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A B S T R A C T

An eigenmode method is proposed to estimate the correction performance of atmospheric turbulence based
on a deformable mirror (DM). On the basis of the eigenmode, a formula that describes the relationship among
residual error, eigenmode N, and turbulence strength D/r0 (D, telescope aperture, 𝑟0, atmospheric coherence
length) is derived. The eigenmode and the Zernike polynomial methods are compared, too. An experiment is
conducted, and results validate the theoretical equations. Hence, the correction performance of atmospheric
turbulence may be estimated with the eigenmode method. This result is helpful for conveniently designing
and evaluating the adaptive optics system used for turbulence correction.

1. Introduction

Atmospheric turbulence strongly affects the image quality of
ground-based large aperture telescopes [1,2] and the communication
performance of the free space laser communications [3,4]. Adaptive
optics systems (AOSs) have been widely used to overcome the effect
of atmospheric turbulence by correcting the aberrations in time [5–
9]. Normally, the correction performance of the AOS is estimated with
Noll’s method [10]:

𝛥𝐽 = 0.5426 ⋅ 𝐽−
√

3
4 ⋅ (𝐷

𝑟0
)5∕6, (𝐽 > 10), (1)

here J is the first modes of Zernike polynomial, 𝛥J is the residual
error with partial correction, D is the telescope aperture, and 𝑟0 is
the atmospheric turbulence length respectively. With this equation,
one can estimate how many Zernike modes need to selected for an
AOS. However, while a deformable mirror (DM) is used to correct the
turbulence, it is hard to accurately generate the Zernike modes because
of the limitation of its surface quality and actuator structure. Then,
the correction performance will be decreased for the DM based AOS.
To improve the correction accuracy, an eigenmode method is proposed
recently. Biru Wang et al. demonstrated that the eigenmode is ideal for
aberration correction [11]. Tao Cheng et al. adopted the eigenmode
of DM to correct the aberrations in the woofer-tweeter AOS [12].
Xizheng Ke et al. also improved the performance of free space laser
communication system based on the eigenmode of DM [13]. Bing Dong
et al. used the eigenmode of DM to clean up the laser beam [14].

∗ Corresponding authors.
E-mail addresses: caozl@usts.edu.cn (Z. Cao), wangyukun@ciomp.ac.cn (Y. Wang).

From above we can see, the eigenmode method is suitable for the
DM to correct the atmospheric turbulence. However, the correction
effect of atmospheric turbulence is estimated with Zernike modes ac-
cording to Eq. (1). There is no formula to describe the relation between
the atmospheric turbulence and the eigenmode of DM. Consequently, it
is expected to establish an equation to estimate the correction perfor-
mance of AOS with the eigenmode of DM and the correction accuracy
will be improved greatly. In other words, with the established formulas,
lower number of actuators is needed and then, the cost and complexity
of AOS will be reduced because of the improvement of the correction
accuracy. Therefore, in this study, we propose a method to derive a
formula for residual aberration as a function of eigenmode of DM and
the turbulence strength. The Zernike mode and the eigenmode are then
compared. Finally, an experiment is conducted to validate the formula.

2. Eigenmode of DM

2.1. Decomposition of aberration with eigenmode

The eigenmode of DM is a set of orthogonal bases derived from
the influence function of DM. This eigenmode has the following char-
acteristics. (a) the number of eigenmode is equivalent to that of the
actuators of DM, (b) the eigenmodes are mutually orthogonal, and
(c) the spatial frequency is arranged from low to high, corresponding
to the number of eigenmodes N. The eigenmode may be constructed
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Fig. 1. Measured first 20 eigenmodes of DM.

with the influence function R of DM, which can be measured by a
Shack–Hartmann wavefront sensor (S-H WFS) [15–17]. The wavefront
produced by the DM can be represented by a linear combination of the
influence function:

𝛷 =
∑

𝑖
𝑉𝑖 ⋅ 𝑅𝑖, (2)

where 𝑅𝑖 and 𝑉𝑖 are the influence function and control voltage of the
ith actuator, respectively. To describe the correlations of the influence
functions of different actuators with orthogonal mode, a matrix C is
defined as [18–20]:

𝐶(𝑖, 𝑗) = 𝐶(𝑗, 𝑖) = 𝐷−1
∫𝐷

𝑅𝑖𝑅𝑗𝑑𝑥𝑑𝑦, (3)

here D is the aperture of DM. The matrix C may be decomposed with
the singular value decomposition method:

𝐶 = 𝑈𝑆𝑈𝑇 , (4)

where S is a diagonal matrix whose diagonal elements are the eigen-
value of matrix C, and U is a unitary matrix consisting of the eigenvec-
tor of C. The eigenmode matrix of DM may be expressed as:

M = R ⋅ U, (5)

A random wavefront may be described by the eigenmode:

𝛷 =
∑

𝑖
𝑀𝑖𝑚𝑖, (6)

where 𝑚𝑖 is the ith coefficient of 𝑀𝑖. Therefore, it can be decomposed
by the eigenmodes for a random distorted wavefront detected by S-H
WFS:

𝑔 = 𝑀 ⋅ 𝑚, (7)

and the coefficients may be achieved as follows:

𝑚 = 𝑔 ⋅𝑀−1, (8)

where g is the measured distorted wavefront, and 𝑀−1 is the pseudo-
inverse of the eigenmode matrix M. Given the known eigenmode matrix
and the measured wavefront, the coefficients matrix can be calculated
using Eq. (8).

To reconstruct the correction voltage signal with eigenmode, Eq. (7)
may be rewritten as follows:

𝑔 = 𝑀 ⋅ 𝑚 = 𝑅 ⋅ 𝑉 , (9)

where V is the voltage signal matrix, which must be solved. Combining
Eqs. (5) and (9), we can obtain the following:

𝑚 = 𝑈−1 ⋅ 𝑉 , (10)

The voltage can be eventually calculated as follows:

𝑉 = 𝑈 ⋅ 𝑚 = 𝑈 ⋅𝑀−1 ⋅ 𝑔, (11)

The correction voltage signal may be computed using Eq. (11) with the
eigenmode matrix and the measured distorted wavefront.

2.2. Measurement of eigenmode matrix of DM

A continuous surface DM (ALPAO, DM145-25) is selected with 145
actuators and an aperture of 25 mm to measure the eigenmode matrix.
First, influence function R is measured by applying the unit voltage on
each actuator individually. The phase response measured by a ZYGO
interferometer is also recorded. The eigenmode matrix may be acquired
according to Eqs. (3)–(5) with the measured influence function R.
The patterns of the first 20 eigenmodes are shown Fig. 1. The spatial
frequency of the wavefront is increased accordingly, which is similar
to that of Zernike polynomials, with the increased number of modes.
Consequently, the aberrations may be corrected by using the eigenmode
of DM.
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Fig. 2. Residual error as a function of telescope aperture.

3. Correction performance analysis of atmospheric turbulence

3.1. Telescope aperture

Similar to the partial correction of turbulence with Zernike poly-
nomials [21], the degree of correction of eigenmode is related to
eigenmode N, telescope aperture D, and atmospheric coherence length
𝑟0. The effect of D is considered first to obtain the residual error as
a function of N, D, and 𝑟0. The atmospheric turbulence is produced
according to Kolmogorov’s theory. A total of 100 random atmospheric
turbulence wavefronts are generated with 404 Zernike modes to obtain
a statistical average result. Assuming that the first N eigenmodes are
used to correct the atmospheric turbulence, the residual wavefront may
be calculated by the following:

𝛷𝑟𝑒𝑠 = 𝛷𝑎𝑡𝑚𝑜𝑠 −𝛷𝑁 , (12)

where 𝛷𝑎𝑡𝑚𝑜𝑠 is the random atmospheric turbulence wavefront, and
𝛷𝑁 represents the fitted wavefront with the first N eigenmode. The
statistic average root mean square (RMS) value of 𝛷𝑟𝑒𝑠 is computed as
the residual error because the turbulence is random. The relationship
between telescope aperture D and the residual wavefront is calculated,
as illustrated in Fig. 2 with different N and 𝑟0. The dots are the
computed data, and the real lines are the fitted curves. Given that N
and 𝑟0 are fixed, the residual error may be fitted with the following:

𝛷𝑟𝑒𝑠 = 𝑎(𝑁, 𝑟0) ⋅𝐷5∕6, (13)

where a(N, r0) is a coefficient related to N and 𝑟0. All calculated data
are perfectly fitted with Eq. (13). Although only three curves are shown
in Fig. 2, much computed data are fitted well. Hence, the residual
wavefront is proportional to the 5/6 power of D.

3.2. Atmospheric coherence length

The relationship between the residual error and atmospheric coher-
ence length 𝑟0 is also calculated, as demonstrated in Fig. 3 with the
condition of 𝑁 = 30 and 𝐷 = 2 m, 𝑁 = 40 and 𝐷 = 2 m, and 𝑁 = 30
and 𝐷 = 4 m. According to Eq. (13), the residual error may be fitted
by the following equation:

𝛷𝑟𝑒𝑠 = 𝑏(𝑁) ⋅ (𝐷
𝑟0
)5∕6, (14)

where b(N) is a coefficient related with eigenmode N. The computed
data are fitted fine with Eq. (14). Therefore, the residual wavefront
error is inverse proportional to the 5/6 power of 𝑟0 and proportional
to the 5/6 power of D/r0. The turbulence strength may be described
by the D/r0: larger the D/r0 is, the stronger the turbulence. Thus, the
residual error becomes large after the adaptive correction for strong
turbulence.

Fig. 3. Residual error as a function of 𝑟0.

Fig. 4. Residual error as a function of eigenmode N .

3.3. Eigenmode of DM

The residual error is computed with different N at the condition of
D/r0 = 10, 20, and 40. The following formula is used to fit the data:

𝛷𝑟𝑒𝑠 = 𝑐 ⋅𝑁𝛼 ⋅ (𝐷
𝑟0
)5∕6, (15)

However, the fitting results show that 𝛼 and c are not constant,
and the fitting error is large. Considering Noll’s formula with limit of
the Zernike modes larger than 10, we also utilize N > 10 to fit the
calculated data, and the fitted results are shown in Fig. 4. When N >
10, the discrete data are fitted well with 𝑐 = 1.846 and 𝛼 = −4

√

3∕9.
Consequently, the residual error can be expressed as (N > 10):

𝛷𝑟𝑒𝑠 = 1.846 ⋅𝑁− 4
√

3
9 ⋅ (𝐷

𝑟0
)5∕6, (16)

where the units of D and 𝑟0 are meter, and the unit of the RMS error
of 𝛷𝑟𝑒𝑠 is rad.

When N ≤ 10, the computed data are fitted for each eigenmode
separately, and the results are shown in Table 1. With Eq. (16) and
formulas in Table 1, the residual error may be calculated at different
N, D, and 𝑟0. Thus, the correction performance of the atmospheric
turbulence may be estimated based on the eigenmode. Fig. 5 illustrates
the residual error as functions of N and D/r0. The residual error may
be easily evaluated with the eigenmode of DM. For example, for a
telescope with 𝐷 = 2 m and 𝑟0 = 10 cm, the first 57 eigenmodes should
be used to correct the atmospheric turbulence with the condition that
the residual error is 1 rad.
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Table 1
First 10 formulas of RMS.

𝛷𝑁=1 = 0.958 ⋅ (𝐷
𝑟0

)5∕6 𝛷𝑁=6 = 0.367 ⋅ (𝐷
𝑟0

)5∕6

𝛷𝑁=2 = 0.735 ⋅ (𝐷
𝑟0

)5∕6 𝛷𝑁=7 = 0.344 ⋅ (𝐷
𝑟0

)5∕6

𝛷𝑁=3 = 0.476 ⋅ (𝐷
𝑟0

)5∕6 𝛷𝑁=8 = 0.337 ⋅ (𝐷
𝑟0

)5∕6

𝛷𝑁=4 = 0.437 ⋅ (𝐷
𝑟0

)5∕6 𝛷𝑁=9 = 0.317 ⋅ (𝐷
𝑟0

)5∕6

𝛷𝑁=5 = 0.385 ⋅ (𝐷
𝑟0

)5∕6 𝛷𝑁=10 = 0.301 ⋅ (𝐷
𝑟0

)5∕6

Fig. 5. Residual error as functions of eigenmode N and D/r0.

3.4. Comparison

The Zernike polynomials and the eigenmode method are performed.
According to Noll’s work, when the first J Zernike modes are corrected,
the RMS value of the residual wavefront can be calculated with Eq. (1).
For comparison, the residual error is computed with the same number
of modes under the condition of D/r0 = 20, as shown in Fig. 6. The
residual error of eigenmode is larger than that of Zernike mode when
the number of modes is lower than 38. Moreover, the residual error of
Zernike mode is larger when the number of modes is larger than 38.

The improvement ratio of eigenmode is defined as follows to eval-
uate the overall correction error compared with the Zernike mode.

𝑅𝑒𝑖𝑔𝑒𝑛 =
𝛥𝐽 −𝛷𝑟𝑒𝑠

𝛥𝐽
= 1 −

𝛷𝑟𝑒𝑠
𝛥𝐽

, (17)

Substituting Eqs. (1) and (16) into Eq. (17), 𝑅𝑒𝑖𝑔𝑒𝑛 can be rewritten as
follows:

𝑅𝑒𝑖𝑔𝑒𝑛 = 1 − 17
5

⋅𝑁
−7

√

3
36 , (18)

As we can see, 𝑅𝑒𝑖𝑔𝑒𝑛 has no relationship with turbulence strength
D/r0 but is only related to the number of modes. The 𝑅𝑒𝑖𝑔𝑒𝑛, as a
function of N, is calculated, as shown in Fig. 7. It illustrates that 𝑅𝑒𝑖𝑔𝑒𝑛 is
nonlinearly increased as the number of modes increased. For example,
compared with the Zernike mode, the residual error is reduced by
approximately 36% when the number of modes is 145. Hence, the
eigenmode method can be used to improve the correction accuracy
when the number of modes is larger than 38 for different turbulence
strengths.

4. Experiment validation

An experimental AOS is established to verify the proposed method
and the optical layout is illustrated in Fig. 8. A 785 nm laser output

Fig. 6. Residual error of eigenmode and Zernike mode with D/r0 = 20.

Fig. 7. Relationship between 𝑅𝑒𝑖𝑔𝑒𝑛 and mode number N .

with the fiber is collimated by a lens and goes through an atmospheric
turbulence simulator. The collimated light is reflected by a DM and
zoomed in with a 4f lens system. The zoomed beam is split into two
beams: one goes to an S-H WFS for wavefront detection; the other is
focused on a CCD imaging camera. The DM is the same as what is used
to measure the eigenmode. An S-H WFS with the frame rate of 2.7 kHz
and 20 × 20 microlenses is selected to measure the wavefront. To
perform the wavefront correction, the distorted wavefront is measured
by the S-H WFS firstly; then, the control signal can be calculated with
Eqs. (7), (8) and (11) according to the measured wavefront; at last, the
control signal is sent to the DM and the distortions may be corrected.
After correction, the corrected wavefront can be achieved with the S-
H WFS and the clear image of the fiber bundle can be observed at
the CCD camera. The atmospheric turbulence simulator (Lexitek) is
selected to induce a random turbulence with the parameters of 100 mm
aperture, and 𝑟0 = 1 mm at the wavelength of 785 nm. The effective
beam aperture (sub-aperture) is 20 mm, and the turbulence strength
D/ 𝑟0 = 20. To satisfy the frozen flow hypothesis, a sub-aperture stop is
placed at the edge of the turbulence simulator.

For comparison, a distorted wavefront is corrected with the eigen-
mode and Zernike methods. First, a static aberration is detected and
corrected with the modes of 20, 40, and 50. The corrected results are
shown in Figs. 9 and 10. Fig. 9 illustrates that the RMS of the distorted
wavefront is 7.54 rad before correction (Fig. 9(a)); after the correction
of the first 20, 40, and 50 modes, the RMS error of the distortion
is reduced to 3.67, 1.88, and 1.17 rad for the eigenmode method,
respectively, and 3.24, 1.98, and 1.45 rad for the Zernike polynomial
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Fig. 8. Diagram of experiment AOS.

Fig. 9. Distorted wavefront: (a) before correction and (b) after correction with different modes: the upper is the corrected wavefront for the eigenmode, and the lower is that for
the Zernike mode.

Fig. 10. Image of fiber bundle: (a) without correction and (b) after correction with different modes: the upper is the corrected wavefront for the eigenmode, and the lower is
that for the Zernike mode.

method, respectively (Fig. 9(b)). The experimental results indicate that
the residual error of eigenmode is larger than that of the Zernike
method when the number of modes is less than 38, whereas the residual
error of eigenmode is lower than that of Zernike mode. These results
are similar to the calculated results in Figs. 6 and 7. Fig. 10 displays the
imaging results of the fiber bundle before and after correction with the
eigenmode and the Zernike method. The image of fiber bundle becomes
clear as the corrected modes increase for the eigenmode and Zernike
methods. Furthermore, the resolution of the fiber bundle image with

the correction of 20 eigenmodes is lower than that with the correction
of 20 Zernike modes. However, for the correction with 40, and 50
modes, the image resolution of eigenmode is higher than that of the
Zernike mode. Therefore, the validity of Eq. (18) is verified.

The dynamic atmospheric turbulence is corrected to validate our
proposed method. The turbulence simulator may be rotated with a
motor to simulate the dynamic turbulence. To get a statistical average
effect, twenty positions are selected with equal interval while the
turbulence simulator rotates a round. At each position, the wavefront
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Fig. 11. Residual error as a function of the number of modes for eigenmode and
Zernike methods.

is detected and corrected and the residual error is recorded. Then, the
statistical average value can be calculated with the recorded results,
and the statistical results are shown in Fig. 11. For comparison, the
theoretical curves are also provided in Fig. 11. The experimental results
are close to the theoretical curves for the eigenmode and Zernike meth-
ods. Moreover, the crosspoint of the experimental curves of eigenmode
and Zernike methods approaches that of the theory. Consequently, all
experimental results validate our proposed method and then, the estab-
lished relation between the eigenmode and the atmospheric turbulence
is valid.

5. Discussions and conclusions

An eigenmode method is used to estimate the correction perfor-
mance of atmospheric turbulence. A total of 100 random atmospheric
turbulence wavefronts are generated with 404 Zernike modes to sim-
ulate the atmospheric turbulence correction on the basis of the eigen-
mode. Residual wavefronts are calculated with the first N eigenmode
used for turbulence correction. The residual error as functions of eigen-
mode N and turbulence strength D/r0 is achieved with the fitting
results of the computed data. The residual wavefront error is propor-
tional to the 5/6 power of D/r0 and the −4

√

3∕9 power of N. The
acquired formula may be used to determine how many eigenmodes are
needed for an AOS used for large aperture telescope.

Finally, an experiment is performed to validate the established
formulas. The experimental results are close to the theoretical curves,
which illustrate that the equations are effective. Therefore, while using
the eigenmode of DM to correct the turbulence, the correction perfor-
mance can be estimated with the established formulas. Furthermore,
the eigenmode and Zernike methods are compared with the theoretical
and experimental results. The residual error of eigenmode is larger
than that of Zernike mode when the number of modes is lower than
38, whereas the residual error of Zernike mode is larger than that of
eigenmode.

Although a concrete DM with continuous face-sheet is utilized to
produce the eigenmode matrix, generally, the response of the actuator
is a Gauss pattern, and different continuous face-sheet DMs exhibit a
similar response pattern. Hence, the proposed method is suitable for
continuous face-sheet DMs. For the segmented and bimorph DMs, the
proposed method is still effective to acquire the correction performance
of atmospheric turbulence with the eigenmode of DM. but, the formulas
are possibly different to those presented in this paper. Anyhow, the
proposed method may be used to evaluate the correction ability of
the DM when utilized to correct the atmospheric turbulence. Thus,
an eigenmode method is established for estimation of the correction

performance of the atmospheric turbulence on the basis of the DM.
This work can help in designing the AOS and estimating the correction
ability of the DM based on eigenmode.
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