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Abstract: Combining the mathematical relationships between the grating wavefront and 
surfaces with the spatial relationships between the two grating wavefront, a mathematical 
model of the mosaicking errors is established to mosaic gratings. The five-dimensional 
mosaicking errors will respectively be calculated and then removed by the adjustment 
mechanisms. Mosaicking experiments are performed by using two gratings. First, by using 
zeroth order, the longitudinal offset is calculated and removed. Second, by using the diffraction 
order, the in-plane angle and grating spacing are calculated and removed, while the tip and tilt 
angles are calculated and removed. And then a mosaic grating is obtained. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

In the 1990s, large-scale optical telescopes were built in many locations worldwide. The 
original monolithic gratings were not large enough for astronomy applications [1], and thus the 
mosaic grating was proposed [2]. All major telescopes are equipped with a mosaic grating to 
increase their spectral resolution [3] and satisfy the requirements for astronomical observations. 
In recent years, the Hobby Eberly Telescope [4], the James Webb Space Telescope [5] and the 
Thirty Meter Telescope (TMT) [6] have all required some new large-scale mosaic grating for 
their high-resolution instruments. In other fields, large-scale gratings have been used to 
increase the damage threshold of laser energies used for inertial confinement fusion (ICF), 
including OMEGA EP [7–9], PICO2000 [10,11] and FIREX-1 [12]; these systems were all 
equipped with mosaic gratings. 

In 2006, Sauteret [13] discussed the effects of mosaicking errors on a diffraction grating at 
the focal plane, and a theoretical model of mosaic gratings was established by analysis of the 
electromagnetic field characteristics on the focal plane. From a three-dimensional perspective, 
the relationships among the spatio-temporal characteristics of the far-field spot, the spectral 
profile and the grating mosaic errors were analyzed. In 2006, Zeng et al. [14] proposed a 
dual-wavelength detection method that introduced two wavelengths of light into the optical 
path to display the mosaicking errors. However, when the diffraction spots of the two gratings 
completely overlap and the spot shape satisfies the far-field diffraction theory, large residual 
mosaicking errors are still present. Then the interferometry is proposed to mosaic gratings. In 
2016, Lu et al. [15] proposed the dual-angle incident light method to eliminate the mosaicking 
errors by using the interference fringes, and they [16] also analyzed the effects of the incident 
light on the mosaic grating the following year. In 2008, Guardalben [17] analyzed the effects of 
mosaicking errors on the performance of the mosaic grating by using the rotation matrix 
method and two-wavelength incident light. All the above methods have been presented how to 
mosaic gratings and analyzed the effect of the mosaicking errors to the mosaic grating. 
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Where n is the total number of the points on the grating surface. Because the two gratings 
are both replicas from a single master for the same generation, the surfaces of the two gratings 
can be considered to be the same. And the corresponding points between the two gratings are 
mathematical related as shown in the Eq. (3). 
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Here, L is the length of the grating along the indexing direction, XT means the transposed matrix 
of X. G2i is any point on the grating G2 and G1i is that for the grating G1 as shown in Eq. (4). 
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And Rx(θ), Ry(θ) and Rz(θ) are the rotation matrices around the x1-axis, the y1-axis and the 
z1-axis, expressed as shown in the Eq. (5), respectively. 
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The Zygo interferometer can detect the wavefront of the two adjacent gratings after coarse 
adjustment, where the two far-field spots of the two adjacent gratings should be overlap to 
ensure that the interference fringes of the two gratings can be detected simultaneously. Then, 
the three-dimensional numerical matrices for the wavefront are shown as the Eqs. (6) and (7) 
below, which are measured by the Zygo interferometer. 
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Here, and n is the total number of the points for the wavefront. u and v are the pixels that 
correspond to the detector locations, the measurement accuracy of them is 1pixel. And w 
represents the wavefront of the grating, the measurement accuracy can reach 10−10 μm [18,19]. 
Δ1(m) is the numerical matrix for the wavefront refers to G1 and Δ2(m) is that refers to G2. The 
corresponding points between the grating surface and the wavefront on the detector are 
mathematical related as follows: 
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Here, θi is the incidence angle, and θk is the diffraction angle, Δ1i and Δ2i are the corresponding 
points on the detector as shown in Eq. (9). 
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Because of the mosaicking errors, the wavefront of the two gratings will be different which 
will be shown on the interference fringes, such as different slope or different periods. And after 
the coarse adjustment, the mosaicking errors are small quantities which are less than 100μrad 
and 2μm. 

Thus, solve the Eqs. (3) and (8), and using the grating equation Eq. (10) and the principle 
which the small first-order quantity is retained while the second-order or smaller quantities can 
be ignored, the relationship between the grating surface and the wavefront can be obtained as 
the Eqs. (11) and (12). 
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Here, d is the grating constant, λ is the wavelength of the incident light, and m is the diffraction 
order. 
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Based on the measurement accuracy for u, v and w, where the measurement accuracy of u 

and v is 1pixel, and the measurement accuracy of w is 10−10μm, the Eq. (12) can be simplified as 
shown below. 
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The Eqs. (11) and (13) represent the relationship between the grating surface and the 

wavefront within the mosaicking errors. 
If the zeroth order is used, m = 0, and then the Eqs. (11) and (13)can be further simplified. 
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Therefore, Δx and Δθz do not affect the zeroth-order wavefront. In accordance with this 
phenomenon, the mosaicking errors can be removed in two parts. Δz is removed by measuring 
and analyzing the zeroth-order wavefront, and Δθx and Δθy are also removed preliminary. Δθz 
and Δx are removed by measuring and analyzing the diffraction-order wavefront, and Δθx and 
Δθy are removed again. 

According to the numerical matrices for the wavefront, where are the Eqs. (6) and (7), the 
wavefront will be fitted to the planes by using the least squares principle. The spatial relation of 
the fitted planes can be calculated, which are the mosaicking errors. And then they will be 
removed to manufacture the mosaic grating. 

The fitted plane for the wavefront is set as follows: 

 .w a u b v c= ⋅ + ⋅ +  (16) 

Here, a, b and c are constants that represent the plane coefficients. In accordance with the least 
squares principle, coefficients a, b and c can be determined when the Eqs. (17) and (18) are 
both satisfied. 
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The fitted planes for the wavefront can be obtained according to the Eqs. (6) and (7), and the 
Eqs. (16) – (18). 

The zeroth order is analyzed. Δz are calculated by using the zeroth-order wavefront of the 
two gratings, while Δθx and Δθy are calculated. 

When m = 0, the two fitted planes for the zeroth-order wavefront of the two gratings are 
shown in the Eq. (19). 
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Take the Eq. (14) to the Eq. (19), the mathematical relationships between the two grating 
surfaces and the two fitted planes for the zeroth-order wavefront can be obtained as the Eq. 
(20). 
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The normal vectors of the two fitted planes for the zeroth-order wavefront of the two 
gratings are then shown as the Eq. (21) below. 
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The spatial relationship between the two fitted planes for the zeroth-order wavefront of the 
two gratings is given as shown in the Eq. (22). 
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Using the Eq. (22), Δθx and Δθy can be obtained. And Δz can be obtained by using the Eqs. 
(14), (15) and (20), as shown in the Eq. (24). 

 10 20 .
cos cosi k

c c
z

θ θ
−

Δ =
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 (23) 

Then the diffraction order is analyzed. Δθz and Δx are calculated using the diffraction-order 
wavefront of the two gratings, while Δθx and Δθy are again calculated. 

When m ≠ 0, the two fitted planes for the diffraction-order wavefront of the two gratings are 
shown in the Eq. (24). 
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Take the Eq. (11) to the Eq. (24), the mathematical relationships between the two grating 
surfaces and the two fitted planes for the diffraction-order wavefront can be obtained as the Eq. 
(25). 
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The normal vectors of the two fitted planes for the diffraction-order wavefront of the two 
gratings are then as shown in Eq. (26). 
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The spatial relationship between the two fitted planes for the diffraction-order wavefront of 
the two gratings is as shown in Eq. (27). 
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And, Δθx and Δθy, which correspond to the diffraction order, can be calculated using the Eq. 
(27). Then Δθz and Δx can be calculated by using the Eqs. (11), (13) and (25), as shown in the 
Eq. (28). 
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Based on the numerical matrices for the wavefront, the spatial relationships between the 
fitted planes for the wavefront of the two gratings can be obtained. And combining with the 
mathematical relationships between the grating surface and the wavefront, the mathematical 
model for the mosaicking errors can be established. And then the mosaicking errors can be 
calculated by using Eqs. (23), (27) and (28), respectively. 

According to the mathematical model of the mosaicking errors, the mosaicking experiment 
is set up to manufacture the mosaic grating by analyzing and removing the mosaicking errors. 

3. Experiments 

3.1 Preparing for mosaic grating 

A Zygo interferometer is used to measure the three-dimensional numerical matrix of the 
wavefront of the mosaic grating at a wavelength of 632.8 nm. The two gratings in the 
experiment are both replicas from a single master of the same generation, they have the same 
parameters, as following: the grating density is 79 gr/mm, the diffraction order is the −36th 
order, the blaze angle is −64.1373°. And the peak-to-valley (PV) values of the two gratings are 
0.494 λ and 0.452 λ, where λ is the operating wavelength. 
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Fig. 2. Adjustment mechanisms for the mosaicking errors installed on the gratings. 

To reduce the mechanical coupling, the adjustment mechanisms are installed on the two 
gratings according to the specific mosaicking error types, as shown in Fig. 2. The adjustment 
mechanisms for angle error are the actuators and the turntables, and the adjustment 
mechanisms for the displacement errors are the piezoelectric ceramic. The minimum step size 
for the actuator is 30 nm, and the gyration radii corresponding to Δθx, Δθy, and Δθz are 100 mm, 
70 mm, and 65 mm, respectively. The piezoelectric ceramic moves in steps of 1 nm. The 
adjustment parameters are listed in detail in Table 1. 

Table 1. Parameters of the adjustment mechanisms used for the mosaicking errors 

mosaicking errors 
step size 

/nm 
radius 
/mm 

step angle 
/μrad 

Stoke 

Δθx 30 100 0.3000 12.7mm 
Δθy 30 70 0.4286 12.7mm 
Δθz 30 65 0.4615 12.7mm 
Δx 1 - - 250μm 
Δz 1 - - 250μm 

Because the actuators are subject to mechanical phenomena such as idling or hysteresis, the 
displacements of the turntables are measured as the movement data for the angle errors, which 
are measured by using the inductive displacement measuring instrument during the 
experiments. 

3.2 Mosaic gratings 

The optical path of the mosaicking experiment uses the Littrow configuration. 
The 0th-order optical path is as shown in Fig. 3, the light is incident perpendicular to the 

grating surface, where θi = θk = 0°. 

 

Fig. 3. Optical path for the zeroth order. 

Preparations for the mosaicking experiment are as follows: First, Δθx and Δθy are adjusted 
coarsely to make the two far-field diffraction spots of the 0th order overlap at the center of the 
screen. The initial range of Δz between the two gratings is less than the Stokes value of the 
piezoelectric ceramic. The grating with the adjustment mechanism for Δθz is considered to be 
the reference grating to ensure the interference fringe is vertical and the period is suitable. 
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According to the slope, the period and the alignment of the interference fringes, the mosaic 
grating can be observed roughly to judge whether it is good or not. In the experiment, Δz would 
be removed though measuring and analyzing the zeroth-order wavefront, while Δθx and Δθy are 
removed preliminarily. Δθz and Δx would be removed though measuring and analyzing the 
diffraction-order wavefront, while Δθx and Δθy are again removed. 

After the preparations, the 0th order is detected by the Zygo interferometer. And the 
numerical matrices for the 0th order will be measured and restored to the three-dimensional 
wavefront, then fitted to the planes. Figure 4(a) shows the three-dimensional map which is the 
fitted planes for the 0th-order wavefront of the two gratings. And Fig. 4(b) shows the 
corresponding intensity map, where the most of the energy of the diffracted light is 
concentrated in the high diffraction orders of the echelle, so the 0th-order light is weak and the 
contrast is low. 

 

Fig. 4. Zeroth order of mosaic grating with Δθx, Δθy and Δz. (a) shows the three-dimensional 
map, and (b) shows the intensity map. 

Here, u and v are the pixels that correspond to the detector locations, w represents the 
wavefront data. There are angle errors between the fitted planes for the 0th-order wavefront of 
the two gratings, and the resulting interference fringes are inconsistent. The mosaicking errors 
can be calculated based on the theoretical model, as shown in Eq. (29). 
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The adjustment mechanisms are moved in accordance with Eq. (29) and Table 1. The 
actuator that corresponds to Δθx moves by 8.874 μm, the actuator that corresponds to Δθy 
moves by 3.052 μm, and the piezoelectric ceramic used to provide Δz moves by 1020 nm. The 
movement data are listed in Table 2. 

Table 2. Movement data for the adjustment mechanisms 

 Δθx Δθy Δz 

values 88.7381μrad 43.6011μrad 1.0202μm 

movement data 8.874μm 3.052μm 1020nm 

After moving, the intensity map and the three-dimensional map are shown in Fig. 5. The 
two fitted planes for the 0th-order wavefront of the two gratings are in the same plane, and the 
interference fringes have the same period and slope, and aligned. 
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Fig. 5. Zeroth order after adjustment. (a) shows the three-dimensional map, and (b) shows the 
intensity map. 

The residual errors can then be calculated as shown in Eq. (30). 

 

3.0351

1.6051 .

8.3156

x

y

rad

rad

z nm

θ μ
θ μ

Δ =
Δ =
Δ =

 (30) 

The Zygo interferometer is then turned to the diffraction order and the mosaic grating is 
placed at the −36th order. The optical path is as shown in Fig. 6, where θi = θk = −64.1373°. 

 

Fig. 6. Optical path for the diffraction order. 

The far-field spots of the two gratings are on the same horizontal line, and separated 
because of Δθz. And the preparation work required is described as follows: First, Δθz is adjusted 
coarsely to make the two far-field spots overlap at the center of the screen. The interference 
fringes are checked, where the grating with the adjustment mechanism for Δθx is considered to 
be the reference grating to ensure that the interference fringes is appropriate. 

After the preparations, the −36th order is detected by the Zygo interferometer. And the 
numerical matrices for the −36th order will be measured and restored to the three-dimensional 
wavefront, then fitted to the planes. Figure 7(a) shows the three-dimensional map which is the 
fitted planes for the −36th-order wavefront of the two gratings, and Fig. 7(b) shows the 
corresponding intensity map. 
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Fig. 7. The −36th order of the mosaic grating with Δθx, Δθy, Δθz, and Δz. (a) shows 
three-dimensional map, and (b) shows the corresponding intensity map. 

The interference fringes of the two gratings are not uniform, and the two grating surfaces 
are thus not consistent. The mosaicking errors are then calculated based on the theoretical 
model, with results as shown in Eq. (31), where Δz = 8.3156 nm. 
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The adjustment mechanisms are then moved in accordance with the Eq. (31) and Table 1. 
The actuator that corresponds to Δθx moves by 0.627 μm, the actuator that corresponds to Δθy 
moves by 1.438 μm, the actuator that corresponds to Δθz moves by 1.101 μm and the 
piezoelectric ceramic used to provide Δx moves by 148 nm. The movement data are listed in 
Table 3. 

Table 3. Movement data of the adjustment mechanisms 

 Δθx Δθy 
Δθz Δx 

values 6.2789μrad 20.5483μrad 16.9392μrad 148.567nm 

movement data 0.628μm 1.438μm 1.101μm 148 nm 

After moving, the three-dimensional map and the intensity map are shown in Fig. 8. The 
two fitted planes for the 36th-order wavefront of the two gratings are in the same plane, and the 
corresponding interference fringes have the same period and slope, and aligned. 

 

Fig. 8. The −36th order after adjustment. (a) shows the three-dimensional map, and (b) shows the 
intensity map. 

The residual errors can then be calculated, with results as shown in Eq. (32). 
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(32)

As measured by the Zygo interferometer, the PV value of the mosaic grating is 0.670 λ, and 
point spread function (PSF) shows that the diffracted energy is concentrated at the center spot, 
the Strehl ratio is 0.955, as shown in Fig. 9. Figure 9 (a) is the wavefront for the mosaic grating 
and Fig. 9 (b) is the point spread function. 

Fig. 9. Mosaic grating. (a) shows the wavefront, and (b) shows the point spread function. 

4. Conclusions

A mathematical model for mosaic grating is established based on the spatial relationships 
between the wavefornts for the two adjacent gratings, the calculations of the mosaicking errors 
are given. By using the Zygo interferometer, the mosaicking experiment is set up with two 
gratings, where the PV values of the two gratings are 0.494λ and 0.452λ. The adjustment 
mechanisms are moved in accordance with the calculated mosaicking errors. We finally obtain 
a mosaic grating with a PV value of 0.670λ. 
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