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ABSTRACT Permanent magnet synchronous motors (PMSMs) are widely used in the field of industrial
servo control, especially in high-precision applications. Owing to the periodic torque ripple caused by the
cogging torque, flux harmonics, and current offsets, the speed output of the system has a periodic ripple,
which affects the control accuracy of the servo system. The conventional proportional–integral controllers
cannot reject torque ripple and are highly dependent onmotor parameters. This limits the control performance
when a PMSM is used as a high-precision servo system. Thus, this paper proposes a combination of model
predictive control (MPC) and iterative learning control (ILC) to not only speed up the response time of the
system but also effectively reduce the speed ripples. MPC updates the predictive model in real time through
feedback and evaluates the system output and control rate according to the cost function. It obtains an optimal
control sequence for the next moment and has good parameter robustness and fast response. ILC records the
speed of ripple signals over an entire cycle and then uses those signals to compensate for the control signal
in the next cycle. It is capable of reducing the periodic speed ripples. The experimental verification of the
schemes was conducted on a digital signal processor–field programmable gate-array-based platform. The
experimental results obtained confirm the effectiveness of the proposed MPC–ILC scheme.

INDEX TERMS Iterative learning control, model predictive control, PMSM control, speed ripple.

I. INTRODUCTION
A permanent magnet synchronous motor (PMSM) is widely
used in the field of industrial servo control, especially in
high-precision fields such as robotics, aerospace, and large
telescopes. PMSMs are preferred over dc motor drives, which
are conventionally used for ac servo drives, mainly because
of their advantages such as high power density, high torque-
to-inertia ratio, and high efficiency [1].

However, the parasitic torque ripples in PMSM are
inevitable, and their effect on motion control and precision in
applications is undesirable. These torque ripples lead to peri-
odic speed oscillations, which cause degradation in the drive
performance, especially in low-speed operations [2]. If the
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velocity fluctuates too much, it may even cause instability in
the servo system.

Torque pulsations in a PMSM are caused by various
sources, such as cogging, flux harmonics, errors in cur-
rent measurements, and phase unbalancing [3]. In addition,
the time delay due to data processing in the microprocessor
must be considered [4]. Many techniques have been proposed
in the past two decades to minimize torque ripples and can be
broadly classified into two categories [5].

The first category involves the design and improvement of
the motor body structure, such as skewing the slot or magnet,
ensuring a fractional number of slots per pole, and improving
the winding distribution [6], [7]. Although improving the
motor structure is the most effective and reliable method,
such methods are not repeatable. In other words, once the
designed motor is produced, the motor performance cannot
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be modified.Moreover, the special machine-design processes
require complex production processes, resulting in a higher
machine cost. The second approach involves the use of active
control schemes. Many scholars have proposed control algo-
rithms to improve the performance of motors by designing
a controller to correct and compensate the periodic torque
ripple.

The second method was the main research direction of
the current study. The focus was on using additional control
measures to compensate for these periodic torque ripples.
Many composite methods are proposed by researchers to
deal with the torque ripple and simultaneously improve the
performance robustness of the control system [8], [9].

As an advanced control strategy, predictive control has
been studied by many scholars and achieved satisfactory
results. Model predictive control (MPC) is considered by
many researchers to be one of the most robust control tech-
niques and a possible candidate for electrical drives. MPC
is based on the optimization of the cost function, which
is related to the difference between the output and desired
trajectory [6]. MPC comprises three steps: predictive model,
receding optimization, and feedforward–feedback structure.
The MPC method has advantages such as robustness, simple
modeling, and ability to handle control variable constraints;
these can ensure satisfactory performance of the system [10].

In recent years, with the development of faster micro-
controllers and advances in MPC research, a number of
compound algorithms based on MPC have been proposed
to reduce the torque ripple and enhance the control perfor-
mance of PMSMs [11]–[21]. To compensate for the torque
ripple caused by cogging, a hybrid method that uses the
FCS-MPC and a look-up table was presented to obtain good
cogging-torque estimation [11]. Other improvements, such
as quantitative search [12] and duty cycle control [13], [14]
have also been proposed. Several of the above modifications
can reduce torque and current ripples. In addition, some
scholars have proposed a control strategy combining MPC
with observers [15]–[18]. The estimated disturbance is used
to compensate for the uncertainties of the current or speed
loop through a feed-forward control. In [17], a continuous-
time model predictive control (CTMPC) for a PMSM drive
was discussed; the CTMPC uses a Taylor series expansion
to derive a closed-form solution to the MPC problem, and a
nonlinear disturbance observer was designed to enhance the
prediction accuracy under parameter variation and unknown
load torques. These experiments showed that this method
showed good transient and steady-state performances. How-
ever, this approach can be used only for torque ripple com-
ponents that are observable from an electrical subsystem;
ripples due to amechanical part (e.g., cogging torque and load
oscillations) cannot be observed or controlled [19]. In [20],
a cascade MPC structure was proposed for a PMSM with
current and speed control as the inner and outer loops, respec-
tively. To reduce the impact of periodic disturbances arising
from the offset errors of the current sensor on the speed
control of a PMSM, a disturbance model, with the signal

generators of zero and first frequency modes, was embedded
in the design of the outer-loopMPC.However, the established
torque-ripple model is often complicated and inaccurate [21],
and provides limited suppression of torque ripple.

In the PMSM control system, the occurrence of torque
ripple is mainly related to the rotor position, which causes
periodical oscillations of the machine torque and speed. Iter-
ative learning control (ILC) is widely used as a model-free
control strategy to suppress periodic torque ripple. ILC is
an approach to improve the performance of a system that
is executed repetitively and periodically over a fixed time
interval by learning from previous executions (trials, itera-
tions, and passes) [22]. ILC has significant control effects on
the abovementioned repetitive problems [23]–[25]. In [23],
a modified ILC scheme was implemented in the frequency
domain via a Fourier series expansion is presented, combined
with the PI speed controller to further suppress torque ripple.
Combining ILC with second-order sliding mode technology
suppresses torque ripple and is also robust to noise [25].
As possible sources of torque ripple are observable based on
the rotor speed, ILC is often utilized in combination with a
speed controller in the speed loop.

This paper presents an MPC–ILC scheme, which uses the
dynamic discrete system in the PMSM to design a predictive
model with periodic perturbation and uses the angle-based
ILC to learn and store the velocity error to compensate the
velocity loop control in the next cycle. ILC is used to sup-
press the speed ripple caused by the torque ripple, while
MPC improves the response speed and robustness of the sys-
tem. The performance of the MPC-ILC scheme was verified
through multiple experiments. The experimental results show
that the proposed method shows significant improvements in
terms of speed ripple reduction and response speed.

The remainder of this paper is organized as follows.
Section II introduces the mathematical model of the PMSM.
Section III discusses the source of torque ripples due to
cogging, flux harmonics, current offsets, and scaling errors.
Further, Section IV presents the design process of the MPC
combined with ILC based on a discredited model of the
PMSM. The implementation, simulation, and experiment are
discussed in Section V, and Section VI presents the experi-
mental results and discussion. Finally, the paper is concluded
in Section VII.

II. MATHEMATICAL MODEL OF PMSM
To analyze the variable speed drive system of a PMSM,
the motor must be modeled properly. First, the following
assumptions were made about the PMSM used in this study.

1) The neutral point is not connected.
2) Iron saturation is negligible.
3) There are no eddy currents or core losses. In other

words, the magnetic permeability of the core is infinite,
and the eddy-current and hysteresis losses of stator and
rotor cores are ignored.

4) The motor parameters (winding resistance and winding
inductance, etc.) are constant.
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Based on these assumptions, the stator d–q axis voltage
equations of the PMSM in the synchronous rotating reference
frame can be expressed as follows:

did
dt
=

1
Ld

(ud − Rsid + ωeLqiq) (1)

diq
dt
=

1
Lq

(uq − Rsiq − ωeLd id − ωeψf ) (2)

dωe
dt
=

1
J
(Te − Bωe − TL) (3)

Te =
3
2
p[ψf iq + (Ld − Lq)id iq] (4)

Here, id and iq are the stator currents along the d and q axes,
respectively; ud and uq denote the stator voltage in the d–q
frame; Rs is the stator resistance; ωe is the electrical angular
speed. Here, ωe = pωm, where ωm denotes the mechanical
speed and p is the number of pole pairs. Furthermore, ψf
is the PM flux linkage, TL is the load torque, and J and B
are the moment of inertia and viscous coefficient of load,
respectively.

As the surface-mounted PMSM is nonsalient, the d-axis
inductance is equal to that of the q axis, i.e., Ld = Lq = L.
Hence, a reluctance torque component does not exist. The
motor torque coefficient is Kt = 3pψf /2.
By using a usual field-oriented control of the PMSM,

the stator current was controlled to obtain a right angle
between the stator current and rotor flux (id = 0), and
therefore did not contribute toward magnetization but only
toward torque production, and (4) is re-expressed as

Te = Kt iq. (5)

By substituting (5) into (3), the mechanical dynamic is
described as follows:

J
dωe
dt
= Kt iq − Bωe − TL . (6)

III. ANALYSIS OF TORQUE RIPPLES
The torque ripple of the PMSM is mainly divided into two
types. The first type is the torque ripple caused by the motor
body structure, e.g., the cogging torque and flux harmonics,
whereas the second type is caused by the drive controller,
e.g., the current measurement error, data processing delay,
and dead time effect. The generation principle of a torque
ripple is the interaction between the stator current and rotor
magnetic field. The parasitic torque ripple in a PMSM will
cause the cyclical fluctuation of the electromagnetic torque,
which will cause speed fluctuation in the steady state and
affect the control precision of the motor.

The cogging torque was analyzed from the structure of
the motor. From the perspective of energy, the energy stor-
age in the air gap of the stator slot was not constant, and
the fluctuation in this energy caused the torque fluctua-
tion. According to mechanical analysis, the torque is caused
by the interaction between the magnetic flux and stator
slots, and the permanent magnet is subjected to a tangential
force, which moves toward the direction of the stator tooth.

The compensation of this problem using a mathematical
method is very difficult because of the lack of a precise
cogging torque model. According to the analysis presented
in [26], the cogging torque can be simplified as a periodic
function of the rotor position, and can be represented by a
Fourier series [27].

Tcogg(θm) =
∞∑
k=1

Tmk sin(mkθm), (7)

where θm = θe/p is the angular position, Tmk represents the
Fourier coefficients, and m is the least common multiple of
stator slots Ns and the number of poles 2p.
Magnetic flux harmonics are also an important cause of

torque pulsation. Owing to the motor structure and defect of
motor processing, the air-gap magnetic density of the motor
is nonsinusoidal; for example, the existence of the motor
slot structure can destroy the sinusoidal nature of the flux
density. This results in an imperfect sinusoidal flux-density
distribution that produces periodic torque ripple when inter-
acting with standard stator currents. In the d–q frame, the flux
harmonics appear as the sixth, twelfth, and other multiples of
the sixth harmonics, and can be expressed as

ψd (θe) = ψd0 + ψd6 cos(6θe)+ ψd12 cos(12θe)+ · · · , (8)

where ψd0 is the fundamental component; ψd6 and ψd12 are
the sixth and twelfth harmonic terms of the q-axis flux link-
age, respectively; θe is the electrical angle. The combination
of (5) and (8) yields

Tm = T0 + T6 cos(6θe)+ T12 cos(12θe)+ · · · , (9)

where T0 is the fundamental component, and T6 and T12 are
the 6th and 12th harmonic torque amplitudes, respectively.
Equation (9) indicates that the 6th and 12th torque harmonics
produced mainly owing to the nonsinusoidal flux distribution
are periodic in nature. Therefore, the harmonic torque can
also be considered as a function of the mechanical angle.

Current offsets and scaling errors belong to the inevitable
situation caused by the controller. During measurement, inac-
curate current acquisition introduces measurement noise,
causing a DC offset. The output of the current sensor must
be scaled to match the input of the A/D converter, and in the
digital form, the controller rescales the value of the A/D out-
put to obtain the actual value of the current, thus introducing
a scaling error.

In [3], the torque ripple caused by the current offset error
is expressed as

1Toffset=Kt
2
√
3
cos(θe+α)

√
1i2as+1ias1ibs+1i

2
bs, (10)

where 1a and 1b are the DC offsets in the measured cur-
rents of phases a and b, respectively, θe = 2π fst , and α
is the constant angular displacement and is dependent on
phase currents. In addition, the scaling factors for the currents
of phases a and b are denoted as Ka and Kb, respectively.
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The torque ripple caused by the current scaling error is
expressed as

1Tscaling = Kt (
Ka − Kb
KaKb

)
I
√
3

[
cos(2θe +

π

3
)+

1
2

]
, (11)

Equations (10) and (11) show that the DC offset in the
current measurement causes a torque oscillation at the fun-
damental frequency and the scaling error causes the torque to
oscillate at twice the fundamental frequency.

IV. DESIGN OF THE PROPOSED CONTROLLER
As the main controller of the speed loop, the MPC updates
a state by receding the time domain strategy and processes
the parameter perturbation caused by various uncertain dis-
turbances and operating environments online to improve the
robustness of the system. The MPC translates PMSM control
issues into output optimization issues. The prediction and
optimization are based on the real-time feedback information
of the system, and the initial value of each prediction model
is updated. Therefore, MPC does not need a high-precision
PMSM model and can achieve a better control effect.

Fig. 1 shows the block diagram of the MPC, the purpose of
which is to accurately track the reference speed. The control
value is obtained by minimizing the value function after
multistep prediction.

FIGURE 1. MPC diagram.

A. DESIGN MODEL FOR THE OUTER-LOOP MPC
According to (6), the PMSM model is described as follows,
considering the periodic disturbances:

J
dω
dt
= Kt iq − Bω + f (ω, t), (12)

where f (ω, t) is an unknown periodic function resulting from
torque ripple. The MPC requires a discrete model of the
PMSM, thus requiring the use of Euler discretion, and Ts
is sample period. The discrete mechanical equations can be
obtained as follows:

ω(k + 1) = (1−
BTs
J

)ω(k)+
KtTs
J

iq(k)+
Ts
J
f (ω, k). (13)

Then, by defining state variable x(k) = ω(k), u(k) = iq(k),
Am = (1 − BTS

J ), Bm =
KtTs
J , and Cm =

Ts
J , (13) can be

rewritten as

x(k + 1) = Amx(k)+ Bmu(k)+ Cmf (x, k). (14)

Upon formulation of the mathematical model, the next step
in the design of a predictive control system is to calculate the
predicted plant output by using the future control signal as the
adjustable variable. The predicted state can be expressed as

x(k+2|k) = Amx(k+1|k)+ Bmu(k + 1)+ Cmf (x, k + 1)

= A2mx(k)+ AmBmu(k)+ Bu(k + 1)

+AmCmf (ω, k)+ Cmf (ω, k + 1) (15)

x(k+Np|k) = Amx(k + Np − 1|k)+ Bmu(k + Np − 1)

+Cmf (x, k + Np − 1)

= A
Np
m x(k)+ A

Np−1
m Bmu(k)

+ · · · + (A
Np−Nc
m Bm + · · · + Bm)u(k+Nc−1)

+A
Np−1
m Cmf (ω, k)+ · · · + Cmf (ω, k + Np)

(16)

where Np and Nc are the prediction and control horizons,
respectively. Control horizon Nc was selected as less than
(or equal to) prediction horizon Np. The term x(k + Np|k)
is the Np th step predicted state variable at the kth moment,
and the vectors are defined as

X (k) = [x(k + 1|k), x(k + 2|k), · · · , x(k + Np|k)]T

U (k) = [u(k), u(k + 1), u(k + 2), · · · , u(k + Nc − 1)]T

F(k) = [f (k), f (k + 1), f (k + 2), · · · , f (k + Np − 1)]T

The matrix form of the predicted state variable can be
expressed as

X = Gx(k)+8U + εF, (17)

where

G =


Am
A2m
A3m
...

A
Np
m

 ε =


A
Np−1
m Cm
A
Np−2
m Cm
...

AmCm
Cm



T

8 =



Bm 0 0
...

... 0
ANc−1m Bm · · · Bm

...
...

A
Np−1
m Bm · · ·

Np−Nc∑
i=0

AimBm


The main goal of the MPC is to ensure the speed can follow
the reference speed accurately, where we assume that the
reference speed remains constant in the prediction horizon.
For the speed-loop MPC system, the control objective is to
find optimal control inputU that minimizes the cost function:

J = ‖W − X‖2Q + ‖U‖
2
R , (18)

where Q and R are the appropriate dimensions of the output
and control weighting matrices, respectively, and positive
definite (denoted as >0) W =

[
ωr (k + 1) ωr (k + 2) · · ·
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ωr (k + Np)
]T is a vector representation of the output expecta-

tion. By substituting (17) into (18), and according to the first
derivative of cost function J ,
∂J
∂U
= −28T (W − Gx(k)+ εF)+ 2(8T8+ R)U . (19)

Let ∂J
∂U = 0, then optimal control U at the kth instant can be

obtained as

U = (8TQ8+ R)−18TQ [W − Gx(k)+ εF] . (20)

However, F is an unknown periodic perturbation sequence;
thus, assume that F̂ is an estimated sequence of F and is
introduced to compensate for unknown periodic disturbances
and improve the system’s anti-disturbance capability. The
next section details an integrated feed-forward compensation
design method with the ILC.

Using the terminal constraints and Lyapunov stability the-
orem to prove the stability of the proposed method. according
to (14), the discrete state equation of the system is written as

x(k + 1) = g(x(k), u(k)), (21)

where g(·) is a nonlinear function, g(0, 0) = 0 is the system
input, and the state constraints are x ∈ �x , u ∈ �u,
0 ∈ �x , and 0 ∈ �u. By minimizing the cost function (18),
the following formula was obtained:

min
u(k+i|k),0≤i≤N−1

JN (k) =
N−1∑
i=0

l(x(k + i|k), u(k + i|k))

s.t. x(k + i+ 1|k) = g(x(k + i|k), u(k + i|k)),

i = 0, · · · ,N

− 1x(k + i|k) ∈ �xu(k + i|k) ∈ �u

x(k|k) = x(k) (22)

where l is a nonlinear performance function, and l(·, ·) ≥ 0
only if l(0, 0) = 0. Additionally, the terminal constraint
x(k+N |k) = 0. Assuming that the optimal solution at time k
isU∗(k) = {u∗(k|k), · · · , u∗(k+N−1|k)}, the corresponding
system status is X∗(k) = {x∗(k+1|k), · · · , x∗(k+N |k)}, and
the optimal value of the performance index can be obtained.

J∗N (k) =
N−1∑
i=0

l(x∗(k + i|k),u∗(k + i|k)) (23)

At time k + 1, a solution U (k + 1) = {u(k + 1|k + 1),
· · · , u(k + N − 1|k + 1), 0} was constructed, where u(k +
i|k + 1) = u∗(k + i|k), i = 1, · · · ,N − 1. The system state
is X (k + 1) = {x(k + 2|k + 1), · · · , x(k + N + 1|k + 1)}
according to the solution for time k+1, and x(k+i+1|k+1) =
x∗(k + i+ 1|k), i = 1, · · · ,N − 1. Thus, we obtained

x(k + N + 1|k + 1) = g(x(k + N |k + 1), u(k + N |k + 1))

= g(x∗(k + N |k), 0)

= 0 (24)

This shows that U (k + 1) and X (k + 1) meet all the
constraints of (22).U (k+1) is a feasible solution. Therefore,

J∗N (k + 1) ≤ JN (k + 1).

Further, the optimized performance index value corre-
sponding to U (k + 1) is as follows:

JN (k + 1) =
N−1∑
i=0

l(x(k + i+ 1|k + 1),u(k + i+ 1|k + 1))

=

N−2∑
i=0

l(x∗(k + i+ 1|k),u∗(k + i+ 1|k))

+ l(x(k + N |k + 1),u(k + N |k + 1))

= J∗N (k)− l(x
∗(k|k),u∗(k|k)) ≤ J∗N (k)

This shows that

J∗N (k + 1) ≤ J∗N (k). (25)

The equal sign is valid only if x(k) = 0 and u∗(k|k) = 0.
Therefore, using J∗N (k) as a Lyapunov function, we could
prove that the predictive control system was stable.

B. DESIGN OF ILC TO COMPENSATE
FOR PERIODIC DISTURBANCES
ILC is a model-free control method based on a memory
mechanism that can cause the error signal to tend to zero in
a limited time through the continuous learning of periodic
error signals. By considering the above-mentioned analysis
of torque ripple, PMSM with periodic torque ripple can be
considered as a process with a periodic disturbance. As an
iterative method, ILC has a good performance when rejecting
a periodic disturbance. Compared to other kinds of active con-
trol methods, ILC has the following advantages. It changes
the control signal, implying that the structure of the previous
control system does not need to be changed, and it is insensi-
tive to plant parameter variations. Therefore, the use of ILC
to achieve torque ripple reduction is reasonable.

For the conventional time-based ILC algorithm, the PMSM
dynamic system is described as

ẋ(t) = ax(t)+ bu(t)+ f (x, t), (26)

where a = −B/J and b = Kt/J . f (x, t) is a periodic
disturbance. In the classic P-type ILC control, the control rate
is expressed as

ui+1(t) = ui(t)+8ei(t), (27)

where i indicates the current iteration index, ui(t) is the
control signal generated from the ILC, ei(t) = ωref − ωm

is the error signal at the kth iteration, ωref is the reference
output, ωm is the measured output, and8 is the learning gain.

For convergence of the ILC system, given as the learning
gain, the following criterion must hold [3]:

‖I − b8‖ < 1. (28)

However, time-based ILC has the following disadvantages
for PMSM torque-ripple compensation. The iteration period
of time-based ILC must be an integer multiple of the torque-
ripple period because torque ripple is a function of angular
position, which requires the accuratemeasurement of the con-
stant velocity value and calculation of the pulsation period,
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and then compensate for the disturbance at the corresponding
angular position at time k . If the speed value changes, the cor-
responding period must be recalculated. In the case of high
control accuracy, once the corresponding angular position is
deviated, the system performance may be deteriorated.

In this paper, an angle-based ILC algorithm is proposed.
According to the angular position information, the torque
ripple is compensated to improve the performance of the
system against periodic disturbances. The control algorithm
is as follows:

F̂i+1(θm,k ) = (1− α)F̂i(θm,k )+8ei(θm,k )+ 0ei+1(θm,k ),

(29)

where α is a forgetting factor to increase the robustness of
the algorithm against noise, 8 is the previous cycle error
feedback gain, 0 is the current cycle error feedback gain, and
θm,k indicates the angle value at time k .
Then, the conditions for convergence can be obtained

according to (28). ∥∥∥∥1− Kt
J
8

∥∥∥∥ < 1 (30)

As long as8 satisfies the above inequality, iterative learn-
ing control can achieve stability and convergence. According
to [28], 0 does not affect the convergence of the learning
controller; however, experiments have proved that if 0 is
extremely large, which would cause the current cycle error
and noise to be over-amplified, thus causing the correspond-
ing control output to be larger, eventually leading to the
nonconvergence of the system.

C. OVERALL CONTROL STRUCTURE
Fig. 2 shows the overall structural diagram of the PMSM
servo system, that is, the combination of MPC and
angle-based ILC to solve the problem of torque ripple min-
imization. Current decoupling was performed using vector
control to transform the three-phase ac currents ia, ib, and ic
into their representations id and iq, respectively. The current
loop uses the PI controller to track output iq of the speed
loop to generate the control voltage. To suppress the high-
frequency noise in the speed signal, the low-pass filter was
used.

FIGURE 2. Overall structural diagram of the PMSM servo system.

V. IMPLEMENTATION AND SIMULATION
The system was simulated using MATLAB software tools
to demonstrate the effectiveness of the proposed control
method, and simulation comparison was conducted between
a conventional PI-ILC and the proposed algorithm. For com-
parison purposes, the current loops of both methods use a
PI controller with the same parameters. The PMSM spec-
ification and parameters for the simulation are presented
in Table 1.

TABLE 1. Parameters of PMSM.

The important parameter of the cost function is length Np.
Considering the actual application, a very long length of the
prediction horizon will increase the computational burden
of the processor; however, a lower bound of the length also
exists. In other words, input signal u at time step k will affect
the voltage, current i, and speed ωm at time steps k + 1,
k + 2, and k + 3, respectively. This sets a minimum value
Np = 4 for the prediction horizon. In this study, this value
was taken as Np = 5. To shorten the calculation time,
the authors considered Nc = 1. The parameters of the current
PI controllers in the two methods are all the same, that is, for
the q-axis controller, Kip = 8 and Kii = 0.01; for the d-axis
controller, Kip = 8 and Kii = 0.01; and for the PI speed
controller, Ksp = 0.05, Ksi = 0.007. and. The parameters of
the proposed speed controller are Np = 5, Nc = 1. Weighting
matrices Q = 1.1 × I5×5 and R = 1, and the α = 0.1,
8 = 0.5, 0 = 0.01.
Fig. 3 shows the comparison between different strategies.

To test the speed response, a speed command from 0 to 5◦ s−1

is applied to the speed controller. As shown, the speed
response time of the MPC is approximately 0.015 s, which
is significantly faster than the PI control strategy, and the
overshoot is smaller.

FIGURE 3. Simulation results of the motor response waveforms of the
MPC and PI.
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FIGURE 4. Simulation results of the velocity pulsation suppression
process at 5◦ s−1.

Fig. 4 shows the comparison results of the simulations
conducted using the MPC strategy without and with the
compensation from ILC at the speed reference of 5◦ s−1.
At t = 0.3 s, the first, second, and sixth disturbances were
added into the speed signal. Fig. 4(a) shows that the MPC
has a poor suppression effect on periodic pulsation, whereas
Fig. 4(b) shows that when the compensation from ILC is
added into theMPC at t = 0.3 s, the periodic pulsation is well
suppressed after four cycles of iterative learning. In Fig. 4(c),
the blue curve represents the control sequence of the ILC to
compensate for periodic disturbances, the red curve indicates
MPC control, and the green one indicates composite control.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the practicability and validity of MPC with ILC,
the control algorithms were implemented in a digital signal
processing/field programmable gate array (DSP-FPGA)-
based azimuth axis platform of a telescope (Fig. 5). The sta-
bility of the servo platform of the telescope affects the quality
of target imaging, and thus studying the suppression of torque
ripple is extremely significant. In the control driver, the FPGA
is mainly used for AD conversion, encoder reading, speed
detection, and generation of IGBT gate-switching signals.

FIGURE 5. Telescope PMSM servo platform.

FIGURE 6. Experimental results of speed response at 5◦ s−1: (a) speed
response, (b) Q axis current, and (c) velocity pulsation suppression.

The proposed algorithmwas implemented using a C-program
in DSP-TMS320F28335. The sampling frequencies for the
speed and current controllers were 1 and 15 kHz, respectively.
Table 1 lists the parameters of the motor.

During the transient state, the ILC is turned off and iqref
is provided only by the MPC controller output. When the
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FIGURE 7. Experimental results of the PI control at 5◦ s−1: (a) speed
response and (b) frequency spectrum.

steady state is reached, the ILC learns the periodic torque
ripple through iteration and compensates for it in the MPC
controller to generate the desired current control signal.

The performance of the drive system using the pro-
posed control scheme was compared to the classic PI con-
troller solution. The ratio of the peak-to-peak speed to the
average speed was used to evaluate the effectiveness of
the proposed scheme for minimizing the torque pulsation,
i.e., SRF = Spp/Save.

Based on the theoretical analysis and experimental-
platform construction discussed above, experimental results
were obtained and are shown in Figs. 6–10. To verify the
effectiveness of the proposed algorithm, the experiments
were conducted under operating conditions with different
speeds: motor speed at 5 and 10◦ s−1. Fig. 6 shows the
velocity response curves corresponding to the PI control,
MPC control, and MPC–ILC algorithm at 5◦ s−1, the corre-
sponding current response result, and the ability to suppress
velocity pulsations. Figs. 7–10 show the results of the speed
fluctuations of the conventional PI, proposed algorithm, and
the Fourier analysis of the corresponding speed. According to
the torque analysis presented in Section III, we selected only
the first, second, and sixth harmonics for analysis.

The experimental results show that the proposed control
algorithm has faster speed response and pulsation suppression
capability compared to conventional PI control. In Fig. 6,
the MPC–ILC speed response time is 0.6 s, which is 0.2 s
faster than the PI control, and the step response shows almost
no overshoot. In Fig. 6(b), the Q-axis current fluctuation of
the proposed algorithm is slightly smaller than that of the
conventional PI. Figs. 7(a) and 8(a) show the speed signals of

FIGURE 8. Experimental results of the MPC–ILC control at 5◦ s−1:
(a) speed response and (b) frequency spectrum.

FIGURE 9. Experimental results of the PI control at 10◦ s−1: (a) speed
response and (b) frequency spectrum.

the PI and proposed controllers at 5◦ s−1, respectively. The
SRF is reduced from 4% to 1.8% for the MPC–ILC control.
After calculation, the frequencies of the first, second, and
sixth harmonics corresponding to 5◦ s−1 are 0.903, 1.806,
and 5.42 Hz, respectively. Figs. 7(b) and 8(b) present the
Fourier analysis results of the corresponding speed signals,
and the frequencies of the first, second, and sixth harmon-
ics are 0.909, 1.81, and 5.43 Hz, respectively. The experi-
mental results are almost identical to the calculated results.
As can be seen, the amplitudes of the first, second, and sixth
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FIGURE 10. Experimental results of the MPC–ILC control at 10◦ s−1:
(a) speed response and (b) frequency spectrum.

harmonics are reduced from −22.7, −31.1, and −36.5 dB to
−44.9, −49.3, and −55.9 dB, respectively. Figs. 9 and 10
are arranged in the same sequence for operating conditions
at 10◦ s−1. In these cases, the corresponding SRF is sup-
pressed from 3.6% to 1.9%. The amplitudes of the first, sec-
ond, and sixth harmonics are reduced from−25.4,−29.6, and
−38.1 dB to −42.5, −46.3, and −50.4 dB, respectively. The
experimental results show that the proposed control strategy
can reduce the speed fluctuation to some extent and improve
the stability of the servo system.

VII. CONCLUSION
To minimize the torque ripple and enhance the performance
of the PMSMdrive systems, this paper proposed the combina-
tion of an MPC with an angle-based ILC. The proposed con-
trol scheme increases the speed response time and effectively
suppresses the periodic velocity pulsation. This method is
easy to implement on an integratedDSP-FPGA-based PMSM
platform. The simulation and experimental results indicate
that the proposed scheme can minimize the speed ripple
effectively and further improve control performance.
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