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a b s t r a c t

It is a critical challenge to realize efficient GaN-based UV photodetectors (UV-PDs) due to the existence of
high-density dislocations in the epilayers prepared by heteroepitaxy. In this paper, the method of in-situ
modifying the screw dislocations in GaN-based materials with one-dimensional (1D) ZnO nanorods by
screw dislocation-driven self-assembled solution growth is developed to engineer and improve the pho-
toelectric performances of the back-illuminated metal-semiconductor-metal (MSM) structure p-GaN UV-
PDs. The results show that the in-situ grown 1D ZnO nanorods on the dislocations plays the roles of
passivating the dislocations to suppress the dark current, improving the spectral response intensity and
extending the spectral response band of the MSM structure UV-PDs. The in-situ modification of 1D ZnO
nanomaterials can be developed into a method to engineer and modify the defects viz. threading dislo-
cations of the GaN-based semiconductors so as to achieve the purpose of regulating the performance of the
related optoelectronic devices, which can be extended to other material systems of optoelectronic devices.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The filter-free, full solid-state ultraviolet photodetectors (UV-
PDs) have drawn a significant attention in military and civil fields
for their potential applications in missile early warning, flame
warning, UV radiation monitoring in the environment, biological
agent detection, and so on [1e3]. As one of the third generation of
semiconductors, the GaN-based materials which have achieved a
great success in the fields of light-emitting diodes (LEDs) [4e7],
laser diodes (LDs) [8,9], and high electron mobility transistors
(HEMTs) [10,11] are attracting a growing concern over the UV-PDs
because of their wide direct band gap, full solid-state, intrinsic cut-
off, anti-radiation, and excellent chemical and thermal stability
[12]. However, up to present, the performance of the GaN-based
UV-PDs is still restricted by the high-density threading
. Zheng), chenyr@ciomp.ac.cn
dislocations in GaN epilayers for the reason that the preparation of
GaN is mainly performed on the heterogeneous substrates such as
Al2O3, SiC and Si by the heteroepitaxy which remains the existing
mainstream technique due to the lack of widely used homogeneous
substrates. The high-density threading dislocations in a hetero-
epitaxial grown GaN resulted from the large lattice and thermal
expansion mismatch between GaN and the substrate have been
proved to be leakage passages or photo-generated carrier death-
nium centers or nonradiative recombination centers for GaN-based
devices [13,14]. To suppress the undesirable influence of disloca-
tions on the GaN-based UV-PDs and improve their performance, a
great many investigations have been carried out, including dislo-
cation filtering by self-assembled monolayer of silica microspheres
[15], dislocation passivating by SiO2 nanoparticles [16], dislocation
filtering by selective area growth by a nanoporous template [17].
Recently, screw dislocation-driven self-assembled solution growth
of one-dimensional (1D) semiconductor nanomaterials has offered
a new opportunity to engineer and improve the performance of
optoelectronic devices. It has been proved that, under low super-
saturated solutions, the layer-by-layer growth was prohibited due
to the energy penalty for creating a new surface layer and growth
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occurred in a meritocratic way only at the axial screw dislocation
spiral causing highly anisotropic 1D growth [18e21]. It can be a
promising way to control the influence of screw dislocations on the
performance of the GaN-based UV-PDs by self-driven in-situ
growth of 1D semiconductor nanomaterials along the screw
dislocations.

So far, 1D semiconductor nanomaterials such as nanowires
(NWs), nanorods (NRs), and nanotubes (NTs) have been success-
fully assembled into a great many kinds of microelectronic and
optoelectronic devices, including field effect transistors (FETs)
[22e24], light-emitting diodes (LEDs) [25e28], nanolasers [29e31],
photovoltaic cells [32e35], photodetectors (PDs) [36e38], and so
on. Among them, in particular, zinc oxide (ZnO) has attracted a
considerable attention because it is not only rich in nano-
structures, but also belonging to a kind of direct wide bandgap
semiconductor with a bandgap of 3.37 eV, which is very close to
that of GaN (3.4 eV) [36]. Moreover, ZnO shares the same crystalline
structure as GaN with a small lattice mismatch (both belonging to

the wurtzite structure with aZnO ¼ 3:2498�A and aGaN ¼
3:1891�A) [39] that ensures a high-quality heterojunction can be
achieved. More importantly, GaN epilayer prepared by the heter-
oepitaxy contains high densities of screw dislocations which have
been proved to be acting as dislocation sources to propagate screw
dislocation-driven 1D ZnO nanomaterials growth [19]. Therefore,
taking advantage of the screw dislocations of the GaN epilayer, in
situ self-driven growth of 1D ZnO nanomaterials can be developed
into a newmethod tomodify the defects viz. threading dislocations
of the GaN-based semiconductor materials so as to achieve the
purpose of regulating the performance of the GaN-based opto-
electronic devices.

In this work, the back-illuminated metal-semiconductor-metal
(MSM) structure UV-PDs based on p-GaN are modified by 1D ZnO
nanorods using the screw dislocation-driven in situ growth
method. The effects of 1D ZnO nanorods on the performance of
GaN-based UV-PDs are also investigated in detail. The results show
that the performance of the back-illuminated GaN-based UV-PDs
can be greatly improved by modifying their screw dislocations
with 1D ZnO nanorods. The in-situ self-assembled grown 1D ZnO
nanorods play the role of passivating dislocations and constructing
a series of nanoscale ZnO nanorods/p-GaN heterojunctions. This
paper explores an approach, based on screw dislocation-driven in-
situ self-assembled growth of 1D ZnO nanomaterials, to engineer
and improve the GaN-based UV-PDs, which can be extended to
other material systems of optoelectronic devices.
2. Experimental details

2.1. Preparation of p-GaN epilayer

The p-GaN epilayer was grown on a 200 single polished c-plane
sapphire substrate by low-pressure metal-organic chemical vapor
deposition (LP-MOCVD). Trimethylgallium (TMGa) and ammonia
(NH3) were used as Ga and N precursors, respectively, while dicy-
clopentadienyl magnesium (Cp2Mg)was used as the p-type dopant.
Hydrogen (H2) was used as the carrier gas. Prior to the growth, the
sapphire substrate was thermally desorbed at 1100 �C under H2 for
10min. Then, an intrinsic GaN layer was grown on the sapphire
substrate using a conventional two-step method, with a 30-nm-
thick low-temperature GaN (LT-GaN) nucleation layer grown at
550 �C and a 2-mm-thick high-temperature GaN (HT-GaN) epilayer
grown at 1050 �C. The intrinsic GaN was followed by a 1.5-mm-thick
Mg-doped GaN (p-GaN) layer grown at 950 �C. The hole carrier
concentration and the mobility of the p-GaN layer were measured
to be 3.2� 1017/cm3 and 6.8 cm2/(V$s), respectively.
2.2. In-situ modification of 1D ZnO nanorods on a p-GaN layer

Prior to the screw dislocation-driven aqueous growth of 1D ZnO
nanorods, the surface of the p-GaN film was firstly underwent
degreasing treatment in isopropyl alcohol solution for 3min, and
then immersed into aqua regia for 8min to remove the surface
oxide layer. Subsequently, the surface of the p-GaN filmwas etched
for 5min with a boiling 10wt% solution of potassium hydroxide
solution. After rinsing by the deionizedwater, the growth of 1D ZnO
nanorods was performed in a reaction kettle containing 20mM
Zn(NO3)2/hexamethylenetetramine (HMT) aqueous solution at
100 �C for 4 h.

2.3. Device fabrication

Before the device fabrication, in order to activate the Mg dop-
ants in the p-GaN material, the p-GaN was rapidly annealed at
850 �C for 60 s under an N2 atmosphere. In the subsequent process
of fabricating the MSM structure photodetectors, Ni/Au (30 nm/
200 nm) interdigital electrodes were deposited by electron-beam
evaporation assisted by standard photolithography and lift-off
processes. The dimensions of the finger electrodes were 100 mm
long and 7 mm wide with a spacing of 8 mm. Finally, the photode-
tectors were annealed by rapid thermal annealing in an N2 atmo-
sphere at 450 �C for 120 s.

2.4. Characterization and measurement

The surface morphology of the p-GaN epilayer was character-
ized by an atomic force microscope (AFM, Veeco multi-mode). The
carrier concentration and the mobility of the p-GaN epilayer were
evaluated by Hall effect measurement system (Lake Shore, 8400
Series HMS). The cross-sectional image of the p-GaN epilayer and
the morphologies of the MSM photodetectors with and without 1D
ZnO nanorods were characterized by field-emission scanning
electron microscope (SEM, Hitachi S4800). A high-resolution X-ray
diffractometer (HRXRD, Bruker D8) with a Cu Ka1 radiation
(l¼ 1.5406 Å) was used to evaluate the crystalline properties of the
materials, mainly using the rocking curve scan, 2q-u scan and
asymmetrical reciprocal space mapping (RSM) around the (1015)
reflection. The spectral responsivity and corresponding external
quantum efficiency (EQE) for the photodetectors were measured
using an ultraviolet spectral response test system. The PL spectra
were measured by a spectrophotometer with a 50mW 213-nm-
wavelength Nd: YAG deep UV laser as the excitation source. The
transient spectral response of the photodetectors was stimulated
by a 10mW 266-nm-wavelength Nd: YAG deep UV laser and
recorded by a digital oscilloscope (Tektronix DPO 5104). A semi-
conductor parameter analyzer (Agilent B1500A) was used to mea-
sure the current-voltage (I-V) characteristics of the MSM structure
photodetectors in dark and under the illumination of 367 nm light.

3. Results and discussion

Fig. 1(a) and (b) present the schematic illustrations of the in-situ
modification of 1D ZnO nanorods on the screw dislocations that are
containedwithin a p-GaN epilayer by screw dislocation-driven self-
assembled aqueous solution growth method. In Fig. 1(c), the
amplitude mode AFM image shows the top-down view of screw
dislocations on the p-GaN epilayer. The scan area is 20� 20 mm2. As
can be seen, due to the lattice mismatch between the GaN and the
sapphire substrate, it will form defects that become dislocation
cores. During the step growth process of GaN, the newly generated
step around the dislocation core will propagate at the same rate



Fig. 1. Schematic of screw dislocation-driven solution growth of 1D ZnO nanorods on a p-GaN substrate. (a) Illustration of a screw dislocation exposed to the surface of the p-GaN.
(b) Illustration of a screw dislocation-driven grown 1D ZnO nanorod by the method of solution growth. (c) The amplitude mode AFM image shows the top-down view of dislo-
cations on the p-GaN layer. The scan area of AFM image is 20� 20 mm2. (d) High magnification height mode AFM image of the area marked in (c). The locations pointed by the red
arrows are on behalf of the screw dislocations. (e) The 30� tilted SEM image of a screw dislocation-driven solution grown 1D ZnO nanorod on a p-GaN layer. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)
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with earlier steps at the outer edge of the growth spiral and thus
forms a dislocation hillock with a step pile up [20]. The center of the
dislocation hillock (marked by a red rectangle) is enlarged in the
height mode of AFM, as shown in Fig. 1(d). The typical screw dis-
locations are just pointed by red arrows. According to the classical
crystal growth theory, the supersaturation of the system is pro-
posed to be the driving force for crystal growth in solutions [40].
Moreover, the dislocation-driven growth mode dominates the
crystal growth under a low supersaturation condition. Herein, the
screw dislocations usually create step edges upon intersectionwith
a crystal surface to which atoms can be added without overcoming
the energy barrier to nucleate new crystal steps [20,41]. Therefore,
the crystal growth of 1D ZnO nanorods will propagate along the
spiraled direction. Fig. 1(e) presents the 30� tilted SEM image of a
screw dislocation-driven solution grown 1D ZnO nanorod on a p-
GaN layer as a representative, which is prepared by the method
described in the experimental section. As can be seen, the 1D ZnO
nanorod has awhole hexagonal prism shapewith an outer radius of
about 100 nm and is perpendicular to the surface of p-GaN indi-
cating its growth direction along the c-axis (the direction the screw
dislocation spiraling upward). This process provides experimental
conditions for the subsequent in situ solution growth of 1D ZnO
nanorods on MSM structure p-GaN UV-PDs.

In order to study the influence of 1D ZnO nanorods on the
optoelectric characteristics of the MSM structure p-GaN UV-PDs,
the MSM structure p-GaN UV-PDs are prepared at first. The sche-
matic illustration is shown in Fig. 2(a). In this process, MSM
structure p-GaN UV-PDs are prepared as depicted in experimental
section prior to the screw dislocation-driven solution growth of 1D
ZnO nanorods. The SEM image of an as-fabricatedMSM structure p-
GaN UV-PD is shown in Fig. 2(b). Then, the as-fabricated device is
placed in a reaction kettle with 20mM Zn(NO3)2/hexamethylene-
tetramine (HMT) aqueous solution keeping at 100 �C for 4 h. The
screw dislocation-driven in-situ self-assembled growth of 1D ZnO
nanorods on the p-GaN between the interdigital electrode gaps will
be completed in this process. Fig. 2(c) shows the SEM image of the
MSM structure p-GaN UV-PD after solution growth of 1D ZnO
nanorods. The partial enlarged SEM images (Fig. 2(d)-(f)) are pro-
vided as representatives to confirm the morphology and distribu-
tion of the 1D ZnO nanorods on the p-GaN between the interdigital
electrode gaps.

To investigate the crystalline quality of the 1D ZnO nanorods/p-
GaN heterostructure, XRD patterns are measured as shown in Fig. 3.
For comparison, the (0002) plane 2q-u scan result of the as-grown
p-GaN epilayer is firstly presented in Fig. 3(a), which has a single
diffraction peak centered at 34.57� (pointed by a red arrow). In the
(0002) plane 2q-u scan curve of Fig. 3(d), there is another diffrac-
tion peak located at 34.46� (pointed by a blue arrow) which is ac-
cording to the (0002) diffraction peak of ZnO, in addition to the
diffraction peak of p-GaN. The appearance of the ZnO (0002) peak
indicates that the 1D ZnO nanorods are hexagonal structured and
strict c-axis oriented, which is quite in line with the previous SEM
result (as shown in Fig. 1(e)) and the direction the screw dislocation
of the p-GaN epilayer spiraling upwards. Fig. 3(b) shows the
asymmetrical RSM image around the (1015) reflection for p-GaN, in
which a well-resolved main peak surrounded by a series of contour
lines distinguished by colors are presented. The axes of the RSM
image are stood for the directions parallel and perpendicular to the
surface of the p-GaN epilayer, and the reciprocal lattice point (RLP)
(qx, qz) can be used to calculate the in-plane and out-plane lattice
constants via the following relations [12,42].

a ¼ 2
h�

h2 þ hkþ k2
�.�

3q2x
�i1=2

(1)

c ¼ l=qz (2)

where h, k, and l are theMiller indices. The lattice constants for fully
relaxed bulk GaN are 0.31891 nm and 0.51855 nm for a0 and c0,
respectively [43]. Thus, the RLP denoted as (qx0, qz0) for fully



Fig. 2. (a) Schematic illustration of the fabrication of 1D ZnO nanorods on the MSM structure p-GaN photodetector. (b) The SEM image of the as-fabricated MSM structure p-GaN
photodetector. (c) The SEM image of the MSM structure p-GaN photodetector after solution growth of 1D ZnO nanorods on p-GaN. (d), (e) and (f) The partial enlarged SEM images to
confirm the self-assembled heterogeneous growth of 1D ZnO nanorods on the p-GaN between the interdigital electrode gaps.
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relaxed GaN, can be calculated as (�3.621, 9.642) for its (1015)
reflection. In Fig. 3(b), the RLP denoted as (qx, qz) for the main peak
of p-GaN is measured as (�3.62, 9.642) for the (1015) reflection,
which means that the p-GaN epilayer is almost unstrained. In order
to evaluate the strain evolution in the screw dislocation-driven
growth of 1D ZnO nanorods on p-GaN, the asymmetrical RSM im-
age around the (1015) reflection for the ZnO nanorods/p-GaN
heterostructure is also demonstrated, as shown in Fig. 3(e). In
contrast with Fig. 3(b), there are two well-resolved main peaks in
Fig. 3(e). The one denoted as (�3.62, 9.642) is corresponding to the
main peak of the p-GaN which is the same as that of the as-grown
one. This means that the introduction of 1D ZnO nanorods by the
method of screw dislocation-driven self-assembled aqueous solu-
tion growth has little impact on the strain state of p-GaN. The red
cross-point is on behalf of the RLP for the main peak of the 1D ZnO
nanorods, which is measured as (�3.545, 9.61). Referring to the
lattice constants of unstrained hexagonal ZnO nanomaterials
(a0¼ 0.32498 nm and c0¼ 0.52066 nm) [44], the RLP denoted as
(qx0, qz0) for unstrained 1D ZnO nanorods can be calculated as
(�3.553, 9.603) for its (1015) reflection. It is found that the qx of
ZnO nanorods grown on the dislocations of p-GaN decreases while
the qz increases. In real space, it reveals dilatation of in-plane lattice
constant a and shrinkage of out-plane lattice constant c. The related

strains εxx �
�

1
qx
� 1

qx0

�
� qx0 and εzz �

�
1
qz
� 1

qz0

�
� qz0 can be

calculated to be 0.225% and �0.073%, respectively, which discloses
that the 1D ZnO nanorods grown on the dislocations of p-GaN
epilayer by in-situ self-assembled solution growth method are
subjected to tensile strain and compressive strain respectively in
the directions parallel to and perpendicular to the surface of p-GaN,
due to the lattice mismatch between the ZnO and p-GaN. Fig. 3(c)
and (f) present the (0002) plane rocking curves for p-GaN and 1D
ZnO nanorods, and the full width at half-maximum (FWHM) can be
evaluated to be 0.07� and 0.156�, respectively.

The room-temperature PL spectra of the as-grown p-GaN, 1D
ZnO nanorods, and 1D ZnO nanorods/p-GaN heterostructure are
also measured and analyzed in Fig. 4. In comparison, the spectrum
of the p-GaN layer (Fig. 4(a)) shows a single emission peak at



Fig. 4. PL spectra of (a) p-GaN, (b) 1D ZnO nanorods, and (c) 1D ZnO nanorods/p-GaN heterostructure.

Fig. 3. XRD patterns for the p-GaN epilayer and the ZnO nanorods/p-GaN heterostructure. (a) 2q-u scan result from the (0002) plane for p-GaN epilayer. (b) The asymmetrical RSM
around the (1015) reflection for p-GaN. (c) The (0002) plane rocking curve for p-GaN. (d) 2q-u scan result from the (0002) plane for the ZnO nanorods/p-GaN heterostructure. (e)
The asymmetrical RSM around the (1015) reflection for the ZnO nanorods/p-GaN heterostructure. (f) The (0002) plane rocking curve for 1D ZnO nanorods.
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363 nmwith a FWHM of 12 nm, which is attributed to the intrinsic
luminescence of p-GaN and strictly in accordance with the band
gap of GaN (3.41 eV). No blue emission due to a transition between
the conduction band and the deep Mg dopant levels is observed for
the epilayer. The as-measured spectrum of the 1D ZnO nanorods is
shows in Fig. 4(b) using black scatters. A well multi-peaks Gaussian
fitting gives three Gaussian bands centering at ~377 nm, ~395 nm,
and ~439 nm. Among them, the peak located at ~377 nm is corre-
sponding to the intense near-band-edge (NBE) emission of ZnO
which is attributed to the free-exciton emission of ZnO. The peak
centered at ~395 nm can be ascribed to the interfacial emission of
the ZnO nanorods/p-GaN heterojunction. Due to the interference
from the heterogeneous interface during the in-situ measurement,
a weak interfacial emission peak is observed in the PL spectrum of
1D ZnO nanorods. In addition, a broad peak on the long wavelength
side centered at 439 nm is proved to be the recombination of the
interstitial zinc (Zni) with zinc vacancies (VZn) [45,46]. The PL
spectrum of 1D ZnO nanorods is different from that of ZnO nano-
rods containing screw dislocations reported by Dai et al. [47], which
indicates that the 1D ZnO nanorods prepared in our work are
almost free of screw dislocations. For the PL spectrum of the 1D ZnO
nanorods/p-GaN heterostructure, as shown in Fig. 4(c), a well
multi-peaks Gaussian fitting confirms the material structure with
four dominant emission peaks in accordance with those of p-GaN
and 1D ZnO nanorods.

The spectral responsivities for the MSM structure p-GaN



Y.P. Chen et al. / Journal of Alloys and Compounds 775 (2019) 1213e12201218
photodetector with and without 1D ZnO nanorods under different
bias voltage are measured to demonstrate the role of the 1D ZnO
nanorods, as shown in Fig. 5. During the measurement, both of the
as-fabricated photodetector and 1D ZnO nanorodsmodified one are
back-illuminated by the incident light. Their response spectra
present a bandpass characteristic, as shown in Fig. 5(a) and (b). The
Fig. 5. Spectral characteristics for the MSM structure p-GaN photodetector with and
without 1D ZnO nanorods under different bias voltage. (a) The responsivities and (b)
the corresponding EQEs. (c) The energy band diagram of ZnO nanorods/p-GaN het-
erostructure at zero-bias voltage.
response spectrum of the MSM structure p-GaN photodetector
without 1D ZnO nanorods ranges from 362 nm to 375 nm with a
peak value of 0.085 A/W at 367 nm under 1 V bias voltage, corre-
sponding to an external quantum efficiency (EQE) of 28.7%, which
increases to 0.103 A/W at 3 V with an EQE of 34.6%. By comparison,
the response spectra of the MSM structure p-GaN photodetector
with 1D ZnO nanorods present an extended range between 362 nm
and 385 nmwith peak values of 0.118 A/Wand 0.147 A/Wat 368 nm
under 1 V and 3 V bias voltages, corresponding to EQEs of 39.9% and
49.6%, respectively. Viz., the modification of the dislocations of p-
GaN using 1D ZnO nanorods not only improves the spectral
response intensity of the MSM structure p-GaN photodetector but
also extends its bandpass wavelength width. The mechanism
involved can be clarified by the energy band diagram shown in
Fig. 5(c). Referring to Fig. 2(d)-(f), on the surface of the p-GaN be-
tween the interdigital electrode gaps, there distributes a large
number of isolate 1D ZnO nanorods grown upon the dislocations of
the p-GaN. Each one of the 1D ZnO nanorods will form a nanoscale
heterojunction with p-GaN. Under the thermal equilibrium condi-
tion, each heterogeneous interface of the ZnO nanorod/p-GaN will
form a localized depletion region and generates a built-in electric
field (E) directed from ZnO nanorod to p-GaN, which is conducive to
the separation of the photo-generated electron-hole pairs in the
depletion region. It should be noted that in general, the depletion
width of the p-GaN side is greater than that of ZnO side due to its
lower carrier concentration. Furthermore, in the back-illuminated
MSM structure ZnO nanorods/p-GaN photodetector, the incident
light illuminated from the sapphire side is firstly absorbed by the p-
GaN layer, exciting electron-hole pairs which separate and trans-
port to the interdigital electrodes under the applied bias. Only the
light with wavelength longer than 363 nm can pass through the p-
GaN layer and reach the 1D ZnO nanorods. Therefore, a consider-
able additional photo-generated electron-hole pairs will be pro-
duced in a series of depletion regions and 1D ZnO nanorods. The
representative carrier diffusion process is shown in the energy
bandmodel inwhich the electron affinities (c) for GaN and ZnO are
4.2 eV and 4.35 eV while their bandgap values (Eg) at room tem-
perature are 3.41 eV and 3.37 eV, respectively [48]. For a close
contacted ZnO nanorod/p-GaN heterojunction, the band offsets are
calculated as 0.15 eV between the two conduction bands (DEc) and
0.11 eV between the two valence bands (DEv). Owning to the small
band offsets, the considerable additional photo-generated electron-
hole pairs generated in the depletion regions and 1D ZnO nanorods
will separate and pass through the barrier under the built-in
electric field (E) and drift to the interdigital electrodes as a contri-
bution to the photocurrent under the applied bias of the MSM
photodetector. Therefore, the enhancement of the spectral
response intensity as well as the extension of the spectral response
range in the ZnO nanorods/p-GaN MSM structure photodetector
originate from the photoelectric response in a series of nanoscale
heterojunctions and 1D ZnO nanorods. Indeed, compared Fig. 5(a)
with Fig. 4, the cut-off wavelength of the spectral response for the
back-illuminated ZnO nanorods/p-GaN MSM structure photode-
tector is almost according with the main peaks of its PL spectrum.

In Fig. 6(a), it shows the current-voltage (I-V) characteristics of
the MSM structure p-GaN photodetector with and without 1D ZnO
nanorods in dark and under the 367-nm-wavelength illumination
using a semi-logarithmic scale. As can be seen, the dark current of
the MSM structure p-GaN photodetector with 1D ZnO nanorods is
slightly lower than that of the as-fabricated one, which can be
attributed to the dislocations passivating by in-situ grown 1D ZnO
nanorods. In addition, the photocurrent of the photodetector
modified with 1D ZnO nanorods is also greatly enhanced about one
order of magnitude in comparison with that of the as-fabricated
one under a certain wavelength of the incident light. This result



Fig. 6. (a) The I-V characteristics of the MSM structure p-GaN photodetector with and without 1D ZnO nanorods in dark and under the illumination of 367 nm light using the semi-
logarithmic scale. (b) Time-dependent photocurrent response of the MSM structure p-GaN photodetector with and without 1D ZnO nanorods under the conditions of 367-nm-
wavelength illumination and 1 V bias. (c) Decay edge of the transient spectral response under 1 V bias for the photodetector without 1D ZnO nanorods and (d) with 1D ZnO
nanorods.
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strongly reflects the photoelectric enhancement effect of the 1D
ZnO nanorods. Fig. 6(b) shows the time-dependent photocurrent
responses of the MSM structure p-GaN photodetector with and
without 1D ZnO nanorods under the conditions of 367-nm-wave-
length illumination and 1 V bias. Both exhibit rapid and stable
response to the 367-nm-wavelength light when it is on or off. The
corresponding decay edges of the transient spectral response under
1 V bias are demonstrated in Fig. 6(c) and (d), respectively. Both
decay sections are well fitted by a first-order exponential decay
function with a decay component of about 63 ms (t1) for the p-GaN
photodetector without 1D ZnO nanorods and 60 ms (t2) for that
with 1D ZnO nanorods. The slight improvement of the decay time
in the ZnO nanorods/p-GaN MSM structure photodetector can be
ascribed to the presence of a series of localized built-in electric
fields located at the interface of the nanoscale heterojunctions that
is good for the separation and transport of the photo-generated
carriers so as to decrease the instantaneous equivalent capaci-
tance of the device, and thus reducing its RC constant.
4. Conclusions

In summary, we have demonstrated the in-situ self-assembled
aqueous solution growth of 1D ZnO nanorods on a p-GaN epi-
layer by a screw dislocation-driven method and deliberately
modified the screw dislocations in the p-GaN MSM structure
ultroviolet photodetector with 1D ZnO nanorods for the purpose of
engineering and improving its photoelectric performances. The role
of the 1D ZnO nanorods in the back-illuminated p-GaN MSM
structure photodetector has been investigated in detail. The results
show that due to the introduction of 1D ZnO nanorods on the
dislocations of the p-GaN epilayer, the dark current of the MSM
structure ZnO nanorods/p-GaN photodetector is suppressed to
some extent, which can be attributed to the passivating role of the
in-situ grown 1D ZnO nanorods on the dislocations in the p-GaN
layer. Moreover, the presence of 1D ZnO nanorods on the p-GaN
MSM structure photodetector not only improves its spectral
response intensity but also extends its spectral response band.
Meanwhile, the decay time of the transient spectral response is also
improved. The phenomenon involved can be originated from the
photoelectric response in a series of nanoscale heterojunctions and
1D ZnO nanorods. A considerable additional photo-generated
electron-hole pairs generated in the depletion regions and 1D
ZnO nanorods will separate and pass through the barrier under the
built-in electric field of the heterojunction and drift to the inter-
digital electrodes as a contribution to the photocurrent under the
applied bias of the MSM photodetector. Based on the screw
dislocation-driven self-assembled growth of 1D ZnO nanomaterials
for modification, it is an approach to engineer and improve the
GaN-based UV-PDs, which can be extended to other material sys-
tems of optoelectronic devices.
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