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Abstract: In recent years, kernelised correlation filter-based trackers have been employed to manage short-term tracking
problems and help long-term trackers achieve excellent accuracy and robustness under challenging conditions, such as
geometry/photometry changes, heavy occlusion, fast motion, motion blur, and out-of-camera view. Nonetheless, the inherent
boundary effects and risky update strategy of correlation filters constrain the performance of short-term tracking, which limits the
performance of long-term trackers. Moreover, the complicated redetection module leads to high-computational cost, which
results in the long-term trackers to run at a low speed, thereby significantly restricting their applications. In the present work, the
authors propose to employ complementary trackers in designing an efficient long-term tracker. Furthermore, a sigmoid penalty
coefficient is proposed to update the tracking model with an adaptive learning rate that adjusts the learning rate while the target
encounters appearance variation. Finally, they propose a novel redetection method that combines a redetection classifier with a
short-term component to redetect the target while satisfying the explicit condition. The long-term tracker proposed in this study
is proven to perform real-time speed of more than 65 frames per second and state-of-the-art accuracy by the experimental

result on several challenging benchmarks.

1 Introduction

Generic visual object tracking is one of the fundamental problems
in computer vision applications and has a broad developmental
prospect in video surveillance, robotics, and autonomous vehicle
navigation [1]. The task of generic object tracking can be
summarised as follows. Given a single target specified by a
bounding box in the first frame, the location where the target will
appear in all other frames in sequences is estimated. Although
visual object tracking has long been proposed, its application in
many practical applications remains a challenge.

In recent years, the emergence of correlation filters has caused
significant progress in visual object tracking, which augments the
samples to promote the discriminative ability and achieve a high-
computational efficiency due to the circulant matrix. However,
despite its recent advancements, visual object tracking remains a
great challenge due to the large appearance variation caused by
deformation, fast motion, illumination change, heavy occlusion,
motion blur, out-of-plane rotation, and out-of-camera view {2, 3].

First, the boundary effects [4] have demonstrated significant
influence on the tracking performance of correlation filter-based
trackers. The poor performance of such trackers significantly
limited the performance of correlation filter-based long-term
trackers. To enhance the performance of correlation filters without
considerably increasing the computation cost, we develop a colour-
based tracker that complements kernelised correlation filters
(K.CFs) and mitigates the boundary effects (Fig. 1).

Second, the correlation filter-based trackers update the model
frame-by-frame while tracking the target. However, the vast
majority of state-of-the-art trackers [5—7] only update the tracking
model with a constant learning rate. When the target encounters a
significant deformation, the inaccurate tracking detection of the
tracker produces corrupted training samples. The constant learning
rate may lead to tracking failure due to model drifts [8] caused by
updating the tracking model with corrupted samples. In addition,
although targets are correctly detected, occlusions and background
clutter will also lead to a decrease in the discriminative ability of
the trackers. Therefore, adjusting the learning rate with the sample
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quality change is important. In this work, we address this problem
by updating the tracking model with a sigmoid penalty coefficient
that relates to the past and current maximum values of the response
map.

Finally, the correlation filter-based trackers update the model to
adapt target appearance variations rapidly with high learning rates,
which results in the trackers only remembering the samples on the
latest dozens of frames (Fig. 2). The tracking model is rapidly
corrupted and causes tracking failure while it is updated with noisy
training samples over a period of time. Hence, the correlation filter-
based trackers can only address short-term tracking problems. The
correlation filter based-trackers have adopted a long-term
component to construct long-term tracker in recent works [5, 9,
10]. The long-term component aims to learn the appearance of the
confident result conservatively and redetect the target to continue
tracking while experiencing short-term component tracking failure.
However, some critical problems concerning long-term trackers
still remain. Primarily, the existing long-term trackers [5] activate
the online trained classifier when the confidence scores are less
than the given threshold and accept the result of the redetection
classifier as the result of the long-term tracker. The existing criteria
that control the long-term components are indistinct, which results
in limited performance of the long-term trackers. Furthermore,
existing long-term trackers [9, 10] run at a low speed due to their
complicated structure and high-computational expenses of the
long-term component, which significantly limits the real-world
application of the long-term trackers. As previously mentioned,
strengthening and simplifying the redetection module of the long-
term trackers is critical. Hence, we propose a redetection strategy,
named assistant redetection, which conservatively trains the online
support vector machine (SVM) classifier [11] and the short-term
component to redetect the target. The proposeéd. long-term tracker
activates the short-term component again after the SVM classifier
to redetect the target precisely while tracking failure occurs.

In the present study, we propose long-term complementary
adaptive tracker (LCAT). The proposed tracker focuses on the
research that merges different complementary trackers to overcome
the drawbacks of the correlation filter and realise long-term
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Fig. 1 Effectiveness of assistant redetection in LCAT on sequence Joggingl. In comparison with some of the state-of-the-art trackers under the challenging
circumstance of fast deformation, out-of-plane rotation, and heavy occlusion on Joggingl sequence, our LCAT successfully redetect the target afier a heavy

occlusion, which leads to better robustness

emmsaweee  Qurs s Staple

KCF

fDSST memmsmmsm Staple CA

Fig. 2 Qualitative comparison between LCAT and selected state-of-the-art trackers under challenging scenarios. From the tracking results of the Staple,
fDSST, Staple CA, KCF and LCAT, our proposed method demonstrates robustness under challenging scenarios

tracking skilfully. This tracker not only establishes a remarkable
result that exceeds the number of complex state-of-the-art trackers,
including convolutional neural network (CNN)-based tracker and
correlation trackers that employ CNN features, but also runs at 65
frames per second (FPS) on CPU.

Contributions. This study addresses the previously mentioned
problem and proposes a novel long-term tracker by decomposing it
into short-term, long-term, and scale-estimate components. The
main contribution of our work can be summarised into four parts.
First, we adopt complementary trackers to address the tracking
problem and achieve a favourable performance. Second, we
investigate the relationship between the response map of the
tracker and the learning rate by proposing a sigmoid penalty
coefficient to learn adaptively the tracking model. Third, we
propose to employ past and current average peak-to-correlation
energies (APCEs) [12] and maximum values from the response
map to control the activity of the long-term component. Finally, we
establish a simplified long-term component by combining the
short-term  component (complementary trackers) with the
redetection SVM classifier to save computational cost and improve
accuracy. Our long-term tracker effectively alleviates the model
update problems, which often results in model drift, and robustly
performs in various challenging video datasets.
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2 Related works
2.1 Tracking-by-detection and correlation filters

Tracking-by-detection, as well as the development of machine
learning in computer vision, became the most well-known and
powerful tracking framework due to its high performance and
efficiency. In comparison with generation models, tracking-by-
detection usually employs a binary classifier to discriminate an
object from its surrounding. Recently, several authoritative
benchmark datasets [2, 3, 13-16] that contain a large number of
challenging video sequences have been proposed, which
significantly accelerate the development of the object tracking.

The following section introduces some recently proposed
representative tracking-by-detection trackers. The Struck method
[17] employs samples in training the SVM with structured labels to
predict the target position, which achieved favourable results
several years ago. Minimum output sum of squared error (MOSSE)
[18] is the first tracker to employ a correlation filter on visual
object tracking, which creates a correlation filter that can obtain the
maximum value when it works on the target. The high-
computational efficiency and performance of MOSSE have
attracted considerable attention from the visual object tracking
community. Henriques et al. proposed KCF [7] based on their prior
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work on circulant structure of tracking-by-detection with Kernels
(CSK) [19], in which they emploved a circulant matrix to obtain
densely circular samples in the frequency domain and combined
fast Fourier transform to train the ridge regression classifier with
high efficiency. The KCF replaced the raw-pixel features of the
CSK by the multichannel histogram of orientation gradients (HOG)
[20] features and employed the kernel trick to enhance the
discriminative ability further without significantly increasing the
computational cost. The KCF achieved state-of-the-art in VOT14
challenge. Furthermore, discriminative scale space tracker (DSST)
[21] and scale adaptive with multiple features tracker (SAMF) [22]
were proposed in 2014 to solve the scale variation in video
sequences. SAMF estimates the scale variation by training the KCF
to search the target around the latest estimate position on various
sizes of the image patch. The DSST trains a scale correlation filter
and estimates the scales on the estimate position from the
translation correlation filter. Although the KCF achieves excellent
performance, it still has a number of critical problems due to
circular samples that are weak approximations of the real samples.,.
Thus, circular samples cannot truly represent the samples in real-
world circumstances. The spatially regularised correlation filter
(SRDCF) [4] was proposed to address this problem by employing
spatial regularisation that penalises the filter coefficients. However,
the SRDCF cannot be used in real time because it is difficult to
optimise. The multi-expert entropy minimization (MEEM) [11]
tracker combines multiple SVM classifiers with différent adaptive
learning rates and obtains tracking outputs according to a minimum
entropy criterion. Bertinetto er al. [23] proposed Staple, which
solves two independent ridge regression problems, to, obtain a
discriminative correlation filter and colour-based models rather
than employing trackers of the same types. The two tfackers are
combined in a simple way but achieve a favourable result in the
VOTI16 challenge.

CNNs show outstanding performance in various fields, thereby
attracting researchers’ attention to extend the method to visual
object tracking. Novel and powerful CNN features [24] have been
introduced to correlation filter-based trackers [25-27], which
significantly promotes the robustness and accuracy of the
correlation filters. However, given that the complexity of CNN
features is extremely high, it cannot run on the CPU at real time.
Thus, CNN and SRDCF methods are inappropriate for real-time
applications due to their high computational cost.

2.2 Long-term trackers

Long-term tracking is one of the problems to be solved in object
tracking. In comparison with short-term trackers, long-term
trackers are equipped with a redetection module to redetect the
target, which helps stabilise the tracking result. The tracking-
learning-detection (TLD) [28] is one of the most notable long-term
trackers. As its name suggests, TLD consists of tracking, learning,
and detection modules, which promote one another. The detector
module will be activated while a tracking failure occurs to
reinitialise the tracker. Correlation filters have been adopted to
address long-term tracking problems in several recent works. Ma et
al. [5] proposed a novel long-term correlation tracker (LCT), which
achieves excellent performance by training a traditional translation
correlation filter and an additional correlation filter to remember
the excellent sample for confidence estimation that is employed to
control the random forest classifier. Hong et al. [9] introduced
cognitive psychology principles to visual tracking and proposed the
MUTti-Store tracker (MUSTer). The framework of the MUSTer is
based on the Atkinson—Shiffrin memory model. The MUSTer
employs correlation filters for short-term tracking while employing
scale-invariant feature transform keypoint and random sample
consensus estimation for long-term tracking.

3  Our approach

In this section, the approach is divided into four parts. Section 3.1
presents the short-term component of our proposed tracker. Section
3.2 briefly describes the scale estimation approach used in our
tracker. Section 3.3 presents the proposed adaptive learning rate
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model. Finally, Section 3.4 describes the proposed assistant
redetection.

3.1 Short-term component

Similar to Staple, our short-term component is formulated by
combining two complementary trackers that are sensitive to
complementary elements. This complementary tracker generally
works accurately and efficiently under relatively stable tracking
scenarios.

3.1.1 Kernelised correlation filter (KCF): The KCF fully utilises
the circulant matrix, utilises all the cyclic shift samples of the base
sample, and converts the matrix multiplication to the Hadamard
product based on Fourier transform. The circulant matrix
transforms,a computational cost of 6(r’) to nearly G(nlogn). In
addition, the context information around the target is considered to
enhance the discriminative ability of the KCFs.

Obtaining a KCF from an image patch x includes the target and
the circular samples x; of x by solving the ridge regression problem,
is shown as follows:

min 7 (£0a) = )"+ Al w I, 1)

The objective of solving the ridge regression problem is to obtain
the optimal correlation filter w, such that f(z) = w'z minimises the
squared error over samples x; with their soft regression label y;.
Traditionally, the classifier densely obtains samples around the
target positions, assigning 0 to negative samples and 1 to positive
samples. Different from the binary classifier, the soft regression
label y is a Gaussian function. The value of the centred sample is 1,
and other cyclic shifts vary from 0 to 1 based on the Euclidean
distance to sample x; A is a regularisation item that alleviates over-
fitting. A cosine window is employed on the features extracted
from the samples to avoid boundary clutter.

For the KCF, the solution w can be written as a linear
combination of the training samples, as shown as follows:

w= ZOW(Xi)a )

where @(x) denotes the mapping of a linear problem to a non-linear
feature space by kernel trick and x denotes the feature extract from
the samples.

The dual space coefficient  is defined as

F()

=T = 5w e T ®

where * denotes a corresponding symbol in the Fourier domain. In
the new frame, we obtain a response for all the cyclic versions of
the image patch z

f="d0k"), )

where © denotes the Hadamard product. The new position of the
target can be found by locating the maximum value of the response

map. k™ is defined as the kernel correlation. In this study, we
adopt the Gaussian kernel to enhance the performance of the ridge

regression classifier. For the Gaussian kernel correlation, £ can
be written as

= e~ x 2 P29 00) )

The multichannel can be treated with a series of a single channel,
such as x = [x;,..., %], to handle a multichannel case. Given the

linearity of the discrete Fourier transform, k™ can be rewritten as
the sum of the result of each channel
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Equation (6) allows us to use a strong multichannel feature to
improve the performance of the correlation filter-based trackers.

3.1.2 Colour-based tracker: In this section, we employ the Bayes
rule [29] in constructing a discriminative colour-based object
model to track the target efficiently. In the present work, we
employ red-green-blue (RGB) colour histogram to obtain the
pixel-wise scores on search region, which make the colour-based
tracker strong at rapid deformation. To distinguish object O from
the background on input image 1, we employ the Bayes classifier at
location x to obtain pixel-wise scores on search region

Pl lx e FYP(x € F)
SecrnPGledPaed D

P(x € O|F,B,c,) ~

where F denotes a rectangular target region, B represents the "

surrounding region of the target, ¢, is the pixel x that belongs to the

cth bin of the RGB histogram, and H}(c) is the number of cth bin
in the RGB histogram H of region A € [. Pixel-wise scores can be

simplified by estimating from the RGB histograms. Equatlon N

can be rewritten as

1 S
P(x € O|F,B,c,) = _ Hre) @®

Hic) + Hic)

In (8), pixel x belongs to region B. The response map of the colour-
based tracker is obtained by efficiently applying the integral image
on the pixel-wise scores on search region.

3.1.3 Complementary tracker: Owing to the HOG features and
boundary effects of correlation filters, KCFs are weak at abrupt
motion and fast deformation. The colour-based tracker is based on
colour histogram and without boundary effects. The goal of
constructing a complementary tracker involves fully utilising the
advantages of a colour-based tracker to complement the
disadvantages of KCFs and alleviate boundary effects to a certain
extent.

The response map of the complementary tracker can be
obtained by linearly combining the response map of the two
complementary trackers.

response = (1 — a)response_cf + a - response_p, )

where o is the merge parameter between the response of the KCF
response_cf and the colour-based tracker response_p. In this study,
a is obtained through testing the OTB100 benchmark.

3.2 Fast scale space correlation filter

In the proposed long-term tracker LCAT, we employ a fast scale
space correlation filter fy., [6] to estimate the scale variation of
the target. The fast scale space correlation filter employs the linear
kernel to save computational cost.

Let Hx W be the target size in the current frame. The image
patch J, of size d"H xd"W around the estimated position is
extracted. a denotes the scale step between the two adjacent feature
layers from the image patch. S = 33 is the size of the fast scale
space correlation filter fi, in the scale correlation filter

ne{[-(s—-1/2,..,(s-1)/2]}.
In this work, the fast scale space correlation filter reduces the
feature dimensionality from ~1000 to 17 without losing the
information by the standard principal component analysis method.
Moreover, the sub-grid interpolation is employed on the scale
correlation scores to interpolate the output scores from 17 to 33.
The fast scale space correlation filter estimates and updates the
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target scale at the new target location from the proposed long-term
tracker. The fast scale space correlation filter is linearly updated
with a constant learning rate to adapt the scale changes of the
target.

3.3 Adaptive learning rate

In most existing trackers, a constant learning rate is widely
employed to update the tracking model at each frame. The model is
updated to reduce the weight of the old samples in the tracking
model. In the proposed tracker, we update the KCF and the colour
histogram from background and foreground independently based
on the tracking result in high learning rate. For the KCF, the
updated formulation is listed as follows:

P 5{,:(1 _ﬂcf)'&t—l'{”?cf'&ta OO)
Fo= =) X1 % (11

In the colour-based tracker, the colour histogram updated online is
as follows:

I;hist,r = (1 - 77p) : Ehist,t‘l +1p- Drist, 15 (12)

fhist,r = (1 - ﬂp) : fhist,r—-l +1p Shist o0 (13)

where #; and 7, are the learning rates of the correlation filter and
colour-based tracker, respectively; fi is the RGB colour
histogram of the target; by is the RGB colour histogram of the
search region; and ~ denotes the corresponding symbol that is
employed to detect the target position after the second frame.

However, the constant learning rate will update the tracking
mode] with the same learning rate despite how terrible the tracking
result is, which may result in tracking failure once the target is
detected inaccurately. The response map is the feedback of the
tracker, which is the accurate method to evaluate the quality of the
tracking result. The main problem in the model update is the
indistinct relationship between the sample quality and the learning
rate. Recently, a wide variety of sigmoid functions have been
broadly employed as activated functions in neural networks. The
sigmoid function is often employed as the learning curve of a
complex system when the specific mathematical model is lacking
[30]. Thus, we propose a sigmoid penalty coefficient to connect the
maximum value of the response map and the learning rate. For the
KCF, the learning rate can be written as

1.8 (14
et = 1 + exp(5(Mean_cf — Max cf})

where Mean_cf represents the previous mean maximum value of
the response map in the KCF and Max_cf is the maximum value of
the response map in the current frame. Similar to KCF, the learning
rate of the colour histogram can be rewritten as

M= - e (15)
P 1 4 exp(5(Mean_p — Max_p)

where Mean_p represents the previous mean maximum value of
the colour response map; Max_p is the maximum value of the
colour response map in the current frame; and b, c is the constant
learning rate of the KCF and colour-based tracker, respectively.

In the model update stage, the KCF and colour-based tracker
update the tracking model with the constant learning rate in the
first dozen of frames to obtain the stable previous mean maximum
value of the response map that is employed to construct the penalty
coefficient. This approach avoids special circumstances that result
in the previous mean maximum value of the response map
producing drastic fluctuation at the beginning.
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Fig. 3 Search region, corresponding per-pixel scores, and histogram
response on soccer sequences. A large search region significantly veduces
the accuracy of the colour-based tracker

8

Input: Initial target bounding box
Output: Estimated target bounding box
Repeat
1: Crop an image patch z centered at the last location and extract features.
2: Crop an image patch p centered at the last focation and compute color
histogram. 4
// Translation estimation
3: Compute kernelized correlation response and color-based response, merge
trackers. 4
4: Estimate target position and compute APCE and Max_response.
// Assistant re-detection

¢

5. if (APCE<B-Mean_APCE) or (Max_response<f-Mean_response)
6: Activate redetection classifier and find the position pos_SVM.
7 Repeat 1-4 at pos_SVM, obtain ACPE_r and Max_response_r.
8 if (APCE _r>y-Mean_APCE) and(Max_response_r>y-Mean_response)
9: Accept the result of assistant redetection.
10:  end
11 end
1/ Scale estimation
12: Crop different sizes of image patch and construct fast scale space correlation
filter.
13: Compute current scale.
/ update model
14: if (APCE>8-Mean _APCE) and (Max_response>8-Mean_response)
15:  Update translation filter and color histogram.
16: i (APCE>A-Mean_APCE) and (Max_response>A-Mean_response)
17: Train SVM classifier.
18 end
19: end
20:  Update fast scale space correlation filter.
21: until end of video sequence

Fig. 4 Algorithm 1: Brief outline of LCAT

3.4 Assistant redetection

A practical robust tracker should be equipped with a redetection
module to recover the target after the tracking failure. Different
from previous long-term trackers [5, 9, 10, 31, 32], we propose a
novel redetection strategy to realise the long-term tracking with
high accuracy and high speed. In our approach, we fully utilise our
short-term component to save computational cost and improve
accuracy. The SVM classifier used in our tracker acts as an
auxiliary of the short-term component. In this way, we transform
the long-term tracking problem into a novel problem, which
extends the search region of the short-term component.

The inherent boundary effects of the correlation filter-based
trackers constrain the search region in a fixed size, which weakens
the correlation filter-based tracker for fast motion and occlusion.
Particularly, our short-term component is the combination of the
KCF and the colour-based tracker, which is limited by the
simplicity of the colour-based tracker, thereby reducing the search
region further. Fig. 3 shows a large search region that result in a
significant decrease in the accuracy of the colour-based tracker. We
alleviate this problem by proposing an assistant redetection to
extend the search region after the tracking failure. The assistant
redetection reuses the short-term component work on the
discriminative result of the SVM classifier while satisfying the
activated criterion. The redetection of the SVM classifier can be
considered a method that extends the search region and weakens
the boundary effects to some extent. The result of the short-term
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component is employed to compute the confidence scores to decide
whether to activate the redetection module, adopt the assistant
redetection result, update the tracking model, or train the classifier.

In this section, we introduce a novel criterion to distinguish the
sample quality, which allows the tracker to adjust the threshold
related to redetection adaptively. The APCE [12] criterion is
expressed as follows:

- APCE = (R = Ruin) /Mean( 3 (R = Ryn)').  (16)

The ideal tracking result is the accuracy while the response map is
unimodal. The APCE shows the undulated degree of the response
map, which indicates the confidence of the current tracking result.

In the present work, we employ two criteria, namely, APCE and
maximum value of response map Ry, to distinguish the
confidence ‘of the current tracking result. A pervasive criterion for
long-term tracking is proposed on the basis of the APCE and Ry,,.
The redetection module will be activated despite either the APCE
or R, in the current frame is less than their previous mean values
with a specific ratio f. The ratio f is the threshold that
distinguishes the reliability of the tracking result of the short-term
component. The result of the assistant redetection may also result
in tracking failure. To ensure that the result of the assistant re-
detection is sufficiently accurate, the result of the assistant
redetection will be accepted only if the APCE and R,,, of the
assistant redetection are higher than the previous mean values with
a specific ratio y. We train the SVM classifier while the APCE and
R, are higher than their previous mean values with a certain high
ratio @ to guarantee that the SVM classifier is trained with the
correct samples. In case the tracking models are updated with
inaccurate detection, the tracking model will be rapidly corrupted.
Hence, we employ a high-confidence update strategy to eliminate
the corrupted samples that contain a few useful messages. In other
words, if the APCE and R,,, are less than their previous mean
values with a specific ratio A, then the tracking model will not
update and detect the target in the next frame. In this way, we
prevent the tracking model from experiencing a heavy model drift
to strengthen the discriminative ability of the short-term
component.

Algorithm 1 summarises the proposed long-term trackers
(Fig. 4).

4 Implementation

This section further describes the proposed methods considering
the feature and kernel trick used in the proposed tracker and the
classifier employed in the redetection module. The parameters in
the proposed LCAT are also presented.

4.1 Feature

We employ the first 27 channels of the fast histogram of oriented
gradient (fHOG) [33] as features and further augment the features
with raw greyscale pixel values. The cell size of the fHOG feature
is set to 4. In addition, the same feature is extracted from the pixel-
wise scores map of the search region as a supplement to enhance
the feature in the KCF. In summary, the features employed in the
translation correlation filter are 56 channels. The features
employed in the fast scale space correlation filter are the first 31
channels of the fHOG features. The feature used in the colour-
based tracker is the RGB colour histogram. The number of bins for
the RGB histogram is set to 32.

4.2 Kemnel trick

In the present work, the Gaussian kernel

[k(x, x') = exp(~|x — x'[/67)] is selected to enhance the correlation
filter, where & = 0.5.

4.3 Redetection classifier

Thg redetection classifier employed in the present work is the
online soft margin SVM. The training samples of the SVM
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Table 1 Threshold of assistance re-detection

p 4 g A

value 0.4 0.6 0.8 0.4
Table 2 Tracking results of different version of LCAT
Tracker Learning rate Assistant re-detection OTB2013 0TB2015 FPS

Precision. ... Success Precision Success
baseline constant No 0.819 0.604 0.811 0.600 77.9
LCAT_SN sigmoid No 0.861 0.640 0.844 0.628 771
LCAT sigmoid Yes 0.895 0.661 0.875 0.646 65.9

Tracking result of baseline, LCAT_SN, and LCAT on OTB2013 and OTB100. The italic values denote the best in three versions of trackers, whereas the bold values denote the

second best. The mean FPS is obtained by estimation on OTB2013.

. OTB2013-Precision plots of OPE

OTB2013-Success plots of OPE

s 5 o®

Precision
o o
Success rate

v e 20 = 0 T o oz ca e 0
Lotation error threshold Overlap threshold
O7B100-Precision piots of OFE OTB100-Success plots of CPE B
= +

Success rafe
5 B

Precision
R

o T TR TR 50 [ VR
Location error threshold Qveriap threshold

s 288

o5 s

Fig. 5 Precision and success plots on OTB2013 and OTBI 00, The order
of the trackers in the plots are ranked by scores. The title of the plot
includes the corresponding benchmark and evaluation method. The result
demonstrates our methods are useful in both benchmarks

classifier are considered positive when the overlap between the
target and the samples is >0.9, whereas the samples are considered
negative when their overlap is <0.5. The feature of the SVM
classifier is LAB colour histogram.

4.4 Set-up

The merge factor a of the two trackers is set to 0.25. The
regularisation item of the KCF is set to 17, The scale step a is set
to 1.02. In the model update stage, b=10.02 and ¢ = 0.04. The target
is resized to the standard area of 150x 150 pixels to save
computational cost when the target is extremely large. Table 1 lists
the previously mentioned threshold in the redetection module of
the LCAT. The various thresholds are used to control the long-term
tracking component.

5 Experimental results

Here, we evaluate the proposed method on the five challenging
classic visual tracking benchmarks, namely, OTB2013 [2],
OTB100 [3], TC128 [13], UVA123 [14], and UVA20L [14]. The
evaluation of the trackers employs two criteria, namely, (i) success
scores, which indicate the area under each success plots of trackers;
and (ii) precision scores, which represent the percentage of the
successfully tracked frames whose distance between the position of
tracking result and the position of the annotation is <20 pixels. The
success scores are more accurate than the precision scores.
Furthermore, the three types of methods used to evaluate the
trackers are as follows. The one-pass evaluation (OPE) is the
traditional method in evaluating the tracker throughout a video
sequence with correct initialisation in the first frame, and the
terporal robustness evaluation (TRE) and the spatial robustness
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evaluation (SRE) are employed to analyse the robustness of the
trackers with various initialisations.

We initially analyse the LCAT with the adaptive learning rate
and assistant redetection on OTB2013 and OTB100. OTB2013 and
OTB100 are common tracking benchmarks. OTB2013 contains 50
challenging video sequences, whereas OTB100 extends OTB2013
and contains 100 videos. Then, we compare the proposed LCAT
with some state-of-the-art trackers on OTB2013, OTB100, TC128,
UAV20L, and UVA123 benchmarks. All the results are compared
under the same conditions. The parameters in the LCAT are the
same in the following test.

Our experiment is conducted on MATLAB R2016a with
17-8700 3.20 GHz CPU with 16 GB RAM.

5.1 Component analysis

Various versions of the proposed tracker are tested on OTR2013
and OTB100 to validate the effect of the proposed methods.
Particularly, we constrain the dimension of the RGB colour
histogram to one for some greyscale video sequences on OTB2013
and OTB100. This approach causes the proposed LCAT to reach a
low performance than the other benchmark that consists entirely of
colourful video sequences.

The short-term component of the proposed tracker is denoted as
baseline. The only employed sigmoid penalty coefficient is denoted
as LCAT_SN. The LCAT employs sigmoid penalty coefficient and
assistant redetection. Table 2 shows the tracking results and their
structure. Fig. 5 shows the precision and success plots.

As shown in Fig. 5, the proposed LCAT substantially
outperforms KCF with an average relative improvement of 32.1%
on the success plots of OTB2013 and OTB100. All the proposed
methods significantly improved the tracking result according to the
experimental results. Table 2 indicates that among the presented
trackers, the proposed LCAT shows the best accuracy in the OPE
of OTB2013 and OTB100. The proposed LCAT significantly
outperforms the short-term component with the aid of the sigmoid
penalty coefficient and assistant redetection. The LCAT achieves a
relative improvement of 9.4% in the success plot in comparison
with the baseline on OTB2013 and achieves a relative
improvement of 7.6% on OTBI00. In addition, the lack of a
redetection module results in the poorer performance of the
LCAT SN compared with the LCAT. The result of the running
speed of the long-term trackers only slightly decreases with the
significant increase of the performance due to the assistant
redetection employed with the high-confidence update strategy and
a small number of samples to train the SVM classifier.

As shown in Fig. 6, the sigmoid penalty coefficient adaptively
adjusts the learning rate while the target encounters an appearance
variation. The learning rate in Faceocc] video sequences increases,
whereas the target is distinct and decreases as it encounters an
occlusion. Although the learning rate will be adaptively adjusted
by sample quality, the corrupted sample will be learned in a
relatively low learning rate, which may result in model drift.
Hence, we adopt the high-confidence update strategy to eliminate
corrupted samples and obtain samples with useful information.
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Fig. 8 Illustration of the employed sigmoid penaliy coefficient that adjusts
the learning rate in Faceoccl sequences on LCAT SN, the learning rate of
KCF, and the corresponding training samples in some frames
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Fig. 8 Success and precision plots of OPE on OTB2013 and OTB100. Our
method outperforms the second-best tracker (i.e. DeepSRDCF) with 1.7%
in the success plot of OTB100

5.2 Merge parameter experiments

In (7), the response map of the two complementary trackers is
merged by parameter o. This section explores the influence of the
merge parameter in the LCAT on the OTB100 benchmark. Fig. 7
shows that the merge parameter o significantly influences the
performance of the LCAT. The best performance of the LCAT is
achieved at o =0.25. The merge parameter also indicates that the
result of the KCF is more reliable than the colour-based tracker.

5.3 State-of-the-art comparison

5.3.1 One-pass evaluation (OPE): In this section, we evaluate
the LCAT with other ten most related and state-of-the-art trackers,
namely, MEEM, fast discriminative scale space tracking (fDSST),
KCF, Staple, Staple_CA, SRDCF, LCT, DeepSRDCF, SiamFC, and
MUSTer on OTB2013 and OTB100. The LCAT is proven to have a
state-of-the-art performance.

Among the trackers, KCF, fDSST, SRDCF, DSST, and
DeepSRDCF are the correlation filter-based trackers. Staple,
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Staple CA, and MEEM are the trackers combined with multiple
trackers. LCT and MUSTer are the long-term trackers based on
KCFs. LCAT is the long-term tracker based on complementary
trackers. SiamFC is a CNN-based tracker. DeepSRDCF is a
correlation filter-based tracker that employs features extracted from

. CNNE.

Fig. 8 illustrates the precision and success plots of the 11
trackers. The result shows that the OTB100 is more challenging
because -almost all the trackers obtain a lower performance
compared with OTB2013. The proposed LCAT performs
significantly better than all the other state-of-the-art trackers,
including the CNN-based and correlation filter-based trackers, with
a relative average improvement of 11.6% with respect to the Staple
tracker on the success plots of OTB2013 and OTB100. The
proposed LCAT also obtains average progress on the SRDCF with
a relative improvement of 6.7%. In comparison with the other
long-term trackers, the proposed LCAT obtains an average
improvement of 10.1% relative to the LCT and 8.3% relative to the
MUSTer on the success plots of OTB2013 and OTB100. Moreover,
in all the related trackers previously mentioned, the trackers that
can run at real time on the CPU are Staple (107.6 FPS), fDSST
(136.9 FPS), Staple CA (62.3 FPS), KCF (232.8 FPS), and LCT
(35.2 FPS). The proposed LCAT (65.9 FPS) not only runs at a
significantly higher frame rate than LCT but also approximately
close to the Staple CA.

5.3.2 Attribute-based evaluation: The video sequences in the
OTB2013 and OTBI00 are annotated with 11 challenging
attributes in the tracking problem. These challenging attributes are
convenient for the evaluation of the tracker's performance under
various challenging aspects. For detailed analyses, the proposed
LCAT is also evaluated with other state-of-the-art trackers on 11
challenging attributes on OTB100. However, only the results of the
eight main challenging attributes are reported, as shown in Fig. 9.
From the figure, the result shows that the proposed LCAT
significantly outperforms the second-best tracker relative to the
deformation (8.6%), illumination wvariation (7.3%), occlusion
(5.2%), and out-of-camera view (4.7%). The LCAT is robust to the
deformation and illumination variation. The correlation filter-based
trackers struggle in the cases of occlusion, deformation, out-of-
camera view, fast motion due to the boundary cffects and relatively
risky update strategy. The proposed - methods significantly
enhanced the performance in comparison with the correlation-
based trackers in these attributes. On the success plots of scale
variation, although our LCAT is the second-best tracker, LCAT
significantly outperforms the third-best tracker (i.e. SRDCF) with
6.6% and close to the best tracker (i.e. DeepSRDCF).

5.3.3 Robustness to different benchmarks: We evaluate the
proposed LCAT with MEEM, fDSST, Staple, Staple CA, SRDCF,
LCT, DSST, KCF, and MUSTer on the TC128, UAV123, and
UAV20L benchmarks to further validate the effect of the proposed
methods. TC128 is a dataset with 128 colour sequences, which
show the benefits of colour information for tracking. The proposed
LCAT is encoded by colour information to a great extent, which
may achieve a substantial improvement on the TC128. The
UAV123 dataset is an aerial video dataset for the target tracking of
unmanned aerial vehicles (UAVs). This dataset contains 123 fully
annotated aerial videos with >110K frames from the low-altitude
aerial perspective. The applications of the UAVs include crowd
surveillance, obstacle avoidance, and localisation, which need to be
addressed in real time. In the present experiment, the down-
sampled version of UAV123 is employed to evaluate the proposed
tracker. The down-sampled version is down-sampled to ten FPS,
which increases the displacement between the two adjacent frames
and results in additional challenges. Particularly, the correlation
filter-based trackers that are limited by the boundary effects will
further achieve a limited performance. UAV20L dataset is a long-
term tracking benchmark derived from UAV123 dataset. Fig. 10
shows the result of the proposed tracker and the state-of-the-art
trackers in TC128, UAV123, and UAV20L.

On the success plot of TC128, the top three trackers that are
composed of a colour-based tracker fully demonstrate the effect of
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Fig. 10 Success and precision plots of OPE on TCI128, UAVI23, and
UAV20L. The LCAT shows state-of-the art performance compared with the
related trackers in these challenging benchmarks

colour information for tracking. Among the compared trackers,
with the aid of the assistant redetection, the proposed LCAT is the
best tracker in UAV123 datasets. SRDCF is the second-best tracker
on the success plot of UAV123 due to its handle boundary effects
by spatial regularisation. MEEM is also the second-best tracker
based on the precision plots of TC128 and UAV123; however, it is
inferior to the success plot because it cannot address scale
variation. On the down-sampled version of UAV123, which is
limited by the boundary effects, the standard correlation filter-
based trackers, namely, LCT, DSST, and KCF, show a significant
inferior performance than the other trackers. The LCAT reaches a
relative substantial improvement of 43.1% with respect to the KCF
and 27.6% with respect to the LCT on the success plot of TC128.
The LCAT achieves a relative substantial improvement of 67.5 and
53.6% on UAV123. On the UAV20L dataset, our LCAT is the best
tracker and far exceeds the rest of trackers. On the success plots of
UAV20L, LCAT obtains progress on the second-best tracker with a
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relative improvement of 15.9%. In comparison with the other long-
term trackers, LCAT obtains an average improvement of 16.3%
relative to the MUSTer and 60.2% relative to the LCT on the
success and precision plots of UAV20L. The results on UAV20L
also show that the proposed redetection strategy displays more
favourable robustness on long-term tracking than existing
redetection strategy.

5.3.4 Initialisation robustness evaluation: Object tracking is
greatly influenced by initialisation. The SRE and TRE are
employed in analysing the robustness of each tracker on OTB100
to evaluate the robustness of the proposed method. The result on
the SRE represents the sensitivity of the tracker at the start of the
noisy initialisation. The TRE evaluates the sensitivity of the tracker
at the start with various frames on the same sequences. Fig. 11
shows that the LCAT is the best tracker in SRE and TRE, which
indicates that the proposed method is robust to different spatial and
temporal initialisations.

Although the LCAT is the best tracker in SRE and TRE, the
results of the proposed method show that the LCAT relatively
weakens at spatial noisy and different temporal initialisations,
which is similar to other long-term trackers. The TRE evaluates
trackers numerous times from various starting frames in the video
sequence, which results in the advantage of redetection badly
weakened and exhibit a relative inferior performance in the TRE.
The SRE evaluates the trackers under different shifting or scaling
of target initialisation, inaccurate initialisation of the target result in
the proposed short-term component, and the SVM classifier trained
by inaccurate samples. The error of the short-term component and
the SVM classifier will be accumulated during tracking, which
leads to a weak LCAT and a relatively low SRE. Therefore, the
merits of the long-term trackers cannot be fully reflected by the
SRE and TRE.

6 Conclusion

In this study, we propose the novel LCAT to address the long-term
visual object tracking problem. The baseline method is a
combination of the KCF and the colour-based tracker, which
alleviate the boundary effects of the correlation filter-based
trackers and achieve a real-time excellent performance. The
feedback with the learning rate of the tracker by the sigmoid
penalty coefficient is examined to prevent the tracking model from
drifting. Then, a high-confidence update strategy is employed to
avoid updating corrupted samples. Moreover, we establish a
simplified long-term tracker by employing assistant redetection,
which combines the short-term components with the SVM
classifier in constructing a long-term component that handles
tracking failure to effectively realise the long-term tracking. The
extensive experiment results of the four benchmarks show that the
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Fig. 11 Success and precision plots of SRE and TRE and OTBI100
benchmarks. These plots show the comparisons of temporal and spatial
robustness between the related state-of-the-art trackers and the proposed
approach. In both cases, LCAT demonstrates superior performance

proposed LCAT significantly outperforms the related state-of-the-
art trackers relative to its efficiency, accuracy, and robustness when
running at a fairly high frame rate. The results show that the
proposed LCAT is a preferable choice for real-word applications
that must work in real time with high accuracy. "
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