT keypoint and improves the computational complexity of the
target extraction system. Finally, the harbor extraction algorithm uses the Support Vector Machine
(SVM) classifier to identify the harbor target. The experimental results show that the proposed
algorithm effectively removes redundant details and improves the accuracy and efficiency of harbor
target extraction.
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1. Introduction

With the rapid development of sensor technology, it is easier to obtain high-quality, high spatial
resolution remote-sensing images [? ]. Therefore, research into using remote-sensing images to
extract strategic targets (such as harbors, airports, ships, etc.) becomes very important [? ? ? ].
However, existing target recognition algorithms are not suitable for remote-sensing images with
complex backgrounds. Therefore, in order to extract regions containing meaningful targets for further
processing, this article proposes a new target extraction method based on high spatial resolution
remote-sensing images.

A harbor, as an important military and civil constructions, has important practical value for the
fields of ship navigation and military reconnaissance, and they are also one of the great focal points
for research in the field of pattern recognition and image processing [? ? ]. However, there are few
studies on harbor target extraction; previous studies on harbor target extraction can be grouped into
the following categories: Harbor detection method based on dock (HDD) [? ], harbor detection method
based on coastline closure (HDC) [? ], and harbor detection method based on breakwater (HDB) [?
]. We list the advantages and disadvantages of these methods in Table ??. Harbor detection method
based on dock uses the shape of the dock to determine whether the dock exists. First, this method
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obtains the feature information of the dock, then the dock candidates are extracted; finally, the dock
target is identified by matching the feature points. The disadvantage of this method is that the entire
harbor region cannot be accurately identified. Recently, Qi Chen and Junwei Wei have produced
valuable research on this method [? ? ]. Harbor detection method based on coastline closure uses
the characteristics of the strong closure of the harbor target. This method extracts the entire closed
regions as harbor targets by establishing a closed region model; it may mistake some natural terrains
for harbor targets. Zhu Bing made a detailed study of this method [? ]. Harbor detection method based
on breakwater uses the characteristics of water surrounding both sides of the harbor breakwaters.
First, the breakwater candidates are extracted by edge detection, then the long-striped features of the
breakwaters are used to remove the pseudo breakwaters. Finally, the breakwaters of the same harbor
are merged by the regional combination method. This method has two problems in the process of
extracting the harbor targets: One is that false alarms may occur, and the other is that the extracted
harbor targets are breakwaters, so the harbor target regions are incomplete. Chun Liu made a detailed
study of this method [? ].

Table 1. The advantages and disadvantages of some methods.

Method Content Strength Weakness

HDD [? ]

This method is designed according
to the characteristic that the harbors
have a number of docks that extend

to the sea and are pulsed at the
junction with the sea.

The detection speed of
this method is fast.

It can only extract the docks,
so it is impossible to extract

the entire harbor targets.

HDC [? ]
This method extracts the harbor

targets by detecting the semi-closed
characteristic of the harbors.

This method can detect
artificial/natural harbors,

and it has good
versatility.

This method has a high rate
of false positives: it may

mistake a section of the coast
without docks for harbors.

HDB [? ]

This method is designed according
to the characteristic of water

surrounding both sides of the
harbor breakwaters.

The characteristics of the
breakwater are

remarkable, and it is
easier to extract them.

This method may generate
false alarms; it is impossible

to extract a complete
harbor target.

In general, previous research extracted harbor targets by detecting docks, breakwaters and closed
regions [? ]; these methods may lead misidentification and identification of incomplete harbors.
A complete harbor target includes its semi-closed geometry, more than two docks and container
stacking fields; these features clearly distinguish between harbors and some natural terrains. However,
these features are difficult to obtain by traditional image segmentation; moreover, finding them in
high-resolution remote-sensing images also requires a lot of calculations.

In order to solve the problems of harbor target extraction, we propose a new harbor extraction
algorithm based on edge preservation and a scale-invariant feature transform keypoints extraction
method based on edge categories (EC-SIFT) for high spatial resolution remote-sensing images. With the
development of the SIFT feature detection algorithm [? ], more and more methods based on SIFT are
being used in target extraction [? ? ]. Therefore, our algorithm uses SIFT to extract the keypoints of
harbor targets. In order to improve the efficiency and accuracy of the harbor target extraction, we have
improved the process of SIFT keypoints extraction. First, in the preprocessing stage, we proposed a
novel local edge-preserve algorithm to remove redundant details and reduce useless edges (such as
ships, rocks, buildings, etc.) on the sea and on the ground. Then we proposed EC-SIFT to extract harbor
target keypoints; this method greatly reduces the redundancy of SIFT keypoints to further reduce the
required calculations. Next, we use the GOM-SIFT algorithm and the QT algorithm to extract harbor
candidates. Finally, these harbor candidates are input to the support-vector machine (SVM) to get the
harbor target extraction results. The experimental results show that the proposed algorithm reduces
the detail redundancy effectively and improves the accuracy and efficiency of harbor target extraction.



Appl. Sci. 2019, 9, 420 3 of ??

The rest of the paper is organized as follows: In Section ??, we introduce the preprocessing
method, the LEPA-processing method, and the methods of harbor target candidate extraction. The
results of harbor target extraction are shown in Section ??. The discussions of experimental results are
provided in Section ??, and the conclusion is provided in Section ??.

2. Materials and Methods

2.1. Pre-Processing and LEPA-Processing

Scale-invariant feature transform feature detection is a very effective method for extracting regions
of interest (ROIs) [? ? ? ]. A large amount of research on SIFT algorithm is used for extraction of
targets, such as airports [? ], vehicles [? ], and robots [? ]. However, the classical SIFT feature
detection algorithm is not suitable for extracting the ROIs of remote-sensing images due to the high
resolution and complex background [? ]. In order to improve the extraction of SIFT keypoints and
reduce the computational complexity and interference from complex textures, we use two methods:
First, the SIFT detection method usually extracts keypoints in grayscale, so we convert the original
image from RGB space to CIE Lab [? ]. Then we use the luminance channel L of Lab to extract the SIFT
keypoints. Next, image downsampling is used to reduce the number of pixels. I2 represents an image
which resulted from downsampling the original image I by 22, and we used the original image I(x, y)
and the downsampling image I2(x, y) as input images for post-processing.

After preprocessing, the next step is to process the edges of the images. Some previous algorithms
mainly do image segmentation based on local information [? ], whereas others do some edge
smoothing to reduce the detail information [? ? ]. However, the former cannot effectively reduce the
computational complexity of the feature extraction algorithm, and the latter reduces both useful edge
information and useless edge information, which is not the results we hoped for. Therefore, we propose
a local edge preservation algorithm (LEPA), which can reduce the edge information of the background
and retain the useful edge information. For the harbor target extraction algorithm, we regard small
targets (such as ships, rocks, buildings) as backgrounds; reducing their edge information helps us to
remove some useless feature points. Next, we introduce this algorithm in detail.

In order to achieve the above objectives, we have improved the image segmentation method.
First, we divide the original image R into n sub-regions R1, R2, . . . , Rn. Then we use regional growth
method to achieve image segmentation; we set a threshold variable SCOPE when the size of the region
Ri is smaller than the threshold SCOPE; we think that region Ri needs to grow, otherwise region Ri
stops growing. Finally, we repeat this cycle until the image is split. For the region growth method,
we use a function DIFF to achieve the two most similar regions merged; we use a threshold variable
MD when the value of the function DIFF is larger than MD, and the size of the region Ri is smaller
than SCOPE; it is considered that this region Ri is a small ground target (for example, a small building),
so it can be regarded as a background region; we can use the surrounding background region instead
of this region because its details are useless. The function DIFF consists of two parts. The first part FD
is defined as the difference in characteristics between Ri and Rj, and it is defined as:

FD(A, B) =
n

∑
i=1
‖ (Ti)

A − (Ti)
B ‖ ×Wi (1)

where A, B represent the two image regions, (Ti)
A and (Ti)

B are the feature vector sets of two image
regions A and B, respectively, n is the number of selected feature vectors for the region, and Wi is the
weight of T.

The second part VAR is defined as the difference in regional variance function, and it is defined as:

VAR(A, B) =‖ varA − varB ‖ (2)

Where varA and varB are the variance of A and B, respectively.
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The reason we add VAR to the DIFF function is that some regions have shadows due to occlusion;
this may affect regional segmentation and the determination of small ground targets. For this reason,
it is important to use the constraints of variance to increase the reliability of LEPA.

According to the above introduction, the flow of the algorithm is shown in Figure ??.
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The specific process of LEPA is as follows:

(I) We assume that the original image has M × N pixels, we use each pixel as the initial target region
Ri, where 0 ≤ i ≤M × N;

(II) Set a variable SCOPE to determine if the target region needs to be grown: if the size of Ri is larger
than SCOPE, the growth of the Ri is terminated;

(III) If the size of Ri is smaller than SCOPE, we use the function DIFF to calculate the difference
between Rj and every adjacent region Rj.

DIFF(Ri, Rj) = FD(Ri, Rj) ×WFD + VAR(Ri, Rj) ×WVAR (3)

where WFD and WVAR are the weight for FD and VAR, respectively, with 0 ≤WFD ≤ 1, 0 ≤WVAR
≤ 1, WFD + WVAR = 1;

(VI) Get the smallest DIFF value DIFFk; for all DIFFk, we compare the value of DIFFk and MD. If
DIFFk is larger than MD, Ri is considered a small target, and it will be adjusted to the background
region around it. If DIFFk is smaller than MD, Ri will be merged into the most similar region Rk;

(V) Perform the above calculations for all regions Ri and then the method continues to the next cycle
until all target regions are larger than SCOPE, then the LEPA ends.



Appl. Sci. 2019, 9, 420 5 of ??

A typical remote-sensing image containing the harbor as a test image of the proposed method,
the image processing results and other smoothing algorithms processing results are compared as
shown in Figure ??. In this experiment, the value of SCOPE is 150, and the value of MD is 10.
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Figure 2. (a) The original image. (b) The edge detection result of original image by Prewitt. (c) The
smoothing result by the bilateral filtering algorithm. (d) The edge detection result of Figure ??c by
Prewitt. (e) The smoothing result by the general edge-preserve algorithm. (f) The edge detection result
of Figure ??e by Prewitt. (g) The smoothing result by the guided filtering algorithm. (h) The edge
detection result of Figure ??g by Prewitt. (i) The smoothing result by the method proposed. (j) The
edge detection result of Figure ??i by Prewitt.

As can be seen, the processing result of our algorithm is better than the general smoothing
algorithm and other edge-preserving filtering algorithms. The useless edges in the bilateral filter
and guided filter are larger than our method, and the useful edges are less than our method. These
results show that our method meets the expected requirements and does not lose too much useful
edge information.

2.2. Harbor Candidate Extraction

After image preprocessing, we will extract the candidate regions of the harbors. For a given
high-resolution broad-area remote-sensing image, the main characteristics of the harbor are as follows:

(1) Overall shape of the harbor region is semi-closed and it contains some strip-shaped targets of
a certain length (i.e., the jetty, including the breakwater and the code head); the strip-shaped
targets are surrounded by water on both sides;

(2) The gray value of water in the remote-sensing image is generally low and the gray value
distribution is uniform (the variance is relatively small), while the gray value and variance
of the land are larger than those values of the water, so there is a clear boundary between the
water and the land;

(3) There are more than two jetties in the same harbor, the jetties are adjacent, and two or more
jetties are overlapping;

(4) The container yard around the dock has obvious aspect ratio and has obvious geometric features.

In order to use of the above characteristics of the harbor target and increase the extraction
efficiency, we have proposed EC-SIFT, which can remove redundant SIFT keypoints to further reduce
the required calculations.

Scale-invariant feature transform is a successful local feature descriptor, which is widely used in
template matching of various images. The traditional SIFT algorithm implementation has the following
steps: First, extracting SIFT keypoints from the template images and the target images respectively;
secondly, describing each SIFT keypoint separately, and it can form a 128-dimensonal keypoint vector
for each keypoint; finally, the target extraction results are obtained by matching the keypoint vectors
of the target images and the template images. However, when the traditional SIFT algorithm is applied
to remote-sensing images, there will be a large number of non-target keypoints; moreover, it is difficult
to get all types of harbor templates. Therefore, the keypoints matching for harbor targets may be
inaccurate, which directly leads to an increase in the false detection rate of harbor extraction results.
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In order to solve these problems, we propose EC-SIFT algorithm to reduce the false detection rate
and the number of redundant matching keypoints. The EC-SIFT algorithm combines EC feature and
clustering information in the SIFT feature extraction and matching process; we can accurately extract
and detect complete harbor candidates. In this part of the article, EC-SIFT algorithm can reduce the
redundant keypoints of images. Then, under the guidance of the clustering information, we use the
QT algorithm to get the complete harbor candidates. The next section will describe these algorithms
in detail.

2.2.1. SIFT Keypoints Extraction Method Based on Edge Categories

The traditional SIFT algorithm takes the extreme points searched in the entire scale space as
keypoints, and it will generate a lot of redundant keypoints. Therefore, we propose a keypoint location
strategy instead of searching extreme points in the entire scale space. First, we use the geometric
invariant moment to extract the EC of images, and then we search for the extreme points corresponding
to the EC in the scale space. The flow of the EC-SIFT algorithm is shown in Figure ??.
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The EC is defined as a collection of regions containing image edge information, so we look for
EC in the image sub-block, and we split the images into image sub-blocks of the same size. In order
to make the moment of image sub-blocks have the characteristics of translation, rotation and scale
invariance, we use a moment invariant of the Hu moment [? ]. It is defined as follows:

Φ(x, y) = η20 + η02 (4)

where x, y are the subscripts of the image sub-blocks.
ηpq represents the normalized center moment; the formula is as follows:

ηpq =
upq

ur
00
× (r =

q + p
2

) (5)

where upq is the central moment, it is defined as follows:
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upq =
C

∑
x=1

R

∑
y=1

(x− x0)
p × (y− y0)

q × f (x, y) (6)

x0, y0 is the centroid coordinate of the image sub-block region. It is defined as follows:

x0 =
m10

m00
, y0 =

m01

m00
(7)

mpq is the origin moment, and it is defined as follows:

mpq =
C

∑
x=1

R

∑
y=1

xp × yq × f (x, y) (8)

The idea of EC extraction is to use image sub-blocks corresponding to local invariant moments
whose adjacent moments value jump larger as EC of the images. Therefore, we need to use the
moments of adjacent image sub-blocks to calculate the gradient values for the moments of each image
sub-block. After the gradient is taken, we set a jump threshold T, and the gradient value of the image
sub-block smaller than the threshold T is zeroed; other image sub-blocks are adjusted as EC of the
images. The gradient calculation formula of the image sub-block is defined as follows:

F(x, y) =

{
G(x, y) = |Φ(x, y)−Φ(x + 1, y)|+ |Φ(x, y)−Φ(x, y + 1)|, G(x, y) ≥ T

0, others
(9)

The local brightness values of the entire image may not be an order of magnitude; thus, if a fixed
threshold T is used for all gradient values, a part of the edge regions will be missed when T is too
large, and false edge regions will appear when T is too small. We can solve this problem with adaptive
threshold T, which is defined as follows:

T = 0.15 × Φ(x, y) (10)

The above formula determines the threshold T based on the local luminance information, which
can distinguish the brightness jumps of different orders of magnitude.

When we segment the image, the image sub-blocks of the edge regions do not all cross the edge
line of the image; many image sub-blocks are offset, and some of them even use the image edge lines
as the boundary of the image sub-block. If such sub-block is used as the EC region of the image,
we will lose a lot of edge information. Therefore, we need to make adjustment to the reserved image
sub-blocks, so that the image sub-blocks cross the edge lines as much as possible; in this way, we can
ensure that EC contains most of the edge information. We use the adaptive F(x, y) to adjust the starting
coordinate of F(x, y) and use the following formula as the condition to terminate the adjustment:∣∣∣∣Fx,y −

1
4
(Fx+1,y + Fx−1,y + Fx,y+1 + Fx,y−1)

∣∣∣∣ ≤ 0.05Fx,y (11)

After the above algorithm, we have extracted the EC of images, and the detection of the extreme
points will be performed in the corresponding regions of the original images. Figure ?? shows the
comparison between keypoints extraction of traditional SIFT algorithm and keypoints extraction
of EC-SIFT algorithm in this article. The results show that the EC-SIFT algorithm can improve the
traditional SIFT algorithm in two aspects:

(1) The redundant keypoints are greatly reduced, so that the search speed of SIFT keypoints
is increased;

(2) The search range of the extreme points is reduced, so that the SIFT keypoints are concentrated in
the edge regions, which improves the accuracy of the subsequent extraction algorithm.
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2.2.2. Harbor Candidate Extraction

After extracting keypoints of SIFT, we will extract harbor candidates. It is a common method
to use SIFT keypoints to match template images and target images [? ], so we will use this method.
Because the breakwaters of harbors are semi-closed and are also prominent in the sea, we use the
breakwaters as the main keypoints of matching. First, we use the matching results between the
template images and the test image to get the matched keypoints. In the traditional SIFT algorithm,
each SIFT keypoint is described by a vector ν=(θ, σ, x, y), where θ is the direction of the feature vector,
σ is the scale, x, y are the spatial coordinates of the keypoint. In order to increase the robustness of
keypoints matching, we use the gradient orientation modification SIFT (GOM-SIFT) algorithm and
the scale restriction criteria algorithm, which are proposed by Z. Yi [? ] to improve the matching rate.
In this method, we are going to improve the gradient orientations: when the SIFT descriptor samples
the image gradient orientations around the keypoints, we found that the grayscale intensities in the
same region of some images were completely different, even that the intensity was opposite, so we use
GOM-SIFT to modify the gradient direction. The following formula shows the process of modification:

β(α) =

{
α, α ∈ [0, 180]

360− β, α ∈ (180, 360)
(12)

where α is gradient orientation and β is modified gradient orientation. However, GOM-SIFT can only
remove some incorrect matched keypoints when the image is self-similitude, so we use scale restriction
criteria to remove more mismatched keypoints. The definition of scale difference is as follows:

SD(υ1, ν2) = σ1 − σ2 (13)

We assume that the spatial transformation between pairs of images is affine, and the dimensions
of the corresponding local regions are equal, so the SD value of the correct matched pairs should be
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close to a constant, which means that the SD’s standard deviation of the correct matched pairs should
be smaller than the incorrect matched pairs. According to the above principles, we propose scale
restriction criteria:

a < SD(υ1, ν2) < b (14)

If a matched pair does not accord with the scale restriction criteria, this matched pair will be
rejected. To determine the value of a and b, we form a histogram of all SD values of matched pairs,
the peak in the histogram of SD values is recorded as PSD, and then the values of a and b are obtained
by PSD-W and PSD+W, respectively, where W is a constant.

After getting the matched keypoints through GOM-SIFT and scale restriction criteria, we remove
some mismatched keypoints. Next, we will use the matched keypoints to extract harbor candidates.
Since a harbor is a semi-closed structure, which is composed of regions such as breakwaters and docks,
the matched keypoints belonging to the harbor regions should stay within a certain range. Therefore,
we get some harbor candidates by dividing the matched keypoints into several groups based on their
spatial location. In order to achieve it, we use a quality threshold (QT) clustering method [? ], and
the flow of the QT algorithm is shown in Figure ??. Quality threshold is an algorithm that classifies
matched keypoints into high quality clusters; it ensures high quality clusters by limiting the diameter
of the clusters. This method prevents dissimilar keypoints from being forced under the same cluster
and ensures that only high-quality clusters are formed. The specific method is implemented as follows:

(1) Forming a candidate cluster from a single matched keypoint, the growth of the cluster is achieved
by adding the matched keypoint around a cluster one by one;

(2) The addition of each associated matched keypoint will increase the diameter of the candidate
cluster. We set a maximum diameter threshold C, when the diameter of the cluster exceeds this
threshold after increasing the associated matched keypoints, we will stop growing this cluster;

(3) Subsequent formation of candidate clusters repeats the above process. When forming the
candidate clusters, we retain the previous matched keypoints, so we will get the number of
candidate clusters with the same number of matched keypoints;

(4) The largest candidate cluster is reserved, and all the matched keypoints that it contains are
removed from the next calculation;

(5) Repeat the above calculation process;
(6) Setting a minimum cluster size threshold S. When the diameter of the remaining maximum

cluster is smaller than the threshold S, the entire calculation process will stop.
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The candidate regions extracted by QT algorithm are shown in Figure ??. These resulting regions
are referred to as regions containing the harbor.
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3. Results

After getting the harbor candidate regions, we will extract harbor target regions. In this stage,
we sort all the harbor candidate regions Ri (i = 1, 2, . . . , M) according to the number of matched
keypoints. For the harbor target extraction process, essentially it is a binary classification process.
An SVM is a classical binary classifier, which has many applications in the field of target classification [?
] and has many advantages for the application of binary classification detection algorithm, for example,
SVM can have good classification results by providing a suitable size dataset. For all of the above
reasons, we use the SVM classifier to judge the existence of the harbor region. To build an SVM classifier,
we use 3200 images as a training set to train the classifier—1600 images contain harbor (each image
contains only one harbor target) and 1600 images do not contain harbor. We adopt remote-sensing
images with 756 × 507 pixels from Google Earth and DOTA dataset (the ground-truth harbor regions
are also retrieved from this dataset)—all images have the same size and resolution. The features of
SVM classifier training are composed of feature vector F = [F1, F2, F3, F4, F5, F6] [? ], where F1 is the
mean, F2 is the standard deviation, F3 is the mean of the gradient, F4 is the standard deviation of the
gradient, F5 is the Zernike moment, and F6 is the circular-Mellin coefficient. Afterward, we use the
SVM classifier to identify whether there is a target in these harbor candidate regions. The experimental
process and extraction results are shown in Figure ??.
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4. Discussion

In this section, we confirmed the validity of the proposed method. For a given high-resolution
broad-area remote-sensing image, we use a down sampling method to extract harbor targets in low
resolution. The size of the harbor target is a large region, so the size of the harbor candidate region
we selected is also a large region. Figure ?? shows the entire experimental process and experimental
results; harbor candidate regions containing harbor targets are marked with a red rectangle.

4.1. Result Analysis

The harbor target extraction results we obtained are shown in Figure ??. The test images we
selected contain different backgrounds and a variety of harbor targets, and the results show that the
proposed algorithm extracts harbor targets very well and successfully removes the pseudo target
regions. Then, the quantitative analysis of the proposed method is based on the accuracy of the
calculation. The formula for the evaluation is as follows:

Acc =
TP + TN

TP + TN + FP + FN
× 100% (15)

where TP denotes the number of true positive harbor targets, TN denotes the number of true negative
harbor targets, FP denotes the number of false positive harbor targets, FN denotes the number of false
negative harbor targets. Similarly, we use TPR and FPR to evaluate the true positive ratio and the false
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positive ratio; for the harbor target extraction algorithm, we are pursuing high TPR and low FPR. They
are defined as follows:

TPR =
TP

TP + FN
× 100% (16)

FPR =
FP

TP + FN
× 100% (17)

Other quantitative measurement methods are precision, recall, and F-measure, which are
represented by P, R and Fm, respectively. Their definitions are given as follows:

P =
TP

TP + FP
× 100% (18)

R =
TP

TP + FN
× 100% (19)

Fm =
(

1 + β2
)
× P× R

β2 × P + R
(20)

If the extraction regions contain the complete harbor target, we use the intersection over union
(IOU) to evaluate it:

IOU =
DR ∩ GT
DR ∩ GT

× 100% (21)

where DR denotes Detection Result, GT denotes Ground Truth.
We use 3000 images as test images—1600 images contain harbor and 1400 images do not contain

harbor to get the extraction results for the experiment. Harbor targets are correctly extracted in 1527
existing target images (TP = 1527), harbor targets are extracted incorrectly in 84 non-existent images
(FP = 84), no harbor targets are extracted in the 73 existing target images (FN = 73), no harbor targets
extracted in 1316 non-existent target images (TN = 1316). Therefore, the accuracy of the calculation is
94.77%, the calculation result of IOU is 88.43%, the results of other evaluation functions are shown
in Table 3, so our algorithm proves to be effective. Table ??, Table ??, Table ?? and Figure ?? show a
comparison of our algorithm with some other target extraction algorithms. We have chosen some
typical harbor extraction algorithms, such as HDD [? ], HDC [? ], HDB [? ] and HDM [? ], and in
the calculation of these methods, we used the same test dataset and training dataset as our method.
The average processing times of these methods are shown in Table ??. All the experiments are carried
out in the Visual Studio 2015 environment with 3.5 Ghz CPU, 16 GB RAM. It can be seen that our
algorithm has higher extraction accuracy and lower computational complexity.

Table 2. Accuracy (Acc), true positive ratio (TPR), false positive ratio (FPR) and intersection over union
(IOU) of our method and four competing methods.

Method Acc(%) TPR(%) FPR(%) IOU(%)

HDD 86.23 88.38 16.21 70.62
HDC 82.07 83.56 19.64 77.96
HDB 77.37 81.44 27.29 74.45
HDM 91.30 91.94 9.43 85.16

Our method 94.77 95.44 6.00 88.43

Table 3. Precision, Recall and F-measure of our method and four competing methods.

Method Precision(%) Recall(%) F-measure

HDD 86.17 88.38 0.8726
HDC 82.94 83.56 0.8325
HDB 77.33 81.44 0.7933
HDM 91.77 91.94 0.9185

Our method 94.79 95.44 0.9511
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Figure 8. (a) Original image. (b) Harbor extraction result based on dock. (c) Harbor detection result
based on coastline closure. (d) Harbor detection result based on breakwater. (e) Harbor detection result
based on model matching. (f) Harbor target detection result based on our method.

Table 4. True positive (TP), false positive (FP), existing target images (FN) and non-existing target
images (TN) of our method and four competing methods.

Method TP FP FN TN

HDD 1414 227 186 1173
HDC 1337 275 263 1125
HDB 1303 382 297 1018
HDM 1471 132 129 1268

Our method 1527 84 73 1316

Table 5. Average time (s) of four competing methods and our method.

Method Average Running Time (s)

HDD 11.15
HDC 6.36
HDB 5.14
HDM 24.37

Our method 2.69

Figure ?? shows the receiver operating characteristic (ROC) curve and the Precision–recall curves
of our method and four other methods. These two curves are important indicators for evaluating
the performance of the harbor target extraction method. We can evaluate the performance of the
methods by comparing the area under the curve of these methods: The larger the area under the curve,
the better the performance of the method. According to Figure ??a,b, our method performs better than
four other methods.

4.2. Analysis of Parameter Selection

In order to select more accurate parameters, we evaluated the performance of the harbor target
extraction algorithm under different parameters. First, we determine the values of the SCOPE and
MD in the LEPA. We use different SCOPE values to evaluate the effect of SCOPE on the selected
image, which is shown in Figure ??. We evaluate the effect of different SCOPE values on the image
by calculating the standard deviation of the image and the entropy of the image. Then, in order to
explain that the algorithm keeps the useful edge information as much as possible, we calculate the total
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number of edge pixels of the image and the number of edge pixels in the harbor region. The specific
method is as follows:

δ =

√√√√ 1
M× N

M

∑
i=1

N

∑
j=1

( f (i, j)− µ)2 (22)

The above formula is the standard deviation calculation of the image: M, N represents the size of
the image, f (i, j) is the pixel value at the coordinate (i, j), and µ is the average value of the image. This
formula reflects the degree of dispersion between the individual pixel value and the mean value of the
image. In this experiment, we hope that the standard deviation of the image to be as small as possible,
which means that there are fewer details in the image.
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We use two-dimensional entropy as another evaluation function, and the specific formula is
as follows:

Pij = c(m, n)/D2 (23)

H =
255

∑
m=0

PmnlogPmn (24)

where m is the gray value of the pixel, n is the mean value of the neighborhood gray, c(m, n) is the
frequency of the binary group(m, n), D is the scale of the image, and the default value of D is 9. In this
experiment, we hope that the value of entropy will be as small as possible, which means that the
details of the image are small.
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Then we count the total number of edge pixels in the image and the number of edge pixels in the
harbor region, which are summarized in Table ?? to illustrate the reliability of the parameters that we
selected. The number of pixels in the image is 383,292, and the number of pixels in the harbor region
is 7480.

Table 6. The values of standard deviation, entropy, available edge pixels and edge pixels corresponding
to the values of different parameter SCOPE.

SCOPE Available Edge Pixels Edge Pixels Standard Deviation Entropy

100 6763 93,328 26.7462 6.4968
110 6727 87,341 26.4216 6.4758
120 6658 79,495 25.6472 6.4137
130 6562 70,542 24.5879 6.3843
140 6430 61,587 23.0124 6.2648
150 6217 51,569 21.6932 6.1786
160 5794 44,325 21.0219 6.1125
170 4623 38,224 20.6348 6.0644
180 3976 34,156 20.2591 6.0031
190 3477 33,269 20.1446 5.9412
200 3025 32,596 20.0536 5.8903

Using the above data, we have drawn the graphs shown in Figure ??. According to the comparison
of these evaluation data, we should make sure that the available edge pixels are enough, and the
standard deviation and the entropy should be as small as possible; therefore, the value of SCOPE
equal to 150 is selected.

Appl. Sci. 2018, 8, x 17 of 20 

 

  
(a) (b) 

  
(c) (d) 

Figure 11. (a) The number of available edge pixels corresponding to the values of different parameter 
SCOPE. (b) The number of edge pixels corresponding to the values of different parameter SCOPE. (c) 
The values of standard deviation corresponding to the values of different parameter SCOPE. (d) The 
values of entropy corresponding to the values of different parameter SCOPE. 

For the selection of the parameter MD, we use different MD values to evaluate the effect of MD 
on the selected image, which is shown in Figure 10. The evaluation method is the same as that of 
SCOPE; we use standard deviation, entropy, available edge pixels and edge pixels to evaluate the 
effect of different MD values on the image. The experimental results are shown in Figure 12 and Table 
7.  

Table 7. The values of standard deviation, entropy, available edge pixels and edge pixels 
corresponding to the values of different parameter MD. 

MD Available edge pixels Edge pixels Standard deviation Entropy 
5 6619 91,135 26.4143 6.2712 
6 6592 86,544 26.2855 6.2457 
7 6471 76,686 25.4572 6.1962 
8 6419 67,871 24.2884 6.1338 
9 6326 59,462 22.7393 6.0476 

10 6187 48,750 21.4425 5.9448 
11 5964 41,338 20.8777 5.8261 
12 4688 34,947 20.4661 5.7443 
13 4283 32,276 20.1287 5.6981 
14 3954 30,841 19.9776 5.6570 
15 3748 29,488 19.9343 5.6325 

Figure 11. (a) The number of available edge pixels corresponding to the values of different parameter
SCOPE. (b) The number of edge pixels corresponding to the values of different parameter SCOPE.
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The values of entropy corresponding to the values of different parameter SCOPE.
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For the selection of the parameter MD, we use different MD values to evaluate the effect of MD on
the selected image, which is shown in Figure ??. The evaluation method is the same as that of SCOPE;
we use standard deviation, entropy, available edge pixels and edge pixels to evaluate the effect of
different MD values on the image. The experimental results are shown in Figure ?? and Table ??.

Table 7. The values of standard deviation, entropy, available edge pixels and edge pixels corresponding
to the values of different parameter MD.

MD Available Edge Pixels Edge Pixels Standard Deviation Entropy

5 6619 91,135 26.4143 6.2712
6 6592 86,544 26.2855 6.2457
7 6471 76,686 25.4572 6.1962
8 6419 67,871 24.2884 6.1338
9 6326 59,462 22.7393 6.0476

10 6187 48,750 21.4425 5.9448
11 5964 41,338 20.8777 5.8261
12 4688 34,947 20.4661 5.7443
13 4283 32,276 20.1287 5.6981
14 3954 30,841 19.9776 5.6570
15 3748 29,488 19.9343 5.6325Appl. Sci. 2018, 8, x 18 of 20 
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MD. (b) The number of edge pixels corresponding to the values of different parameter MD. (c) The
values of standard deviation corresponding to the values of different parameter MD. (d) The values of
entropy corresponding to the values of different parameter MD.
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According to the comparison of these evaluation data, we should make sure that the number of
available edge pixels are enough, and the standard deviation and the entropy should be as small as
possible; therefore, the value of MD equal to 10 is selected.

In order to determine the parameters C and S, we choose Acc as an indicator to evaluate the
quality of parameters. Figure ?? shows the effect of the selection of different C, S values on the final
extraction accuracy.
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From Figure ??a, it can be seen that, when parameter C = 140, the value of Acc reaches the
maximum value, and as the value of C continues to increase, the Acc decreases slightly. From
Figure ??b, we can see that the value of Acc decreases as the parameter S increases. However, when the
value of S is too small, the computational complexity will increase. Therefore, the value of S in this
experiment is chosen to be 8 by considering things comprehensively.

5. Conclusions

In this article, we proposed a novel harbor extraction algorithm for high spatial resolution
remote-sensing images, which is based on LEPA and EC-SIFT algorithms. First, in order to reduce
the detail information of complex background for high spatial resolution remote-sensing images,
we proposed a LEPA algorithm, which effectively reduces the interference of redundant detail
information in the extraction algorithm and also retains useful feature information. Then we used the
EC-SIFT algorithm to limit the extraction of keypoints to the edge regions, which makes our calculations
in the process of keypoints matching and target extraction more accurate and less computational
complexity. Finally, we used GOM-SIFT algorithm and QT clustering algorithm to extract the harbor
candidate regions, and the SVM was used to identify the region containing the harbor target. In the
experiment, we used 3000 test images and classical evaluation functions to evaluate the proposed
harbor extraction algorithm. The results show that our algorithm has a significant effect in improving
extraction accuracy and reducing computational complexity. It also outperforms other traditional
harbor extraction algorithms. The proposed algorithm can be extended to other man-made target
extraction in high spatial resolution remote-sensing images, such as airports and military bases, which
requires additional research.
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