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Featured Application: An uncalibrated visual servo strategy for the on-orbit automatic assembly
of an ultra-high-caliber optical system. It is mainly employed to realize the static positioning and
dynamic tracking of the desired image features in a harsh space environment when the desired
image features required for assembly are known.

Abstract: Aiming at on-orbit automatic assembly, an improved uncalibrated visual servo strategy
for hyper-redundant manipulators based on projective homography is proposed. This strategy
uses an improved homography-based task function with lower dimensions while maintaining its
robustness to image defects and noise. This not only improves the real-time performance but also
makes the joint space of hyper-redundant manipulator redundant to the homography-based task
function. Considering that the kinematic parameters of the manipulator are easily changed in a space
environment, the total Jacobian between the task function and manipulator joints is estimated online
and used to construct a controller to directly control the manipulator joints without a kinematics model.
When designing the controller, the above-mentioned redundancy is exploited to solve the problem
of the over-limiting of the joint angles of the manipulator. The KF-SVSF method, which combines
the optimality of the Kalman filter (KF) and the robustness of the smooth variable structure filter
(SVSF), is introduced to the field of uncalibrated visual servos for the first time to perform the online
estimation of the total Jacobian. In addition, the singular value filtering (SVF) method is adopted for
the first time to avoid the interference caused by the unstable condition number of the estimated total
Jacobian. Finally, simulations and experiments verify the superiority of this strategy in terms of its
real-time performance and precision.

Keywords: hyper-redundant manipulator; projective homography; uncalibrated visual servo;
KF-SVSF method; singular value filtering

1. Introduction

Operating an ultra-high-caliber optical system in high space orbit is one of the key goals of the
Chinese space industry and will help scientists to make more detailed observations of the universe [1].
However, it is impossible to transport it to space as a whole or install such a large space system
manually in space. Large space structure construction through on-orbit services (OOS) may be the best
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solution [2–13]. OOS missions also include visual inspection, fuel refueling and satellite repair and are
of increasing interest to the space industry because of their high economical potential and strategic
benefits. There are many interesting challenges in the development and operation of space robots for
OOS missions, such as motion estimation and the prediction of target objects, multi-physics modeling
and the simulation of space manipulators, practical dynamic parameter identification, dexterous and
efficient manipulation, time delay and sensor errors in feedback controls, compliance and intelligent
controls, multi-arm coordinated controls and operations, among others [5–7]. A visual servo is also
an important technology for manipulators for OOS missions [8–13]. It uses the image information
captured by a camera to position or track space manipulators. This paper mainly considers the
uncalibrated visual servo strategy for a hyper-redundant manipulator with a hand–eye system to
realize the alignment of both static and dynamic assembly objects when the desired image features are
known. Joint flexibility is a problem in space manipulators that may cause vibration. Joint flexibility is
ignored in the research presented in this paper; the details of the joint flexibility problem can be found
in [14].

The traditional visual servo relies on the accurate calibration of the internal camera parameters
and the hand–eye relationship and determines the pose of the manipulator based on the current
image information and calibrated system parameters [13,15–18]. Various parameters of a robotic
vision system are likely to change in the complex and harsh space environment, which will have a
serious impact on the accuracy of the visual servo. Moreover, frequent system recalibration will greatly
increase the cost and workload, and its feasibility is quite low [19–22]. For these reasons, research into
uncalibrated visual servos is very significant.

The term “uncalibrated” mainly means that the internal and external parameters of a camera
are unknown. Compared with the position-based visual servo and hybrid visual servo, which both
require 3-D reconstruction and are highly sensitive to calibration error, an image-based visual servo
is more applicable to this uncalibrated situation [21,22]. An image-based uncalibrated visual servo
(IBUVS) uses image information such as the pixel coordinates of target feature points to construct task
functions directly and design a controller based on the image Jacobian, which is estimated online in
each control period [22–38].

In actual application, some image features may be missing owing to motion blur, inconspicuous
background contrast and the occlusion of the visual field, causing the visual servo task to fail.
In addition, image transmission noise and the resulting image processing errors also impact the
accuracy of visual servos. To solve these problems, researchers have proposed an uncalibrated visual
servo based on projective homography (PHUVS) [23]. This method solves the homography matrix
by matching as many feature points as possible and uses the elements of the homography matrix to
construct the task function. The homography matrix can be solved as long as there are no less than
four pairs of matched feature points. Therefore, the visual servo will not be interrupted even if some
feature points are lost. In addition, the PHUVS has a certain compensatory effect on image noise. As
the number of matched feature points increases, this compensation becomes more obvious and the
system shows better robustness to image noise [39]. It is worth mentioning that the dimensions of the
homography matrix and task function remain constant regardless of the number of matching feature
points, so the real-time performance of system is not affected. However, the original homography-based
task function fails to take full advantage of the eight degrees of freedom of the homography matrix.
In addition to further improving the real-time performance, this property is of great significance to the
application of PHUVS in hyper-redundant manipulators.

The online estimation of the image Jacobian is another pivotal point of an uncalibrated visual servo.
Classic image Jacobian estimation methods include the dynamic Broyden–Gauss–Newton method [37],
Broyden–RLS method [29], group-based Broyden method [38], Kalman filter (KF) method [23,26,27,36],
and particle filter [33,38]. Hao [22] showed that the KF method performs better than other methods
when tracking targets with changing directions of motion. Music [29] also compared these methods
and showed that the particle filter is slightly more accurate when the noise level is high, but the
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Kalman filter has better real-time and dynamic performance for mechanical systems. A limitation of
Kalman filtering is that its accuracy may decrease or even diverge when there is modeling uncertainty
and the statistical characteristics of noise are unknown [31,32]. To solve this problem, researchers
have proposed several methods such as the fuzzy adaptive Kalman filter [31,32], Sage–Husa adaptive
Kalman filter and Kalman neural network [34], but the performances of these methods are not always
stable. A recently proposed variational Bayesian-based adaptive Kalman filter can improve accuracy to
a certain extent, but its process is so cumbersome that it takes more than 20 times as much calculation
time as the Kalman filter [40].

Considering the complexity of on-orbit maintenance tasks and the need for flexibility, a redundant
manipulator with more degrees of freedom is a reasonable choice [41,42]. Redundancy is often used in
space manipulators; for example, to minimize the reactions transferred from the manipulator to the
spacecraft [43] or to minimize the kinetic energy and joint torques [44]. Therefore, a hyper-redundant
manipulator with nine degrees of freedom has been designed to implement on-orbit maintenance tasks
for large space facilities. However, its kinematic parameters are affected by factors such as thermal
expansion and contraction, corrosion, etc., and often change. It is almost impossible to recalibrate a
hyper-redundant manipulator with a complex structure when its parameters change due to working
in the harsh space environment for a long time. Meanwhile, a controller that is constructed with the
estimated total Jacobian and directly controlled manipulator joints is more accurate and robust to the
changes of manipulator parameters. In addition, the estimated total Jacobian of the homography-based
task function tends to present an unstable conditional number. This results in a sudden increase of the
manipulator velocity in some directions, which causes the manipulator to shake and results in serious
errors [45].

On the basis of the above description, an improved uncalibrated visual servo strategy for
hyper-redundant manipulators in on-orbit automatic assembly is proposed. In this strategy,
an improved task function with robustness to image noise and better real-time performance is
constructed; another advantage of this is that the joint space of hyper-redundant manipulators has
redundancy. To improve the system accuracy and make the system robust to the variable parameters of
manipulator in space, the estimated total Jacobian, which maps the task function and manipulator joints,
is used to construct a controller to control the manipulator joints directly without a kinematics model.
When designing the controller, the above-mentioned redundancy is exploited to prevent damage to the
mechanical structure caused by the over-limiting of the joint angles of the manipulator. Meanwhile,
considering that the visual servo system uses an approximate linear model and the measurement noise
of the task function is difficult to determine, the KF-smooth variable structure filter (SVSF) method for
state space estimation is introduced into the visual servo to perform the online estimation of the total
Jacobian. This method combines the KF method and SVSF method and shows better robustness to
noise and modeling uncertainty [46–48]. In addition, the singular value filtering (SVF) method [45] is
adopted to avoid the disturbance caused by the unstable conditional number of the estimated total
Jacobian. Finally, this strategy is verified by several simulations and experiments.

2. Projective Homography

The current frame F and the desired frame F∗ of an eye-in-hand camera are defined for problems
with an eye-in-hand system in which the camera moves with the manipulator. Figure 1 shows the
geometric relationship between these two camera frames. Suppose Mi = [Xi, Yi, Zi]

′ is the coordinate
of the feature point Pi in F and M∗i =

[
X∗i , Y∗i , Z∗i

]′
is the coordinate described by the desired camera,

while pi =
[

ui vi 1
]′

and p∗i =
[

u∗i v∗i 1
]′

are the homogeneous pixel coordinates of feature
point Pi captured by the current and desired cameras, respectively. The geometric relationship between
Mi and M∗i can be expressed as

Mi = RM∗i + t (1)
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where R ∈ R3×3 and t ∈ R3×1 are the orientation matrix and displacement vector between F and F∗

expressed in F∗, respectively.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 28 
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Figure 1. Projective homography model.

Suppose each target point Pi is on the plane π, d∗ is the distance between the desired projection
center and plane π and n∗ is the normal vector of π expressed in the desired camera frame F∗ with
length ‖n∗‖ = 1/d∗. Based on Equation (1), we can obtain

Mi =
(
R + tn∗T

)
M∗i (2)

G = R + tn∗T (3)

where G is the Euclidean homography matrix. In normalized coordinates, (2) can be expressed as

mi =
Z∗i
Zi

(
R + tn∗T

)
m∗i (4)

where mi = [Xi/Zi, Yi/Zi, 1]′ and m∗i =
[
X∗i /Z∗i , Y∗i /Z∗i , 1

]′
. The depth scale is denoted as

αi =
Z∗i
Zi

. (5)

The following relationship can be obtained from Equations (2), (3) and (5):

pi = αi
(
KGK−1

)
p∗i (6)

where K is the internal parameter matrix of the eye-in-hand camera [36]. The homography matrix can
be obtained as

H = KGK−1 (7)

which refers to the mapping between different images projected from the same object to two different
image planes. It has been applied in many domains such as motion estimation, 3-D reconstruction [49]
and of course the visual servo. Even in an uncalibrated situation, this matrix can be estimated up to a
scale β with more than four corresponding image features in different images via

Ĥ = βH (8)

where β is independent of the depth ratio αi in (5).
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Because the images are always disturbed by noise during transmission and processing, the exact
solution of H cannot be obtained via the noisy measurement image point pi. However, it is possible
to obtain the optimal estimated homography matrix Ĥ in the sense of least squares. The estimated
image point of Pi in the current image can be obtained via p̂i = Ĥp∗i . The root-mean-squared (RMS)

error between p̂i and the true points can be obtained via ε̂ ≈ ε(4/n)1/2 [38], where n is the number of
image features and ε is the RMS error between the measurement point pi and the true point. It is worth
noting that the estimated homography matrix Ĥ can be equivalently considered as being estimated by
the matching points p̂i ↔ p∗i . Obviously, if n > 4, building the task function with the elements of the
homography matrix will have a certain compensation effect for image noise.

3. Improved Strategy for the Uncalibrated Visual Servo of a Hyper-Redundant
Space Manipulator

In this section, our improved strategy as shown in Figure 2c will be described in detail. The first
part details the new task function and provides related proofs. Then, the more robust Kalman
filter–smooth variable structure filter (KF-SVSF) method will be introduced to estimate the total
Jacobian. Finally, the estimated total Jacobian, processed via SVF to reduce the disturbance caused by
an unstable conditional number, is used to build a controller to control the manipulator joints directly
for both static positioning and dynamic tracking while limiting the joint angle.
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Ĥ

cv

Robot
Joint 

controller

Image 
process

Build task 
function

Homography 
estimation

KF-SVSF SVF

+−

( ) ( ) ( ) ( )( ) HS K S SK K Kq J e I J J qλ η+ += − + − ∇

( )t KJ ( )S KJ

Ĥ
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Figure 2. Visual servo system: (a) Original PHUVS block diagram. (b) Improved PHUVS block
diagram for static positioning tasks. (c) Improved PHUVS block diagram for dynamic tracking tasks.
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3.1. Improved Homography-Based Task Function

In the original PHUVS strategy proposed by Zeyu Gong [23], the homography-based task function
is defined as

ĥ =
[

Ĥ1 Ĥ2 Ĥ3
]T

=
[

ĥ1 ĥ2 · · · ĥ9
]T

9×1

(9)

where Ĥi is the ith row of the estimated homography matrix. The error vector of the system is
denoted by

e = h0 − ĥ (10)

where h0 is constructed by stacking the rows of the identity matrix I3×3. The purpose of our strategy
can be considered to be making the current camera frame F coincide with F∗. To guarantee this, the
constraint det(Ĥ) = 1 is defined to obtain the unique projective homography matrix Ĥ between the
current and desired feature points in each iteration. It can be proved that e = 0 if and only if rotation
matrix R = I3×3 and position vector t = 0 [23].

In our strategy, the constraint ĥ9 = 1 is defined, where h9 is the last element of the homography
matrix and a direct linear transformation (DLT) is introduced to estimate the homography matrix. First,
it is necessary to normalize the two images, respectively, as follows:

1. Translate the feature points as p̃i = T1pi and p̃∗i = T∗1p∗i to ensure that the centroid of these feature
points is at the origin;

2. Scale feature points as pi = T2p̃i and p∗i = T∗2p̃∗i to make their average distance from the origin
equal to

√
2.

On the basis of the properties of homogeneous coordinates, homogeneous simultaneous equations
can be constructed with transformed pixel coordinates as

...
...

...
p∗Ti 0T uip

∗

i
0T p∗Ti vip

∗

i
...

...
...




H
T
1

H
T
2

H
T
3


︸                            ︷︷                            ︸

A2n×9X=0

= 0 (11)

where A is the coefficient matrix and Hi is the ith row of H. The purpose of the above normalization
operation is to prevent the coefficient matrix A from becoming ill-conditioned owing to image noise.
This solves the problem of numerical instability.

Then, the least squares solution of equation (11) can be calculated via singular value decomposition.
Then, we conduct an inverse transform on H as

H̃ = (T2T1)
−1h

(
T∗2T∗1

)
(12)

where H̃ is the estimated homography between the current and desired feature points. The homography
H̃ can be scaled at any scale.

Thus, H̃ is scaled as Ĥ = H̃/h̃9 and the new task function is constructed as

ĥ =
[

ĥ1 ĥ2 · · · ĥ8
]T

8×1 (13)
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where ĥ reflects the eight degrees of freedom of the homography matrix and further reduces the
dimensions of the system. The error vector of system is defined as

e =
[

1 0 0 0 1 0 0 0
]T

−

[
ĥ1 ĥ2 · · · ĥ8

]T (14)

where e = 0 if and only if the rotation matrix R = 0 and the position vector t = 0. Its sufficiency and
necessity can be proved as follows.

1. Necessity proof: If R = I and t = 0, then G = I. On the basis of the similarity of H and G,
we obtain H = I. From Equation (8), we obtain Ĥ = H/β = I/β. The constraint h9 = 1 gives
1/β = h9 = 1; i.e., β = 1, Ĥ = I, and e = 0.

2. Sufficiency: It is obvious that Ĥ = I and H = βI if e = 0. From Equation (7), we have

G = K−1HK = βI. (15)

Taking two feature points, the coordinates of these points in F and F∗ can be described as

Mi = βM∗i , M j = βM∗j. (16)

Obviously, regardless of in which frame this is expressed, the distance between Pi and P j is
constant. That is,

‖Mi −M j‖ = ‖M∗i −M∗j‖ = β‖M∗i −M∗j‖. (17)

This means that β = 1, which implies H = I and G = I. Thus, R = I and t = 0.
This new task function takes full advantage of the property that the homography matrix has eight

degrees of freedom. This not only reduces the dimensions of the task function but also simplifies the
state space of the visual servo system that needs to be estimated online, so the real-time performance
of system is further improved. Meanwhile, this causes the total Jacobian Jt ∈ R8×9, which maps the
task function and joint space of the hyper-redundant manipulator, to become redundant. Therefore,
this redundancy can be used to finish some secondary tasks such as limiting the joint angle without a
manipulator kinematic model during the servo process. Obviously, this improves the robustness of
system to changes in the kinematic parameters of manipulators.

Remark 1. A flaw in the inhomogeneous solution of the homography matrix is that if the true value of h9 is 0 or
very close to 0, the estimated homography matrix becomes very unstable. In fact, this situation rarely occurs in
the visual servo. In static positioning tasks, the task function generally changes near to the desired gradient
direction. As long as ĥ9 is not equal to 0 at the initial position, its value will never become 0 during the servo
process. In tracking tasks, the task function is always close to the desired value.

3.2. Online Estimation of Total Jacobian

The kinematic parameters of the space manipulator change easily in the harsh space environment.
To avoid the repeated calibration of the complex hyper-redundant manipulator, the total Jacobian
between the task function and the joints of the manipulator is used to construct the controller.
The expression of the total Jacobian is

Jt =


∂ĥ1/∂q1 · · · ∂ĥ1/∂q9

...
. . .

...
∂ĥ8/∂q1 · · · ∂ĥ8/∂q9


8×9

(18)
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Therefore, the accuracy of the estimation of the total Jacobian is directly related to the
system performance.

The uncalibrated visual servo system of the nine degree-of-freedom (9 DOF) manipulator is
modeled as

XK+1 = XK (19)

ZK+1 = CK+1XK+1 (20)

where XK =
[
(Jt1)K (Jt2)K · · · (Jt8)K

]T
and Jti is the ith row of the estimated total Jacobian Jt.

CK = diag
( .

qK · · ·
.
qK

)
8×72

is constructed by the joint velocity of the manipulator, and ZK can be

considered as the change rate of task function ĥ.
It is worth noting that this model is a linear approximation of the visual servo system, and it

causes modeling uncertainty. Meanwhile, because the homography-based task function is used to
compensate for the image noise, the statistical characteristics of the measurement noise of the task
function become difficult to obtain as well. Therefore, the more robust KF-SVSF method [46–48] is
introduced into the visual servo to improve the system accuracy.

This method combines the optimality of the KF method with the robustness of the SVSF method.
As shown in Figure 3, it introduces the concept of an optimal smoothing variable boundary layer,
which is an estimation of the impact of modeling uncertainty and noise. The KF-SVSF method seeks a
balance between accuracy and robustness by introducing a saturation limit into the calculated optimal
boundary layer. By switching between KF gain and SVSF gain, the optimality of KF is maintained
within the limit, while the robustness and stability of SVSF remain outside the limited range.
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First, the smooth variable boundary layer can be obtained as follows:

1. Calculate the a priori state space:
X̂K+1|K = X̂K|K (21)

2. Calculate the a priori state error covariance matrix:

PK+1|K = PK|K + QK (22)

3. Calculate the residuals vector:
ẐK|K = CX̂K|K (23)

ẐK+1|K = CX̂K+1|K (24)

eZ,K+1|K = ZK+1 − ẐK+1|K (25)
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eZ,K|K = ZK − ẐK|K (26)

4. Calculate the smoothing boundary layer ψK+1:

SK+1|K = CPK+1|KCT + RK+1 (27)

EK+1 =
∣∣∣eZ,K+1|K

∣∣∣
abs + γ

∣∣∣eZ,K|K
∣∣∣
abs (28)

ψK+1 =
(
E
−1
K+1CPK+1|KCTS−1

K+1

)−1
(29)

where QK and RK+1 are the process noise covariance matrix and measurement noise covariance
matrix, respectively; EK+1 is the diagonal matrix constructed with EK+1; and the calculated
optimal boundary layer ψK+1 of the uncalibrated visual servo system is the diagonal matrix
ψK+1 = diag

(
(ψ1)K+1 (ψ2)K+1 · · · (ψ8)K+1

)
.

5. Compare the calculated boundary layerψK+1 with the thresholdψS, which is based on the specific
conditions of the system, and switch the appropriate filter gain: If ψK+1 ≤ ψS, the KF gain is
switched to provide an optimal estimate:

KK+1 = C+EK+1ψ
−1
K+1 (30)

If ψK+1 > ψS, the SVSF gain is switched to provide a robust estimate:

KK+1 = C+diag
[
EK+1 ◦ Sat

(
eZ,K+1|K

ψ

)]
×

[
diag

(
eZ,K+1|K

)]−1
(31)

where ψ ∈ R8×1 is the standard boundary layer in SVSF, and this can be adjusted according to the
diagonal elements of the calculated smoothing boundary layer matrix ψK+1.

Then, we complete the subsequent total Jacobian estimation process:
6. Calculate the a posteriori state error covariance matrix:

PK+1|K+1 = (I −KK+1C)PK+1|K(I −KK+1C)T + KK+1RK+1KT
K+1 (32)

7. Obtain the estimated state vector X̂K+1|K+1:

X̂K+1|K+1 = X̂K+1|K + KK+1eZ,K+1|K (33)

8. Split the state vector X̂K+1|K+1 into the estimated Jacobian Jt as:

(Jt)K =


(
X̂K+1|K+1

)
1
· · ·

(
X̂K+1|K+1

)
9

...
. . .

...(
X̂K+1|K+1

)
64
· · ·

(
X̂K+1|K+1

)
72


8×9

. (34)

Remark 2. When carrying out dynamic tracking tasks, the expanded total Jacobian matrix Je = [Jt, ∂h/∂t]8×10
is estimated online, where ∂h/∂t represents the Jacobian between the gradient of the task function and the velocity
of the target and is important for the construction of a dynamic tracking controller.

3.3. Controller Design

Several advanced controllers based on the estimated Jacobian can be used to realize a well-behaved
uncalibrated visual servo; for example, a nonlinear controller with a disturbance observer and a
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disturbance-rejection controller with an extended-state observer [25]. However, the proportional
controller is still the most widely used and developed method in visual servos [22,23,26,29,31–38].
In addition, its simplicity is beneficial for us to verify this robust strategy.

Before constructing the proportional controller, two problems need to be solved. The first is the
disturbance caused by the unstable conditional number of the estimated total Jacobian. Through a large
number of simulations, it is found that the estimated Jacobian of the homography-based task function
tends to present an unstable conditional number and causes drastic changes of the manipulator velocity
in certain directions, resulting in severe vibrations and serious errors. Therefore, the SVF method is
introduced to deal with this problem [45]. Singular value decomposition is performed on the estimated
total Jacobian Jt of the hyper-redundant manipulator according to

(Jt)m×n = Um×m

∑
m×n

Vn×n
T =

m∑
i=1

σiuivT
i (35)

where σi is the singular value of the total Jacobian Jt and ui and vi are the ith columns of U and V,
respectively. The filtering function hσ0,υ(σ) of the singular value σi proposed in the SVF method can
maintain the stability of the smallest singular value of the estimated total Jacobian. It is defined as

hσ0,υ(σi) =
σ3

i + υσ2
i + 2σi + 2σ0

σ2
i + υσi + 2

(36)

where σ0 is the minimum acceptable singular value and υ is a scaling factor that regulates the filtering
shape of function hσ0,υ(σ). If σ0 < υ and υσ0 < 2, hσ0,υ(σ) can stay monotonic. The pseudo-inverse of
the total Jacobian Jt can be developed via the SVF method as

JS
+ =


JT
t

(
JT
t Jt

)−1
, min|σi| > σ0

m∑
i=1

1
hσ0,υ(σi)

viuT
i , else.

(37)

The restriction on the minimum singular value guarantees the stability of the conditional number
of the estimated total Jacobian. Thus, the disturbance caused by the unstable conditional number can
be reduced without generating much additional error in the algorithms.

Another problem is that the manipulator joint angles may overrun. If the joint angle is not limited,
it may cause a failure of the visual servo or even cause damage to the space manipulator. At this time,
the redundancy of the joint space of the hyper-redundant manipulator resulting from the improved
homography-based task function can be used to prevent this from happening. The gradient projection
based on the redundant Jacobian can be adopted to avoid the joint limit [41,42]. When the joints
move away from the limit of joint, allowing the joints to move freely can reduce unnecessary energy
consumption. The gradient function is defined as

∇H(q) =
[
∂H(q)/∂q1 · · · ∂H(q)/∂qn

]T
(38)

∂H(q)
∂qi

= 0, i f ∆
∣∣∣∣∂H(q)
∂qi

∣∣∣∣ ≤ 0
∂H(q)
∂qi

=
(qi,max−qi,min)

2(2qi−qi,max−qi,min)

4(qi,max−qi)
2(qi−qi,min)

2 , else
(39)

On the basis of these optimizations, the controllers for static positioning and dynamic tracking are
designed, respectively, as follows:

1. Static positioning controller:

.
q = −λ(JS)

+
K eK + η(I − (JS)

+
K (JS)K)∇H(q) (40)
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where (JS)K is the processed total Jacobian in the kth period and λ is the proportional gain.
2. Dynamic tracking controller:

.
q = −λ(JS)

+
K (eK − (et)K) + η(I − (JS)

+
K (JS)K)∇H(q) (41)

where (et)K = (∂h/∂t)∆t is the estimation of the task function variation in the kth period caused
by target movement.

4. Simulations

This section describes several simulations of our improved strategy. The performances of this
strategy in aligning with both static and dynamic assembly objects are compared with several original
strategies. Their abilities of avoiding the joint limit and handling an unstable conditional number of
estimated total Jacobian are verified as well.

4.1. System Description

The following simulation adopted the model of a 9 DOF hyper-redundant manipulator with an
eye-in-hand camera. This 9 DOF manipulator was independently designed and manufactured by our
laboratory. Figure 4 shows the mechanical structure and schematic of this manipulator, and Table 1
gives the Denavit–Hartenberg parameters of the manipulator.
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Table 1. Denavit–Hartenberg parameters of the nine degree-of-freedom (9 DOF) manipulator.

Joint qn αn−1 an−1 dn Joint Limit

1 q1 0 0 0 ±90◦

2 q2 90◦ 165.5 0 ±90◦

3 q3 −90◦ 165.5 0 ±90◦

4 q4 90◦ 165.5 0 ±90◦

5 q5 −90◦ 165.5 0 ±90◦

6 q6 90◦ 165.5 0 ±90◦

7 q7 −90◦ 165.5 0 ±90◦

8 q8 90◦ 165.5 0 ±90◦

9 q9 −90◦ 165.5 0 ±90◦
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A five-megapixel industrial camera was mounted at the end-effector, and its intrinsic parameter was

K =


1132.1 0 1280

0 1132.1 1024
0 0 1

.

To simplify the system model, the camera frame F was considered to coincide with the end-effector
frame Fe.

4.2. Simulations and Discussions of Aligning with Static Assembly Objects

To align with static objects, the various errors after the system reaches the steady state are
the most reasonable index for comparing the performances of different uncalibrated visual servo
strategies. Several tests were performed with different noise levels to check the robustness of the IBUVS,
original PHUVS, improved PHUVS with KF method and improved PHUVS with KF-SVSF method.
A square target was chosen with a side length of 200 mm and 49 feature points. Different types of
initial pose errors, including a pure translation error [∆χ, ∆θ] = [350 mm, 350 mm, 100 mm, 0◦, 0◦, 0◦],
a pure rotation error [∆χ, ∆θ] = [0 mm, 0 mm, 0 mm,−10◦,−10◦, 45◦] and a general error [∆χ, ∆θ] =
[350 mm, 350 mm, 100 mm,−10◦, −10◦, 45◦], were set according to the expected camera motion. The
threshold of the boundary layer in the KF-SVSF model is defined as

ψS = diag
[

64 36 420 36 64 420 10 10
]

Table 2 shows the errors of all the above tests. The improved PHUVS with the KF-SVSF method
performs better than the IBUVS, original PHUVS and improved PHUVS with the KF. Sometimes,
the IBUVS does not converge. Figure 5 shows the detailed test results of the improved PHUVS with
the KF-SVSF method for general motion with a noise mean of |V| = 0.5.

Table 2. Steady-state error of different strategies in the static positioning test. ∆χ is in millimeters,
∆θ is in degrees and ∆I is in pixels. IBUVS: image-based uncalibrated visual servo. OPHUVS:
original PHUVS.

Task Method
Noise Mean

|V|=0.2 |V|=0.5 |V|=1

∆χ ∆θ ∆I ∆χ ∆θ ∆I ∆χ ∆θ ∆I

Pure
Translation

IBUVS 0.425 0.014 1.121 0.823 0.032 4.541 1.225 0.067 6.346
OPHUVS 0.183 0.004 0.991 0.302 0.017 2.453 0.395 0.031 3.637

KF 0.181 0.004 0.987 0.289 0.015 2.278 0.379 0.029 3.308
KF-SVSF 0.174 0.004 0.886 0.273 0.015 2.052 0.364 0.029 3.081

Pure
Rotation

IBUVS 0.341 0.023 1.427 0.537 0.045 5.253 0.873 0.069 7.641
OPHUVS 0.126 0.004 0.932 0.268 0.016 2.466 0.385 0.034 3.826

KF 0.124 0.004 0.929 0.251 0.015 2.349 0.374 0.031 3.527
KF-SVSF 0.117 0.003 0.906 0.242 0.014 2.235 0.304 0.029 3.174

General
Motion

IBUVS 0.374 0.029 1.435 0.911 0.049 6.213 1.352 0.072 8.214
OPHUVS 0.187 0.006 0.813 0.261 0.018 2.716 0.406 0.033 3.826

KF 0.185 0.006 0.811 0.243 0.017 2.529 0.394 0.032 3.672
KF-SVSF 0.169 0.006 0.798 0.228 0.015 2.482 0.363 0.031 3.396
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Figure 5. Detailed result of the improved PHUVS with the KF-SVSF method. (a) Trajectories of partial
feature points in the image plane. (b) Norm of image error. (c) Norm of position error. (d) Norm of
attitude error. (e) Norm of error vector. (f) Joint velocities of the manipulator.

4.3. Simulations and Discussions of Aligning with Dynamic Assembly Objects

The mean square error (MSE) is chosen as an index to compare the performances of different
strategies for aligning with dynamic assembly objects. It represents the average image error between
the current and desired image features in the servo process, and is defined as

MSE =
1
N

N∑
i=1

‖∆Ii‖

where ∆Ii is the image error at the ith iteration and N is the number of iterations.
The same target is adopted to move in planar and 3D trajectories. Both 2D motion in a double

leaf rose path and 3D motion in a triple leaf rose path with different noise levels are simulated. These
different paths of the target center are denoted as follows:

Prose2 =


450 + 300 cos(3ωN∆T) sin(ωN∆T)
800 + 300 cos(ωN∆T) sin(3ωN∆T)

820


Prose3 =


450 + 250 sin(3ωN∆T) sin(ωN∆T)
800 + 300 cos(ωN∆T) sin(3ωN∆T)

820 + vN∆T
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where ω = π/30 rad·s−1 is the angular velocity in the X −Y plane, v = 2.5 mm·s−1 is the translation
velocity along the Z axis, ∆T = 0.02 s is the sampling period and N is the number of iterations.
The threshold of the KF-SVSF boundary layer was defined as

ψS = diag
[

128 42 1360 42 128 1360 16 16
]

Table 3 gives the MSEs of all the above tests. All of these MSEs are the average of 100 experiments.
Figures 6 and 7 show the image errors of the different strategies for the double leaf rose and triple
leaf rose paths with a noise mean of |V| = 0.5, and Figures 8 and 9 show the camera trajectories
of the different strategies. The IBUVS is the least robust method to image noise, and its tracking
precision is unacceptable. The improved PHUVS, which directly controls manipulator joints, has better
performance than the original PHUVS, as shown in Figure 2a. Meanwhile, the improved PHUVS with
the KF-SVSF method shows better tracking precision than the improved PHUVS with the KF.

Table 3. Mean square error (MSE) of different strategies in the dynamic tracking test.

Path Method

Noise Mean

|V|=0.2 |V|=0.5 |V|=1

MSE MSE MSE

Double leaf rose

IBUVS 4.97 8.54 11.47
OPHUVS 3.94 5.21 7.56

IPHUVS with KF 2.59 3.84 5.54
IPHUVS with KF-SVSF 2.37 3.56 5.31

Triple leaf rose

IBUVS 5.12 8.96 11.67
OPHUVS 3.91 5.13 7.48

IPHUVS with KF 2.66 3.75 5.62
IPHUVS with KF-SVSF 2.43 3.47 5.39

MSE is in pixels.
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Figure 6. Image error of different strategies in a double leaf rose path. (a) Image error of IBUVS.
(b) Image error of the original PHUVS. (c) Image error of the improved PHUVS with the KF method.
(d) Image error of the improved PHUVS with the KF-SVSF method.
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Figure 7. Image error of different strategies in a triple leaf rose path. (a) Image error of IBUVS. (b) Image
error of the original PHUVS. (c) Image error of the improved PHUVS with the KF method. (d) Image
error of the improved PHUVS with the KF-SVSF method.
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Figure 8. Camera trajectories of different strategies in a double leaf rose path. (a) Camera trajectory of
IBUVS. (b) Camera trajectory of the original PHUVS. (c) Camera trajectory of the improved PHUVS
with the KF method. (d) Camera trajectory of the improved PHUVS with the KF-SVSF method.



Appl. Sci. 2020, 10, 6968 16 of 26

Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 28 

 
Figure 9. Camera trajectories of different strategies in a triple leaf rose path. (a) Camera trajectory of 
IBUVS. (b) Camera trajectory of the original PHUVS. (c) Camera trajectory of the improved PHUVS 
with the KF method. (d) Camera trajectory of the improved PHUVS with the KF-SVSF method. 

(a)

(b)

(c)

(d)

Figure 9. Camera trajectories of different strategies in a triple leaf rose path. (a) Camera trajectory of
IBUVS. (b) Camera trajectory of the original PHUVS. (c) Camera trajectory of the improved PHUVS
with the KF method. (d) Camera trajectory of the improved PHUVS with the KF-SVSF method.

The abilities of the strategies to avoid the joint limit and handle an unstable conditional number
are examined as well. The joint limit was set as ±90◦, and the minimum acceptable singular value
of the total Jacobian was set as σ0 = 10−4. Figure 10 shows the unlimited and limited joint angles
for these two trajectories. Figure 11 shows the logarithm of the minimum singular value σmin of the
estimated total Jacobian (Jt)K and processed Jacobian (JS)K in each period. In each tracking trajectory,
all joint angles of the super-redundant manipulator are limited to the acceptable range. When unstable
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condition numbers are caused by the appearance of excessively small minimum singular values,
the minimum singular value σmin of the processed Jacobian remains above the threshold σ0 = 10−4.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 28 
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Figure 10. Joint angle of the manipulator in different paths. (a) Unlimited joint angles of the manipulator
in a double leaf rose path. (b) Limited joint angles of the manipulator in a double leaf rose path.
(c) Unlimited joint angles of the manipulator in atriple leaf rose path. (d) Limited joint angles of the
manipulator in a triple leaf rose path.
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Figure 11. (a) Inaccurate trajectory caused by an unstable conditional number in a double leaf
rose path. (b) Logarithm of the minimum singular value of the total Jacobian in a double leaf rose
path. (c) Inaccurate trajectory caused by an unstable conditional number in a triple leaf rose path.
(d) Logarithm of the minimum singular value of the total Jacobian in a triple leaf rose path.
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5. Experiments

5.1. Evaluation of Real-Time Performance

Several experiments of systems with different homography-based task functions are carried out.
The time of consumed (TOC) is the most appropriate indicator to measure real-time performance.
The TOC-H which is the time consumed on the homography matrix estimation, and the TOC-C, which
includes the time consumed for Jacobian estimation and control output calculation, are selected as
indicators to compare the real-time performance of the system. A PC with an Intel(R) Xeon(R) E5-1620
CPU at 3.5 GHz, 64-b operating system was chosen to run all experiments. The average values of
TOC-H and TOC-C in each experiment with more than 10,000 control periods are shown in Table 2.
The experiment in the article is only presented to compare the real-time performance of the two
strategies. In practical space applications, this part of the function may be implemented using FPGA.
Corresponding designs and improvements will be made to meet computational efficiency requirements.

As shown in Table 4 and Figure 12, the TOC-H and TOC-C of the improved homography-based task
function are always lower than the original homography-based task function with different numbers
of feature points. According to the comparison of the results, the improved homography-based task
functions with smaller dimensions show more convincing real-time performance, as expected.

Table 4. Detailed value of the TOC of the original PHUVS and improved PHUVS.

Number of
Feature Points

IPHUVS OPHUVS

TOC-H TOC-C Total TOC-H TOC-C Total

4 0.5486 0.8109 1.3595 0.5624 1.0891 1.6515
9 0.7504 0.8109 1.5613 0.7608 1.0892 1.85

16 0.9712 0.8109 1.7821 0.9804 1.0892 2.0696
25 1.2942 0.8108 2.105 1.3022 1.0891 2.3913
36 1.6472 0.8107 2.4579 1.6591 1.0892 2.7483
49 2.2026 0.8108 3.0134 2.2176 1.0893 3.3069
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5.2. Evaluation of System Performance

As shown in Figure 13, a 9 DOF hyper-redundant manipulator, 6 DOF universal robot, smart
camera and NI real-time system were used to build the experimental platforms. The parameters of the
manipulator and the camera are consistent with the parameters set in the simulations. Experiments for
aligning with both static and dynamic assembly objects were conducted to verify the improvement
of our strategy. A square target was chosen with a side length of 200 mm and 49 feature points.
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All experiments were performed under an illumination similar to that of actual working conditions to
examine the reliability of our strategy.
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5.2.1. Static Positioning Experiment

Considering that, in the actual work scene, manipulators often perform general movements to
align with assembly targets, the initial pose error of the positioning experiment was set as

[∆χ, ∆θ] = [−226 mm, 224 mm, 386 mm, 30◦, 10◦, 10◦]

The threshold of the boundary layer in the KF-SVSF model was defined as

ψS = diag
[

64 36 420 36 64 420 10 10
]

Table 5 gives the various steady-state errors of different strategies in positioning experiments, and
these results are the average of five repeated experiments. Although the noise of image transmission
and processing has a certain impact on the accuracy of target recognition, the improved PHUVS with
the KF-SVSF method clearly performs better than other strategies in each comparison. This verifies the
superiority of our improved strategy. Figure 14 is the change curve of the proposed improved PHUVS
in terms of the image error and task function error. Figure 15 shows the angular velocity of each joint
of the manipulator.

Table 5. Steady-state error of different strategies in the static positioning experiment. ∆χ is in
millimeters, ∆θ is in degrees and ∆I is in pixels.

Method ∆χ ∆θ ∆I

IBUVS 1.08 0.023 4.14
OPHUVS 0.96 0.012 2.81

IPHUVS with KF 0.91 0.012 2.76
IPHUVS with KF-SVSF 0.72 0.011 2.59
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Figure 14. Detailed result of the improved PHUVS with the KF-SVSF method in the static positioning
experiment. (a) Image error norm. (b) Norm of error vector.
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Figure 15. Joint velocities of the improved PHUVS with the KF-SVSF method in the static
positioning experiment.

5.2.2. Dynamic Tracking Experiment

In the dynamic tracking experiment, the target was fixed to the end-effector of a universal robot
and taken to move along different paths. To ensure reliability, both complex planar and 3-D paths were
tested. The planar and 3D paths of the target were set as

Prose2 =


840 + 200 cos(3ωN∆T) sin(ωN∆T)

1690
200 + 250 cos(ωN∆T) sin(3ωN∆T)


Prose3 =


840 + 250 sin(3ωK∆T) sin(ωK∆T)

1690 + vK∆T
200 + 250 cos(ωK∆T) sin(3ωK∆T)


where ω = π/6 rad·s−1 is the angular velocity in the X −Y plane, v = 1.25 mm·s−1 is the translation
velocity in the Z direction, ∆T = 0.04 s is the sampling period and K is the number of iterations. The
threshold of the KF-SVSF boundary layer was defined as

ψS = diag
[

128 42 1360 42 128 1360 16 16
]

Table 6 gives the mean square error (MSE) of different strategies tracking two different paths, and
these results are the average of five repeated experiments. Figures 16–19 show the image errors of the
different strategies, and the joint angle and joint angular velocity of the proposed improved PUHVS
with the KF-SVSF method, in the double leaf rose path and the triple leaf rose paths respectively.
Obviously, the improved PHUVS with the KF-SVSF method shows better accuracy and stability than
other strategies. During the tracking process, the tracking error is always kept in an acceptable range.
It is worth mentioning that, due to the adoption of the SVF method, the system smoothly completes the
servo process without severe disturbance. It can also be seen that, because the redundancy resulting
from the improved homography-based task function is used for the design of the controller to limit the
joint angle, there was no case in which the joint angle exceeded the limit, and the entire experiment
was successfully completed.
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Table 6. MSE of different strategies in the dynamic tracking experiment.

Method
Path

Double Leaf Rose Triple Leaf Rose

IBUVS 9.43 10.19

OPHUVS 7.32 7.74

IPHUVS with KF 6.28 6.61

IPHUVS with KF-SVSF 5.61 5.89

MSE is in pixels.
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Figure 16. Image error of different strategies in the experiment of the double leaf rose path. (a) Image
error of IBUVS. (b) Image error of the original PHUVS. (c) Image error of the improved PHUVS with
the KF method. (d) Image error of the improved PHUVS with the KF-SVSF method.

It is worth noting that, in our experiment, we calculated the corresponding joint increment
command ∆q =

.
q ·∆T through the sampling period ∆T instead of continuous joint velocities commands

.
q to send to the robot. During the execution of each sampling period, joint velocities were automatically
planned when moving the increment ∆q. As shown in Figures 17a and 19a, the joint angle was
still relatively smooth. However, in Figures 5f, 15, 17b and 19b, high-frequency oscillations were
present in joint velocities caused by various noises. If the manipulator were controlled in a speed
mode in actual tasks, this might cause vibrations and it might be necessary to add a filter to cut high
frequencies. This would add a delay and possibly make this method unsuitable for real-time operations
in space. Researchers have noticed this problem and found that PHUVS experiences a much smaller
variation amplitude in joint velocities than IBUVS [23]. However, this level of improvement is not
sufficient to completely solve the problem, and this is still a shortcoming that needs to be overcome in
future applications.
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Figure 17. Joint angles and joint velocity of the improved PHUVS with the KF-SVSF method in the
tracking experiment of a double leaf rose path. (a) Joint angles. (b) Joint velocities.Appl. Sci. 2020, 10, x FOR PEER REVIEW 24 of 28 
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Figure 18. Image error of different strategies in experiment of triple leaf rose path. (a) Image error of
IBUVS. (b) Image error of the original PHUVS. (c) Image error of the improved PHUVS with the KF
method. (d) Image error of the improved PHUVS with the KF-SVSF method.
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Figure 19. Joint angles and joint velocity of the improved PHUVS with the KF-SVSF method in the
tracking experiment of a triple leaf rose path. (a) Joint angles. (b) Joint velocities.

6. Conclusions

This paper proposed an improved uncalibrated visual servo strategy for hyper-redundant
manipulators in an on-orbit automatic assembly. An improved homography-based task function
with robustness to image noise and better real-time performance was constructed, which made the
joint space of the hyper-redundant manipulator redundant to the task function. To improve the
system accuracy and avoid the interference caused by the change of manipulator parameters in space,
a proportional controller based on the estimated total Jacobian was designed to control the manipulator
joints directly without a manipulator Jacobian. The KF-SVSF method, which combines the optimality
of the KF method with the robustness of the SVSF method, was introduced to perform the online
estimation of the total Jacobian and further reduced the impact of modeling uncertainty and image
noise. The SVF method was adopted to reduce the disturbance caused by an unstable conditional
number of the estimated total Jacobian without generating much additional error in the algorithms.
In addition, the redundancy of the joint space relative to the new task function was exploited to
limit the joint angle. Several tasks for aligning with static or dynamic objects were simulated to test
the performance of this strategy. The simulation results demonstrated the improved accuracy and
robustness of this strategy. The abilities of the system to limit the joint angle and deal with an unstable
conditional number were verified as well. The reliability of this strategy was further validated by
experiments based on actual working conditions.
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