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An adjustable mounting structure is proposed to compensate for surface deformation of a mirror caused by the
assembly process. The mount adopts a six-point support based on the kinematic mount principle. Three of the
support points are adjustable, and they are moved along the axial direction by actuators. Surface deformation is
expressed by Zernike coefficients in this paper, and a sensitivity matrix of the surface deformation is established
by varying the unit displacement of each adjustment support point and getting the corresponding Zernike coeffi-
cient changes. The surface deformation is measured, and the compensation adjustment of each adjustable support
point is then obtained by anti-sensitivity calculation. Finally, the feasibility of present support structure design
and surface figure compensating method are verified by experiments. The experimental results show that the
present structure and method could significantly reduce the surface deformation caused by the assembly process.
The surface deformation is 4.6 nm RMS after assembly and it is decreased to 1.3 nm RMS after four iterations of
compensation, which is close to the 1.1 nm RMS after optical polishing. ©2019Optical Society of America
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1. INTRODUCTION

The mount of an optical element is an important part of a
high-performance optical system. A well-designed mount is
able to reduce the inner stress mainly introduced during assem-
bly, reduce the thermal deformation effect, and maintain the
assembly accuracy under vibration [1]. Kinematic coupling is a
classical optic mounting mechanism that theoretically meets all
these requirements. A kinematic mount design follows the prin-
ciple of exact constraint, which means the mounting structure
constrains exactly six degrees of freedom (DOFs) of the optical
element without redundancy [2]. Ideally, the design performs
excellently in terms of repeatability and reproducibility of the
optic surface, thermal stability of the optics, and the stiffness
of the mounting structure [3–5]. However, kinematic cou-
pling requires a completely frictionless and ideal point contact,
which is difficult to achieve in practice. Instead, semi-kinematic
coupling, typically adopting flexure, has been widely used in
precision optical application. The use of flexure is effective in
releasing or constraining a specific DOF and is free from fric-
tion and hysteresis [6]. A semi-kinematic mounting based on
flexure often has three equally spaced bipod flexures or blade
structures distributed around the optical element. Each flexure

of the semi-kinematic mounting constrains two DOFs, for a
total of six constraints [7]. This provides high stiffness for the
optical components. In addition to providing constraints, the
use of flexure produces other local DOFs. Flexure thus allows
elastic motion in these DOFs, reduces the internal stress of the
optical element, and ensures that the optical element remains in
a relatively “relaxed” state. However, factors such as the manu-
facturing tolerances, mount assembly, and fastening process
limit or degrade the performance of the semi-kinematic mount;
i.e., there exist relatively large astigmatism, trefoil, spherical, and
other aberrations. Indeed, astigmatism and trefoil are usually
too large and require correction in precision application [8–10].

We developed an adjustable flexure mount as an optic mount
to achieve ultra-high optical precision that is close to that of ideal
kinematic coupling. This paper will give an introduction for the
principle of the mount design and a method of compensating
for the surface figure. Then the surface compensation sensitivity
matrix is established through finite element simulation. Finally,
the feasibility of using the adjustable flexure mount to compen-
sate for the deformation of the optic surface introduced by the
supporting mount is experimentally verified.

1559-128X/19/349370-06 Journal © 2019Optical Society of America

https://orcid.org/0000-0001-6514-1427
mailto:wanghui@ciomp.ac.cn
https://doi.org/10.1364/AO.58.009370
https://crossmark.crossref.org/dialog/?doi=10.1364/AO.58.009370&amp;domain=pdf&amp;date_stamp=2019-11-20


Research Article Vol. 58, No. 34 / 1 December 2019 / Applied Optics 9371

2. THEORETICAL ANALYSIS

A. Principles of the Adjustable Flexure Mount

The principles of the kinematic mounting of an optical element
are shown in Fig. 1(a). There are two Cartesian coordinate
systems, namely, the global coordinate system of the optic {G}
(x–y–z) and the local coordinate system of the single mount
point {L} (r–t–z). The optic as a rigid object usually has three
translations (Tx, Ty, Tz) and three rotations (Rx, Ry, Rz) as
DOFs in coordinate system {G}. ai (i = 1, 2, 3) represents the
main mounting points, with each point providing two con-
straints (Tz, Tt) and four DOFs (Tr, Rr, Rz, Rt) in coordinate
system {L}. An ideal kinematic mount with three mounting
points is then supposed to constrain exactly six DOFs (Tx, Ty,
Tz, Rx, Ry, Rz) in coordinate system {G} without redundancy.

We propose an adjustable flexure mount to improve the
performance of the optic mount, especially in terms of achieving
high optical precision close to that of ideal kinematic coupling.
The principles of our adjustable flexure mount of optics are
shown in Fig. 1(b). ai (i = 1, 2, 3) denotes the main mount-
ing points, with each point providing one constraint (Tz) and
five DOFs (Tr, Tt, Rr, Rz, Rt) in coordinate system {L}. bi

(i = 1, 2, 3) denotes the assisting mounting points, which are
adjustable in the z direction. Each assisting mounting point
provides one constraint (Tt), one adjustable constraint (ATZ),
and four DOFs (Tr, Rr, Rz, Rt) in coordinate system {L}. In this
case, as viewed in coordinate system {G}, the optic is steadily
supported with six mounting points that provide six constraints
(Tx, Ty, Tz, Rx, Ry, Rz). Meanwhile, with careful adjustment,
the additional constraint (ATZ) is able to compensate for the
deformation of the optic surface, especially astigmatism and
trefoil.

B. Mechanical Design

An adjustable flexure mount is designed based on the principles
described in subsection A, and the schematic drawing is shown
in Fig. 2(a). Six flexure structures are equally spaced around the
optical element. The main mount, as shown in Fig. 2(b), was
realized by a flexural hinge structure, which provides one con-
straint (Tz) as explained in subsection A. As shown in Fig. 2(c),
the adjustable flexure mount is realized by a parallel distribution
blade structure, which could provide one constraint (Tt). Two
disc springs are placed between the adjustable flexure mount
and base, and the adjustable flexure mount could rise or fall by
adjusting the screw, causing the deformation of the blade struc-
ture and then providing the optical element one adjustable force

Fig. 1. Principles of the (a) kinematic mount and (b) adjustable flex-
ure mount.

Fig. 2. (a) Mount structure of the optical element, (b) structure of
the main mount, (c) structure of the adjustable flexure mount.

along the z direction. Therefore, the adjustable flexure mount
provides one constraint (Tt) and one adjustable constraint
(ATZ).

C. Establishment of the Strategy to Compensate for
the Surface Deformation

The relationship between surface deformation and the adjust-
ment of the adjustable flexure mount can be expressed as W(x ),
where W is the surface deformation and x is the adjustment.
The Taylor expansion of W(x ) can be expressed as

W(x +1x )=W(x )+ A1x + O(1x 2). (1)

Generally, the adjustment of an adjustable flexure mount is
smaller than dozens of micrometers, and the last term in Eq. (1)
is very small and can be ignored. In this case, W(x ) is nearly
linear to the adjustment.

Zernike polynomials are widely used as basic functions to
describe the figure of the optic surface or the deformation of an
optic surface [11–19]. The deformation due to the kinematic
mount is hypothesized to be an expansion of the first n fringe
Zernike polynomials in the form

WK (ρ, θ)=

n∑
i=4

a K
i Zi (ρ, θ), (2)

where ρ and θ are normalized in polar coordinates, Zi(ρ, θ)
is the i th Zernike polynomial, and a K

i is the corresponding
Zernike coefficient. Terms of piston, tilt, and power (Z1 to Z4)
are neglected, as they are not in the scope of the present applica-
tion. Similar to Eq. (2), the deformation due to the adjustable
flexure mount can be represented as

WAT(ρ, θ)=

n∑
i=4

aAT
i Zi (ρ, θ), (3)
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where aAT
i is the corresponding Zernike coefficient of the defor-

mation. Combining Eq. (2) with Eq. (3), the difference in the
mount-introduced deformation between the adjustable flexure
mount and ideal kinematic mount is expressed as

1W(ρ, θ)=WAT(ρ, θ)−WK (ρ, θ)

=

n∑
i=4

1ai Zi (ρ, θ) , (4)

where1ai is the i th change of the Zernike coefficient between
the adjustable flexure mount and the ideal kinematic mount,
which can form a column vector a as follows:

a = [1a4, 1a5, · · · , 1an]
T , (5)

where n is the number of Zernike polynomials used to express
the surface deformation. The surface deformation is mainly
caused by the difference between the adjustable flexure mount
and the ideal kinematic mount. Moreover, the main error
sources are factors such as manufacturing tolerances, mount
assembly, and fastening process, which will degrade the per-
formance of the semi-kinematic mount, i.e., there will be
relatively large astigmatism and trefoil aberrations.

In the case of the adjustable flexure mount, the adjustable
DOF ATZs are used to compensate for the surface deformation,
especially astigmatism and trefoil. The adjustable DOF ATZs
form a column vector x as follows:

x = [ATZ1, · · · , ATZm]
T , (6)

where m is the number of adjustable DOF ATZs. This number
is usually an integral multiple of 3 with a minimum value of 3.

Each ATZ driven by an actuator deforms the surface of
the optics, and the deformation can be considered the ATZ’s
influencing functions (IFs). Each ATZ and the deformation
response of one unit ATZi (1≤ i ≤m) are expressed by1aATZi ,
as follows:

ATZ1→1aATZ1 =
[
1aATZ1

4 , 1aATZ1
5 , · · · , 1aATZ1

n

]T
· · ·

ATZm→1aATZm =
[
1aATZm

4 , 1aATZm
5 , · · · , 1aATZm

n

]T
,

(7)

where m is the number of adjustable DOF ATZs and n is the
number of Zernike polynomials used to express the surface
deformation. All influencing functions aATZ then constitute the
matrix

A= [1aATZ1, · · · , 1aATZm], (8)

where A is an (n − 3)×m matrix, named the sensitivity matrix.
If the deformation response is assumed linear with a change in
ATZi , we have

a = A1x , (9)

where 1x is the compensation of each adjustable DOF ATZ.
Equation (9) will be an overdetermined system of linear equa-
tions if there are more equations than unknowns, and1x can be
calculated by the following anti-sensitive process:

1x = (AT A)−1 ATa . (10)

Fig. 3. FEA model.

3. ESTABLISHING SENSITIVITY MATRIX A

Finite element analysis (FEA) is adopted to build matrix A in
Eq. (8). A model of the novel semi-kinematic mount is built
in FEA software as shown in Fig. 3. The material of the optic
is ultra-low expansion glass (ULE), while the material of the
mounting flexure and base is Invar 36. The mounts and mirror
are bonded with epoxy, and the thickness of the adhesive layer is
0.1 mm. The detailed FEA parameters are listed in Table 1.

The optical axis of the mirror is in vertical attitude, and the
surface is upward. This attitude remains the same during figure
measurement for optical polishing, for assembly, and for adjust-
ment. The measurement mount during optical polishing is a
kinematic mount, and the adjustable flexure mount used in the
assembly and adjustment process is a semi-kinematic mount.
These mounts can achieve a completely consistent attitude
and stress state. Therefore, the additional effect of gravity is not
considered in the simulation.

In the simulation, an axial displacement of −20 µm is
applied to adjust the three support points in turn, and the dis-
placements of the nodes and elements of the model are then
calculated. We select surface nodes as the simulation output.
The first 36 terms of the Zernike polynomials are used to
represent surface deformation, and the displacement of surface
nodes is fitted. In this process, three sets of Zernike polynomials
are obtained to build influence functions.

The influence functions have also been built by experiment.
Three support points are adjusted with axial displacement of
−20 µm in turn, and the surface deformation is measured by
interferometer and is represented by the first 36 terms of the
Zernike polynomials. The experimental and numerical results
of the IFs are shown in Fig. 4.

It is clear that astigmatism (Z5 and Z6) is the largest, fol-
lowed by trefoil (Z10 and Z11), in both IFs. The corresponding
more sensitive terms have the same signs and small relative dif-
ference between simulation and experimental IFs. For example,
Z6 is positive in both IFs of ATZ1, and the relative difference is
about 10% [(IFsexperimental − IFsFEA)/IFsFEA]. The comparison
demonstrates that the two IFs match well.

The compensators (terms of the Zernike polynomials) should
be selected to construct sensitivity matrix A. The choice of
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Table 1. Parameters of the Mirror

Diameter (mm)
Center Thickness

(mm)
Radius of Curvature

(mm) Material Density (kg/m3)
Young Modulus

(GPa)
Poisson’s

Ratio

8 150 30 560 ULE 2560 96.7 0.25

Fig. 4. Experimental and numerical results of IFs.

compensators is determined by two conditions. The first con-
dition is the main surface deformation caused by mounting. As
mentioned in Section 2.C, the surface deformation is mainly
astigmatism and trefoil, especially the former. The other terms
of surface deformation are much smaller. The second condition
is the influence functions, which represent the sensitivity. It is
easy to get a conclusion from Figure 4 that the astigmatism (Z5
and Z6) is the most sensitive aberration, followed by trefoil
(Z10 and Z11). It should be noted that Z10 and Z11 have an
azimuthal order of 3, which is the same as adjustable flexure
mount. Therefore, it is generally able to correct only one of them
separately (either Z10 or Z11), or change both simultaneously
with a linear correlation in sensitivity matrix A.

Considering these conditions, we finally choose Z5, Z6, and
combination of trefoil k1 Z10+ k2 Z11 as elements of sensitiv-
ity matrix A as below. Therefore, we have

A=

 Z5ATZ1 Z5ATZ2 Z5ATZ3

Z6ATZ1 Z6ATZ2 Z6ATZ3

k1 Z10ATZ1 k1 Z10ATZ2 k1 Z10ATZ3

+k2 Z11ATZ1 +k2 Z11ATZ2 +k2 Z11ATZ3

 ,
which is a nonsingular matrix, where k1 and k2 are constant real
numbers and their values depend on the actual situation.

The surface deformation of the compensators and the rest of
the Zernike terms is calculated from experimental IFs. Then the
ratio of later to former is listed in Table 2. It is clear that the rest
of the Zernike terms are much smaller than the compensators.
Generally, the surface deformation caused by assembly is several

Table 2. Comparisons of Compensators to Other
Terms

ATZ1 ATZ2 ATZ3

Compensator 1.51 nm RMS 1.51 nm RMS 1.52 nm RMS
Other terms 0.29 nm RMS 0.33 nm RMS 0.31 nm RMS
Ratio 0.19 0.22 0.20

Fig. 5. Experimental device.

Fig. 6. Schematic diagram of the metrology mount.

nanometers RMS, and the expected additional surface defor-
mation of other terms during adjustment is smaller than 1 nm
RMS.

4. LABORATORY TEST

A. Experimental Conditions

The surface figure of the optical mirror was measured by a Zygo
[20] interferometer. The working surface of the optical mirror
is spherical, while the rear surface is a plane. Additionally, the
properties of the mirror are listed in Table 1. The experimental
setup is shown in Fig. 5.
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Fig. 7. (a) Surface figure after optical polishing, (b) Zernike coef-
ficients of the surface figure after optical polishing, (c) surface figure
before compensation, (d) Zernike coefficients of the surface figure
after polishing (red bar), after mounting (green bar), and after four
iterations adjustment (blue bar).

Fig. 8. Surface deformation changes during the iterations.

The interferometer is fixed on the top of measurement frame.
The optical axis of the mirror is in a vertical attitude, and the sur-
face under test is upward. The adjustments of three adjustable
support points are detected by an inductance meter with 0.1µm
resolution. The experiment was carried out in an ultra-precise
environment with ultra-high stability. The temperature of the
environment is 22± 0.05◦C, and the vibration isolation level
is vibration criterion VC-F. The experimental results verify that
the repeatability of measurement is better than 0.1 nm RMS.
The first four Zernike terms (Z1∼ Z4) of measurement are
closely related to optical mirror position and posture, and they
are removed from the measurement results.

B. Compensation for Surface Deformation Using an
Adjustable Mount

The surface figure of the tested mirror is 1.1 nm (RMS) after
optical polishing, as shown in Fig. 7(a), and its Zernike coef-
ficients are shown by the red bar in Fig. 7(d). Its support for
measurement is a metrology mount with high repeatability and
reproducibility as shown in Fig. 6.

The optical element and its adjustable flexure mount were
assembled. The initial surface shape of the optical element
measured by the interferometer is shown in Fig. 7(b) with a
surface deformation of 4.6 nm (RMS) after assembly, and the
corresponding Zernike coefficients are indicated by the green
bar in Fig. 7(d). Experimental sensitivity matrix A was used to
obtain the compensation adjustments of the three adjustable
support points. Then the adjustments of the adjustable flexure
mount are implemented accordingly. The surface deformation
is 1.3 nm (RMS) after four iterations, as shown in Fig. 7(c). The
blue bar in Fig. 7(d) indicates its Zernike coefficients.

The curves in Fig. 8 represent the surface deformation con-
vergence trend. The red and green curves present astigmatism
and trefoil, respectively, during the iterations. The astigmatism
and trefoil are significantly reduced at the first adjustment and
remain at a very low level in the last iteration. After four iter-
ations, the astigmatism decreases from 4.1 to 0.13 nm RMS,
and the trefoil decreases from 0.94 to 0.13 nm RMS. The blue
curve shows the rest of the Zernike terms’ changes during the
iterations. It is slightly decreased. The black curve presents the
changes of surface deformation, consisting all Zernike terms
in the iterations, which decrease from 4.3 to 0.6 nm RMS.
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During the iterations, the residual surface figure (the surface
figure after removing the Zernike fitted surface figure, which
represents a higher-frequency surface figure) remains the same.
The amounts of adjustment of the three adjustable support
points are−54.0, 1.9, and−9.4 µm, respectively.

The surface deformation after compensation is slightly larger
than that after optical polishing. The main reason is that a
small hexafoil error is introduced during mounting structure
assembly.

5. CONCLUSION

A mounting structure with the ability to compensate for sur-
face deformation and its method of compensation have been
presented. The design and simulation analysis were verified by
experiments. In the case of our experimental device, with four
iterations of adjustment, the surface deformation of the test
mirror has been reduced from 4.6 to 1.3 nm (RMS), which is
close to the surface deformation of 1.1 nm (RMS) after opti-
cal polishing. Experiments demonstrate that the presented
structure and method effectively reduce surface deformation,
especially astigmatism and trefoil, caused by the assembly. The
adjustable mounting structure performs similarly to an ideal
kinematic support and is suitable for optical components with
high-precision surface requirements.
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