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Abstract: Curved compound eyes have generated great interest owing to the wide field of view but
the application of devices is hindered for the lack of proper detectors. One-lens curved compound
eyes with multi-focal microlenses provide a solution for wide field imaging integrated in a commercial
photo-detector. However, it is still a challenge for manufacturing this kind of compound eye.
In this paper, a rapid and accurate method is proposed by a combination of photolithography,
hot embossing, soft photolithography, and gas-assisted deformation techniques. Microlens arrays
with different focal lengths were firstly obtained on a polymer, and then the planar structure was
converted to the curved surface. A total of 581 compound eyes with diameters ranging from
152.8 µm to 240.9 µm were successfully obtained on one curved surface within a few hours, and the
field of view of the compound eyes exceeded 108◦. To verify the characteristics of the fabricated
compound eyes, morphology deviation was measured by a probe profile and a scanning electron
microscope. The optical performance and imaging capability were also tested and analyzed. As a
result, the ommatidia made up of microlenses showed not only high accuracy in morphology, but also
imaging uniformity on a focal plane. This flexible massive fabrication of compound eyes indicates
great potential for miniaturized imaging systems.
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1. Introduction

As an increasingly important optical element, a microlens array (MLA) is characterized by its
small size, light weight, and compactability. It provides a universal approach for compact micro-optics
systems and is widely used in liquid crystal devices [1,2], laser beam homogenization [3,4], naked-eye
3D displays [5], and artificial compound eyes [6–9]. In particular, curved artificial compound eyes have
generated more attention recently owing to their large field of view and low aberration or distortion.
A variety of manufacturing methods have been proposed to fabricate curved artificial compound
eyes, including but not limited to laser lithography technology [10], ultra-precision machining [11,12],
hydrogel shrinkage [13], two-photon polymerization [14], bottom-up technology [15,16], thermal
reflow of two different polymeric materials [17], and membrane deformation of polymers [18] assisted
by differential air pressure [19–21] or bending ball [22–24]. While the fabrication of compound eyes
has flourished, the application of components in the system has developed slowly due to a lack of
proper detectors. Because the focal plane of arthropod -inspired compound eyes is arranged on a curve
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instead of a planar substrate, some approaches were used to try to modify the detectors by integrating
the detection and microlens arrays [25] or stacking, cutting, and curving the detector planes [26].
Another prevailing strategy was to add an optical relay that steered incident rays and formed images on
commercial flat detectors, such as freeform prisms [27,28], sets of lenses [29,30], and optical fibers [19,31].
These approaches successfully associated compound eyes with planar detectors.

However, further extension of the systems was impeded by complicated procedures, alignment
accuracy, and tight tolerance. More recently, a one-lens compound eye structure was put forward to
replace custom-made detectors and complex systems, by constructing microlenses with different focal
lengths at different positions on the curved surface. Thermal reflow [32], molding processes [33,34],
and inkjet droplets [35] were used to manufacture MLAs. However, there are concerns about the
volume loss during the photoresist melting process, the surface profile quality of the molds [36], and the
consistency of microdroplets when printing a dense array one by one. Contactless hot embossing is
considered to be a versatile one-step technique to prepare MLAs regardless of the quality of the molds’
inner relief, applied in mass production of microlens arrays [37,38], and the radius of the curvature can
also be precisely controlled by process parameters. This method demonstrates the potential of making
microlenses with multiple focal lengths.

In this paper, based on previous research, a rapid and accurate method for fabricating multiple
focal lengths of compound eyes is proposed by combining photolithography, hot embossing,
soft photolithography, and gas-assisted deformation techniques. Microlens arrays with different
apertures and the same sag height were prepared by a silicon-based contactless polymer hot embossing
method. A cycloolefin copolymer (COC) with transition temperature of 140 ◦C was used to emboss the
microlens structure. Compared with polymethyl methacrylate (PMMA), this material is less likely
to produce bubbles in the process of thermal pressure rheology. A polydimethylsiloxane (PDMS)
membrane was used as an intermediate mold to convert the plane into a curved surface and a metallic
cavity was used to ensure the air pressure difference. After photosensitive resin casting and ultraviolet
(UV) curing, resinous compound eyes with multifocal microlenses in a circular arrangement on one
curved surface were obtained. The geometrical morphology and optical properties were characterized
and an imaging contrast experiment was carried out with a plane detector.

2. Design and Fabrication

As shown in Figure 1a, multifocal compound eyes located on a planoconvex substrate were
designed. O is the optical center of the compound eyes, and the optical ray of each cycle of the
MLA passes through the point of O due to the aperture stopping. The microlens on the surface apex
as the center is denoted as the 0th cycle, and the MLAs extended outward with the circumference
are named the 1st, 2nd, nth cycles in turn. The microlenses in each annulus cycle possess the same
parameters. The distance of the nth microlens along the optical axis between the image plane is ln.
In the arrangement of gradually increased cycles from 0th to 16th, the focal length of every microlens
array must be resized following ln, so that the images formed by different arrays can fall on the same
planar detector. We set the vertical distance between the 0th cycle microlens and the image sensor
plane as l0, which is equal to the focal length of the 0th microlens. In particular, the refractive index of
substrate holding up the compound eyes is recorded as ng, but is not limited to glass. In this simulation
model, the small eye is treated as a thin lens, and according to the thin lens equation and geometrical
relationships, three equations can be deduced:

ln = fn =
r

1− np
(1)

rn =
(
1− np

)[R + h0 + l0
cosθn

− (R + h0)

]
(2)

dn =

√
rn2 − (rn − hn)

2 (3)
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where dn is the diameter of the nth cycle microlens, hn is the altitude of the microlens in the nth
cycle, and np, R represent the refractive index and curvature radius of the polymeric compound eyes.
The angle between the optical axis of the nth microlens and the primary optical axis is written as θn.
The index of the substrate holding up the compound eyes is recorded as ng, which is close to the
compound eyes to avoid the refraction between them. As shown in Figure 1c, the compound eye
and its substrate form a hemispherical shape, the height and radius of the plano-convex substrate are
9.2 mm. All of these ensure that the incident light through the aperture incident propagate along the
optical axis of the microlenses on the curved surface.
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Figure 1. (a) Design of microlenses with multiple focal lengths on a curved surface; (b) image of curved
compound eyes captured by optical stereoscopic microscope; (c) lateral view of curved compound eyes
captured by digital microscope with large depth of field.

Figure 2 illustrates the fabrication of curved compound eyes. Specifically, the standard
photolithography process was adopted to transfer the mask patterns onto the silicon wafer,
and a double-sided ultraviolet (UV) mask aligner (Karl Suss, MA6/BA6, Munich, Germany) was used
for soft contact exposure. Then, an inductively coupled plasma etching machine (Alcatel, A601E,
Annecy, France) was used to etch the silicon wafer at a speed of 8 µm/min for 6 min. The Si mold
with arrays of micropores with different diameters was obtained by removing the residual photoresist.
Then a fluorine-based passivation layer was grown on the surface of the mold to facilitate subsequent
demolding. A polymer of COC with a thickness of 500 µm was pressed under pressure of 200 mbar
at 145 ◦C for 6 min by a Suss bonding system (Karl Suss, SB6E). After purging with nitrogen gas for
10 min and cooling to 80 ◦C, the polymeric MLAs with different focal lengths were demolded.
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Figure 2. Schematic of manufacturing curved compound eyes: (a) AZ5214 photoresist spin-coated on 
silicon substrate and exposed; (b) developed and etched of silicon wafers; (c) patterned silicon 
substrate bonded to borosilicate glass; (d) passivation layer grown on the surface; (e) polymer heated 
and pressed; (f) polymer peeled off to get microlens array (MLA) pattern; (g) structure replicated on 
polymer with polydimethylsiloxane (PDMS); (h) PDMS membrane deformed and packaged in a 
sealed cavity under pressure difference; (i) photosensitive adhesive poured and cured; (j) curved 
compound eyes peeled off. 

Soft lithography and gas-assisted deformation were applied in the transformation of planar 
MLA structure from plane to surface. PDMS (Dow Corning, Sylgard 184, Midland, MI, USA) was 
used as the elastomeric die in this process. The curing agent and PDMS prepolymer were mixed at a 
weight ratio of 1:10 and degassed in a vacuum oven, then the mixture was poured onto the polymeric 
MLAs and cured at 80 °C for 2 h. Then the PDMS membrane was peeled off from the polymeric MLA 
structure and put into a sealed cavity. As shown in Figure 3b, the two holes on both sides of the cavity 
were used to control the pressure difference by a digital syringe pump (RISTRON RSP04-C). The 
value of pressure difference was detected and displayed in real time by a digital manometer (Hti 
HT1891) (Figure 4). A photosensitive resin (Norland Products, NOA63, Cranbury, NJ, USA) was then 
cast onto the deformed membrane and cured under an ultraviolet (UV) light with a wavelength of 
365 nm at an irradiance intensity of 75 wm/cm2 for 90 s. Finally, the curved compound eye with 
multifocal microlenses was obtained successfully within 4 h. Replicas of the compound eye can be 
manufactured in 2 min. 

Figure 2. Schematic of manufacturing curved compound eyes: (a) AZ5214 photoresist spin-coated
on silicon substrate and exposed; (b) developed and etched of silicon wafers; (c) patterned silicon
substrate bonded to borosilicate glass; (d) passivation layer grown on the surface; (e) polymer heated
and pressed; (f) polymer peeled off to get microlens array (MLA) pattern; (g) structure replicated on
polymer with polydimethylsiloxane (PDMS); (h) PDMS membrane deformed and packaged in a sealed
cavity under pressure difference; (i) photosensitive adhesive poured and cured; (j) curved compound
eyes peeled off.

Soft lithography and gas-assisted deformation were applied in the transformation of planar MLA
structure from plane to surface. PDMS (Dow Corning, Sylgard 184, Midland, MI, USA) was used as the
elastomeric die in this process. The curing agent and PDMS prepolymer were mixed at a weight ratio
of 1:10 and degassed in a vacuum oven, then the mixture was poured onto the polymeric MLAs and
cured at 80 ◦C for 2 h. Then the PDMS membrane was peeled off from the polymeric MLA structure
and put into a sealed cavity. As shown in Figure 3b, the two holes on both sides of the cavity were
used to control the pressure difference by a digital syringe pump (RISTRON RSP04-C). The value
of pressure difference was detected and displayed in real time by a digital manometer (Hti HT1891)
(Figure 4). A photosensitive resin (Norland Products, NOA63, Cranbury, NJ, USA) was then cast
onto the deformed membrane and cured under an ultraviolet (UV) light with a wavelength of 365 nm
at an irradiance intensity of 75 wm/cm2 for 90 s. Finally, the curved compound eye with multifocal
microlenses was obtained successfully within 4 h. Replicas of the compound eye can be manufactured
in 2 min.
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Figure 4. Experimental setup used to measure altitudes of MLAs with different diameters and sag
height of PMDS deformation under different pressure in real time.

3. Result and Discussion

In the process of hot embossing, some measures were taken to ensure repeatability of the Si mold
and the uniformity of the MLAs. The silicon wafer was completely bonded to 1 mm thick borosilicate
glass to increase the hardness of the mold. In addition, we reserved sufficient time before hot embossing
at 130 ◦C for 10 min for heat conduction and stress relief because of the difference of heat conduction
in the embossing chamber and the non-uniform distribution of internal stress. Moreover, in order to
avoid redundancy and uneven distribution of pressure, we placed the silicon mold and COC into a
grooved tray (Figure 3a), and the depth of the groove was slightly lower than the total thickness of
the stack.

The altitudes of plane microlenses and the sag height of the curved surface were measured by
a non-contact depth measurement microscope unit (Union Optical IMH). To achieve a more reliable
result, we took the average of many measurements and plotted the results with error bars (Figure 5).
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Figure 5. Result of morphology measurement experiment: (a) altitudes of pressed polymeric MLAs
with different diameters from 0th to 16th cycles; (b) deformation of PDMS membranes with different
thickness under pressure from 4–24 Kpa.

As shown in Figure 5a, there was good uniformity in the altitudes of the microlenses from the 0th
to 14th cycles, but the deviation started to increase from the 15th, which was affected by the filling
efficiency. Since the fill factor of the micropores decreased sharply from the 15th cycle, the polymer
was more sufficiently filled, so the altitudes of the microlens arrays in the 15th and 16th cycles were
larger than the inner ones. Despite the 16th cycle, the altitudes of the polymer MLAs did not change
much with the increasing diameters from the 0th to 15th cycles, and the deviation was less than 6%.
Figure 5b illustrates that under the same pressure, the smaller the membrane thickness, the greater
the sag depression, that is, the more sensitive the response to pressure changes. Our previous studies
showed that the elastic deformation of PDMS membrane is linear to the pressure difference in a certain
range [39], and Figure 5b shows that there was a wider range of linear deformation and relative
morphological stability when the thickness was 1.0 mm. We finally set the membrane thickness as
1.0 mm. The diameters of MLAs in different cycles based on the polymer and PDMS were also observed
by an ultra-depth-of-field microscope (KEYENCE, VHX-1000, Osaka, Japan), and the maximum
standard deviation was from the MLAs with PDMS. The diameter reduction was about 3% compared
to the ideal results, mainly due to shrinkage after PDMS curing and demolding. The results showed
relatively high uniformity and accuracy of geometry in the process of deformation.

In particularly, it must be mentioned that the interferometric technique is the most popular and
accurate method to assess the presence and the amount of aberrations in an optical system, and the
interference microscopy testing allow to perform the full characterization of each kind of microlenses
as an accurate procedure [40,41]. Herein, because of the range limitation of our measuring tools,
a probe profiler (Veeco, Dektak150, New York, NY, USA) and a scanning electron microscope (SEM;
JEOL, JSM-6700F, Tokyo, Japan) were applied to characterize the 3D surface profile of the planoconvex
compound eye and microlenses. As shown in Figure 6, the diameter and height of the microlenses on
the center areas are approximately 150 µm and 25 µm.

As shown in Figure 7, the collimating and parallel beam transmitted through the MLAs and
formed spots on the detector. The spots captured by the detector were output into a displayer, then we
adjusted the distance between the MLAs and the detector to form sharp and bright spots, which were
considered as the focal spots of these cycles, and noted the position of the MLAs on a two-axis manual
stage. MLAs were then moved until the apex surface of the polymer microlens could be seen clearly
on the screen, and we recorded the scale of this position. We regarded a single microlens as a thin lens,
so its focal length was the distance from the surface to the focal spot, which equaled the difference
between the two position coordinates. Deviation of approximately 5% was measured in the testing
experiments, mainly due to variations of PMDS membrane in the conversion from plane to surface.
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Figure 7. Experimental installation for optical performance: (a) schematic diagram of the setup;
(b) actual platform comprised of He-Ne laser source, microscopic objective lens, pin hole, convex lens,
MLAs, optical density filters, microscopic objective lens, and photodetector.

Additionally, we took the focal spot images of the compound eyes contrasting single with multiple
focal lengths and analyzed the intensity of energy distribution of the spots to verify the uniformity of
the microlenses. As shown in Figure 8, the focal spot intensity of single focal length microlenses had
good uniformity in cycles alone, but the intensity of multiple focal length microlenses in different cycles
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was relative homogeneous even in the margin region. The imaging capability of the curved compound
eye was also investigated with a commercially available complementary metal-oxide semiconductor
(CMOS; Aptina, MT9J003, Boise, ID, USA). A calibration graph with a 6 × 8 black-and-white chessboard
and a picture of Lenna were displayed on a screen and then captured by the setup. As shown in
Figure 9a, the black and white vertical lines of the chessboard were all orthogonal, indicating that there
was less distortion in the image formed by the curved compound eye. Comparing the image of Lenna
captured by the single focal compound eye with a focal length of 1.2 mm (Figure 9c), nearly every
ommatidium of the compound eye with multifocal MLAs formed clearly and sharply on the CMOS
(Figure 9c), proving that all focal spots of the multifocal compound eye were adjusted to one detector
plane. These results confirmed the agreement of the experimental samples with the designed ones
and the excellent optical performance of the artificial curved compound eye in reducing distortion
and defocusing.
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microlenses; (c) focal spots of multiple focal length microlenses on the middle area; (d) normalized
intensity distribution of multiple focal length microlenses.
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Figure 9. Images captured by the compound eyes: (a) calibration plate captured by the multi-focal
compound eyes; (b) image of Lenna in contrast to the single focal compound eyes; (c) image of Lenna
captured by the multifocal compound eyes.

The field of view (FOV) testing experiment of the compound eye is shown in Figure 10a. The FOV
measurement setup consisted of an optical imaging system, including the compound eye, CMOS,
optical displacement stage, and a displayer with a white light-emitting diode (LED) light source as a
background and a film with continuous alphabets and numbers. The FOV of the compound eye can be
calculated with the following formula:

FOV = 2arctan
D
2L

(4)

where L is the distance between the compound eye and the screen and D is the length of longest
diagonal between the two characters captured by the CMOS, which were labeled in blue and green.
According to the experimental results exhibited in Figure 10a, the FOV of the curved compound eye can
reach approximately 109◦. Because the sensor size of this CMOS was 1/2.3 inch (4:3) and the diagonal
of the sensor was 7.9 mm, which was smaller than the effective area of our artificial compound eye
shown in Figures 1c and 6a, some information transferred from the outermost microlenses could not
be received by the CMOS. While there was a reduction of sensor size, the actual FOV of the compound
eye was larger than the result observed by the imaging system.
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Figure 10. Experiment of field of view (FOV) testing: (a) experimental setup of the testing system;
(b) numbers and letters captured by multifocal compound eyes; (c) close look at the upper-left portion
of the image; (d) close look at the lower-right portion of the image.

4. Conclusions

In summary, we successfully manufactured curved microlens arrays with multiple focal lengths
by means of hot embossing, soft lithography, and gas-assisted deformation. A total of 581 microlenses
were fabricated on a curved surface within four hours, representing great geometric uniformity and
optical performance adapted to the imaging system. Distortion caused by defocusing on the edge
was solved well through the multifocal design. The focal lengths ranged from 0.23 mm to 2.09 mm
and the field of view of the system achieved 109◦. Since the images formed by some marginal areas
of the microlens exceeded the pixel area of the detector, by using a CMOS with a larger sensor size
and increasing the scale of the microlens arrays, the FOV of the compound eyes could theoretically
reach close to 180◦. Moreover, accurate aberrations of the single optical elements will be evaluated by
interferometric technique to certify the aberrations by the fabrication process in our following study.
The one-lens compound eye with massive multifocal microlenses shows great potential to be integrated
into micro-opto-electro-mechanical systems, including but not limited to those in motion and medicine
imaging, security, and military monitoring.
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writing—original draft preparation, G.L.; writing—review and editing, G.L. and Y.W.; visualization, L.G. and
R.H.; supervision, Y.L.; funding acquisition, W.Z. All authors have read and agreed to the published version
of manuscript.
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