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A B S T R A C T

Segment random aspheric parameter errors will generate uncertain wavefront deformation which
can be effectively compensated using segment pose alignment. We propose the linear sensitivity
matrix of the wavefront deformation originating from the errors through ray tracing, and deduce
the prediction formula of the deformation. The correction and prediction methods using segment
pose adjustment to compensate the errors are presented. Numerical simulations results reveal
that both the mean square wavefront deformations before and after compensation can be per-
fectly predicted with the prediction errors of the expectation less than± 2% and of the variance
less than±5%.

1. Introduction

Future and present science targets keep driving the desire for the development of telescope aperture for greater light-gather power
and spatial resolution, to explore and study more distant and faint planet [1,2]. The study from National Aeronautics and Space
Administration (NASA) shows that the telescope aperture should be larger than 8m to meet the basic requirements of astronomy
observation [3,4]. However, the carrying capacity of the launch vehicle is limited. The space telescope must be designed according to
the launch vehicle. At present, telescopes using segmented primary mirror (PM) become the best choice for space-based observatories
with aperture size more than 4m [5–7]. For examples, the James Webb Space Telescope (JWST) [8], the Advanced Technology Large
Aperture Space Telescope (ATLAST) [9] and the Thirty Meter Space Telescope (TMST) [10] are all segmented telescopes.

Segmented mirrors need to be correctly phased, which is defined as co-phasing, to achieve the imaging capability equivalent to a
monolithic mirror [11]. At present, the research on segment co-phasing mainly focuses on the error detection [12–15], and the
impacts of piston and tip/tilt errors with definite value [16–22]. However, the correct prescription (aspherical parameters) of seg-
ments are the prerequisite for co-phasing. The segment prescription errors can lead to significant co-phasing errors even though the
segments locate in correct positions. But, the research on prescription errors is rarely concerned. This is because the prescription
errors are random, the fabrication of segments with diameter large than 1m needs exorbitant fabrication cost and processing cycle,
and it is impossible to analyze the impact of prescription errors by manufacturing lots of segments. However, this subject is very
significant, which can reasonably allocate the segment fabrication tolerance to ensure that the prescription of segments meet the co-
phasing requirement, and can evaluate the overall development difficulty of the segmented PM at the initial stage of the optical
system.

This paper proposes a method for predicting the mean square of wavefront deformations (WD) produced by random prescription
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errors before and after compensation. Firstly, we introduced the basic composition of a segmented PM with 8m aperture and analyze
the sources of segments prescription errors. The linear sensitivity matrix of the WD to segments prescription errors is then presented,
the prediction formula of the WD mean square is deduced, and Monte Carlo simulations are achieved to verify the validity of the
prediction. Finally, we propose a method for compensating the WD using segments pose adjustment (including position adjustment
and attitude adjustment), and deduce the prediction formula of the WD mean square after compensation, which is also verified by
numerical simulations. This works can provide a theoretical basis and data support for segmented telescope design and fabrication.

2. Segmented primary mirror architecture and the source of the prescription errors

The segmented PM is illustrated in Fig. 1. It is composed of 10 individual silicon carbide (SiC) mirror segments. When properly
phased relative to each other, these segments act as a single mirror which can provide an aperture of approximate 8m for the
observatory. Each segment is circular, 1.9 m in diameter, and has identical prescription (radius of curvature 10m and conic constant
-1), which can effectively reduce the fabrication difficulty and improve manufacturing efficiency. These segments are cen-
trosymmetrically distributed on a ring of 6.1 m in diameter, and phased via 6 degree of freedom (DOF) segments rigid body motions.

Segments are grinded, ground and polished successively to obtain the optical surface meeting requirements. Different testing
methods are used in different stages to ensure machining accuracy. Interference testing is used in the polishing stage, and profil-
ometer testing was used in other stages. Segment prescription errors mainly originate from test errors in manufacturing, as the
manufacturing precision is greater than the corresponding testing accuracy. The prescription errors are mainly produced in profil-
ometer testing, because the material removal is so little in polishing process that it cannot change segment surface-shape. The
profilometer testing consists of two stages. Firstly, the coordinate values of discrete points on the segment surface are measured, and
then aspheric parameters are calculated using least square method. Therefore, the prescription error is the function of the mea-
surement errors of all the points. According to the central limit theorem (CLT), the segment prescription errors approximately follow
multidimensional independent normal distribution:

∼
∼

ΔR σ
Δk σ

N(0, )
N(0, )

R

k (1)

3. Wavefront deformation originating from the prescription errors

3.1. Basic theory

According to the geometric ray-trace optics, the optical path length (OPL) of an incident-ray reflected by a mirror is the function
of the surface-shape, the mirror position and attitude, as well as the position and direction of the incident-ray:

=OPL f R k s θ i p( , , , , ˆ, ) (2)

where R is the paraxial radius of curvature. k is the conic constant. s is the segment position vector. θ is the segment attitude vector. î
is the unit direction vector of the incident-ray. p is the position vector of the incident-ray.

According to the function error transfer theory, the optical path difference (OPD) produced by slight aspheric prescription errors
ΔR and Δk can be expressed as:

=
∂
∂

+
∂
∂

OPD
f
R

ΔR
f
k

Δk
(3)

where ∂ ∂f R/ and ∂ ∂f k/ are error transfer coefficients.
A conic section is the locus of all points P whose distance to a fixed point F is a constant multiple of the distance from P to a fixed

Fig. 1. Optical design of an 8m space telescope.
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line l (Fig. 2). We obtain an ellipse for 0 < e < 1, a parabola for e= 1, and a hyperbola for e> 1. Therefore, the coordinate-free
formula of the conic-section-of-revolution surface used in segmented PM is obtained:

→ − → − + ⋅→ =ρ e ρ f e ρI ψ̂ψ̂ ψ̂( ) 2 (1 ) 0T T2 (4)

where F is the focus of the conic. e is the eccentricity. l is the directrix of the conic. f is the distance from the conic vertex O to the
focus F. ψ̂ is principle axis vector of the PM from the vertex to the focus.→ρ is the vector from O to P. I is a unit matrix. It can be easily
obtained:

= − = +k e R f e; (1 )2 (5)

The incident-ray with direction î originating at point Pin intersects the optical surface at point P (reflection point), and then the
vector →ρ defined by the mirror vertex can be expressed as (Fig. 3):

→ = → +ρ p Lî (6)

where →p is the position vector of point Pin defined by the vertex and L is the distance from point Pin to point P.
It can be obtained from Eqs. (4)–(6):

+ + =AL BL C 02 (7)

define surface dyadic = + kM I ψ̂ψ̂T , and the coefficients can be written as：

=A i iMˆ ˆT

= → −B i p RM ψ̂2ˆ ( )T T

= → → −C p p RM ψ̂( 2 )T

For ≠A 0, the solution of Eq. (7) is:

= − ± −L B B AC
A

4
2

2

(8)

When the optical surface is concave, the Eq. (8) takes a positive sign, otherwise it takes a negative sign. Partial derivatives of A, B and
C are:

Fig. 2. The coordinate-free conic curve.

Fig. 3. An incident-ray is reflected by a mirror with a conic-section surface.
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Set: = −D B AC42 , and the sensitivity of the distance L to prescription errors can be expressed by the partial derivatives of A, B
and C.

For the concave optical surface:
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And the convex optical surface:

∂
∂

= − − ∂
∂

+ ∂
∂

L
R

B D
AD

B
R D

C
R2

1
(12)

∂
∂

= − ⎛
⎝

+ ⎞
⎠

∂
∂

+ ⎛
⎝

+ + ⎞
⎠

∂
∂

+ ∂
∂

L
k A

B
D

B
k

C
AD

B D
A

A
k D

C
k

1
2

1
2

1
2 (13)

When A gets close to 0, partial derivatives obtained by Eqs. (10)–(13) will have nonnegligible errors. This is because the denominator
approaching 0 infinitely amplifies the rounding error. Especially for =A 0, the rounding error is infinity, which does not have a
meaning. In order to solve this problem, we calculate the partial derivatives using linear interpolation during ∈ −A ε ε[ , ]. ε is a
positive real number close to 0, and typically 1e-4.

Differentiate Eq. (6), and the perturbation of the vector →ρ can be expressed as:

→ = ⋅ρ i Ld ˆ d (14)

The effect of prescription errors ΔR and Δk on the OPD can be seen in Fig. 4.
The solid curve in Fig. 4 is nominal surface, and the dashed line is actual surface with prescription errors. According to the

Redding formulations [23], the total OPD is the sum of the changes in the incident-ray and reflected-ray path lengths:

= +OPD L Ld di r (15)

The incident-ray OPD is the magnitude of the vector Ld i:

= −
⋅

⋅ →L N
i N

ρd
ˆ

ˆ ˆ di (16)

The reflected-ray OPD is the change in the incident-ray path length projected onto the reflected ray:

= − ⋅ ⋅L L i rd d ˆ ˆr i (17)

The OPD due to the paraxial radius of curvature error is:

∂
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= ⋅ − ∂
∂

OPD
R

L
R
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The OPD due to the conic constant error is:
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Fig. 4. WD originating from prescription errors.
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Therefore, the OPD of the incident-ray i caused by prescription errors can be written as:
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The WD can be obtained by tracing all incident-rays using Eq. (20):
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where S is the linear sensitivity matrix of n×2m (n is the quantity of incident-rays through one segment and m is the quantity of
segments). Δ is a vector of 2m×1 consisting of all the segments prescription errors.

3.2. Wavefront deformation prediction

Prescription errors follow multidimensional independent normal distribution, the expectations of which are zero. Therefore, the
expectation of WD originating from prescription errors is also zero:

= =Δw S ΔE( ) E( ) 0 (22)

The variance of WD originating from prescription errors can be written as:

= =RMS
n

Δw Δw
n

ξ Qξ1 1T T2
(23)

where =Q G GT . =G S σdiag( ). =ξ σ Δdiag(1/ ) . σ is a vector composing of the standard deviations of Δ.
Q is a symmetric matrix and can be decomposed as:

=Q U UΣT (24)

where U is an orthogonal matrix composed of the eigenvectors of Q and Σ is a diagonal matrix composed of the eigenvalue of Q.
Let ′ =ξ ξU . Therefore, ′ξ follows multidimensional independent normal distribution with a unit variance, and Eq. (23) can be

written as:

∑= ′ ′ = ′
=

RMS
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(25)

′ξ i
2 follows a chi-square distribution with one degree of freedom. The expectation and variance of WD RMS2 are:

∑=
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2

2
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2

(27)

where r is the rank of Q. n is the quantity of incident-rays. λi is the eigenvalue of Q.
The WD RMS2 is a linear combination of independent chi-square distributions with one degree of freedom. According to Ref. [24],

an approximate expression of this RMS2 distribution is

∼RMS aχ b( )2 2 (28)

where the chi-square coefficient a and degree of freedom b can be expressed by the expectation and variance of WD RMS2:

= =a D RMS
E RMS

b E RMS
D RMS

( )
2 ( )

; 2 ( )
( )

2

2

2 2

2 (29)

3.3. Numerical simulation

Monte Carlo simulations are performed to verify the conclusion deriving from Eq. (26) and Eq. (27). We trace 1037 uniformly
distributed incident-rays on each segment surface of 1.9 m in diameter, calculate the OPD of all 10370 incident-rays reflected by the
segmented PM using Eq. (20), and obtain the total WD stemming from segments prescription errors by Eq. (21). The simulation
results sampling 100,000 times are plotted in Fig. 5. Fig. 5(a) is the WD RMS2 probability distribution, where the standard deviations
of each segment prescription errors (ΔR or Δk) are the same, and can lead to one square wavelength WD RMS2. It can be seen from
the probability distribution that the WD RMS2 approximately follows a chi-square distribution. Fig. 5(b) shows the average WD map.
Because positive OPD compensates negative OPD, the map RMS is approximately zero, which is consistent with Eq. (22). Moreover,
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the RMS2 expectation and variance obtained by Monte Carlo simulations are λ(1.4482 )2 and λ(0.9613 )4 respectively, which are
consistent with the prediction results λ(1.4477 )2 and λ(0.9618 )4 deriving from Eqs. (26) and (27).

In order to further verify the validity of Eqs. (26) and (27), we establish segmented PM models using different parameters,
calculate the RMS2 caused by prescription errors with different standard deviations, and compare the results of Monte Carlo si-
mulations with predictions. Fig. 6 plots the 100 times verification results for a segmented PM with 8m aperture. Each verification is
completed using the following parameters: the Monte Carlo sampling times 100,000, the paraxial ROC R randomly taking value
between 8m and 15m, the conic constant k randomly taking value between -2 and 2, the segment quantity m randomly taking value
between 2 and 10, the segment diameter seg D_ randomly taking value between 1m and 1.9 m, the standard deviation of ΔR ran-
domly taking value between 0 and 1.38mm and the standard deviation of Δk randomly taking value between 0 and 4.68e-3. The
plots indicate that the prediction errors of the RMS2 expectation and variance are less than±2% and±5% respectively.

4. Prescription errors correction

4.1. Basic theory

The WD originating from segments prescription errors is defocus in PM coordinate system, but piston, tip/tilt, defocus and coma
in segment coordinate system. It can be partially corrected by segment pose adjustment. The sensitivity of the WD Δwtp to segment
pose changes defined in segment coordinate system can be written as:

=Δw A ΔXtp tp (30)

where Atp is the sensitivity matrix and ΔX is the segment pose perturbations vector.
The correction error E is defined as the sum of the square deviation between the WD originating from segment prescription errors

and the WD stemming from segment pose changes:

∑= −
=

E Δw Δw( )
i

n

i tpi
1

2

(31)

According to the least square method theory, the minimum correction WD can be obtained when the segment moves to the best-

Fig. 5. The WD originating from normal distribution prescription errors.

Fig. 6. Verification results of 100 random sampling for WD originating from different prescription errors of segmented PMs with disparate para-
meter.
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fitting position:

= −ΔX A A A Δw( )tp
T

tp tp
T1 (32)

The WDs produced by pose changes θx and δy are similar, as well as that by pose changes θy and δx , which can lead to singular base
function matrix. Therefore, the corrections are accomplished in two stages: firstly using base functions composed of pose changes θx ,
θy, θz and δz, and secondly using θz, δx , δy and δz, compensate the segment prescription errors.

4.2. Prediction of residual wavefront deformation

Set the residual WD Δwr as Δwresiduals, and we have:

= −Δw Δw Δwr tp (33)

Simultaneous Eqs. (21), (30), (32), (33), can obtain:

=Δw BΔr (34)

where = − −B S A A A A S( )tp tp
T

tp tp
T1 .

Using the derivation process similar to Section 3.2, we can obtain the predictions of residual WD RMS2 are:
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1 (35)
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r

i
2

2
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2

(36)

where r is the rank of Q. n is the quantity of incident-rays. λi is the eigenvalue of Q, = G GQ T . = − −G A A A A A A σ[ ( ) ]diag( )tp tp
T

tp tp
T1 . σ

is a vector composed of the standard deviations of all segments prescription errors.

4.3. Numerical simulation

Fig. 7 shows the WDs originating from definite prescription errors before and after correction. Where, the paraxial radius of
curvature error ΔR is =λ λ nm10.7 ( 632.8 ), which can produce λ1 WD RMS, and the conic constant error Δk is 2.3e-5, which can also
produce λ1 WD RMS. Because the WDs stemming from ΔR and Δk can compensate each other, the WD RMS before correction does
not follow the root sum square (RSS) law, is only λ0.2296 , which can be corrected to λ0.0725 via the first correction, and to λ0.0724 by
the second correction. The contributions of each DOF pose adjustment are shown in Table 1.

It can be seen from Table 1 that the WD caused by definite prescription errors can be corrected by segment motions of θx , θy, θz
and δz. The rotation θy has the highest contribution, and corrects nearly 87% WD. The rotation θx and θz have little contributions, and
can be ignored.

In order to further verify the validity of the correction method, we simulate a correction of WD produced by segment with
different prescription errors. The WDs before and after correction are shown in Fig. 8. where each segment prescription error is
produced by random sampling, which is not known in advance. Comparing the figure before and after the correction, it can be found
that the segment pose can effectively compensate the segment prescription errors, but it should also be noticed that this correction is
incomplete. To further correct the residual WD, it is necessary to change the segment surface-shape using active optics.

In order to verify the prediction method of the residual WD, numerical simulations using the same setting as that in Fig. 6 are
achieved. Fig. 9 shows the 100 times simulation results, which indicate that the prediction errors of RMS2 expectation and variance

Fig. 7. Correction of the WD originating from segment with uniform prescription errors.
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are less than±2% and±5% respectively. Moreover, the samples are highly discrete, and some sampling results are much larger
than the other samples, but the predictions are still ideal, which indicates that the prediction method we propose is universally valid.

5. Conclusion

This paper proposed the calculation method of the linear sensitivity matrix of the WD originating from segments prescription
errors, derived the prediction formula of the WD stemming from the random segments prescription errors, presented the correction
and prediction method that using segment pose adjustment compensates prescription errors, and achieved plenty of Monte Carlo
simulations. Our research reveals that the random prescription errors will lead to uncertain WD, which approximately follows the chi-
square distribution and can be predicted using the method proposed in this paper. Its prediction errors of RMS2 expectation and
variance are less than± 2% and±5% respectively. The WD originating from segments prescription errors can be effectively
compensated by the segments pose adjustment. The compensation effect is better than one order of magnitude, but there will still be
residual WD left, which also obeys the chi-square distribution and can be predicted using the method proposed in this paper. The
prediction accuracy is the same as that of the prescription errors.
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Table 1
Contributions of each segment DOF for the correction of WD originating from definite prescription errors.

WD θx θy θz δx δy δz

RMS λ/ 3.7e-9 0.2 1.5e-9 / / 7.9e-2
RMS λ/ / / 6.7e-14 1.3e-3 6.7e-15 3.5e-5

Fig. 8. Correction of the WD originating from segment with different prescription errors.

Fig. 9. Verification results of 100 random sampling for the residual wavefront deformation.
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