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Diffracted wavefront measurements are qualitative and comprehensive verifications for the spherical grating that
was manufactured to specifications. Direct interferometric testing of the diffracted wavefront is convenient and
implemented by tilting the spherical grating at a Littrow angle to obtain autoreflection and then results in a non-
null interferometric testing configuration. The diffracted wavefront of the spherical grating contains not only
wavefront errors induced by the manufacturing imperfections but also inherent wavefront contributions from the
autoreflection testing setup. The magnitudes of the latter are affected by both the spherical substrate and the groove
pattern. Through the analysis of geometric aberrations of spherical gratings, the groove pattern contributions are
demonstrated to be contrary for the opposite diffraction orders. A nonnull interferometric testing of spherical
gratings is proposed without foreknowledge of the groove pattern, in which the wavefront errors contributed only
by the manufacturing imperfections are derived from dual measurements under Littrow conditions with opposite
diffraction orders. Simulations are implemented for varied line spacing (VLS) spherical gratings with an F-number
slower than 1.5 and groove density varying from 150 to 300 lp/mm, and the residual error less than 0.004λ RMS
is obtained. The residual misalignment error after conventionally removing defocus and tilt is further analyzed
and discussed. A VLS grating in which the NA is 0.13 and groove density is 200 lp/mm is chosen as an experimental
sample, and the diffracted wavefront error with 0.018λ RMS is obtained. ©2020Optical Society of America

https://doi.org/10.1364/AO.398003

1. INTRODUCTION

Spherical gratings fabricated on either concave substrates or
convex substrates have been widely utilized in hyperspectral
imaging spectrometers to take the advantage of providing both
focusing and dispersing properties [1–4]. The departure from
the ideal spherical substrate, as well as the deviation from the
theoretical groove spacing, depth, and parallelism, will intro-
duce aberrations in the diffracted wavefront [5,6]. Afterward,
the aberrated diffracted wavefront from the spherical grating
will directly affect the imaging quality and the spectral resolu-
tion. Therefore, the wavefront testing of the diffracted beam
is a comprehensive performance evaluation method for the
spherical gratings.

Considering the characteristic of groove spacing, spherical
gratings are divided into two categories. One is the classical
spherical grating whose grooves, when projected onto the tan-
gent plane, forms a set of straight equally spaced lines. The other
is the spherical grating with variations in curvature and spacing

of the grooves. Wavefront testing for a flat grating can be done
conveniently by placing it at the Littrow angle in a commercial
interferometer [7]. Under this condition, autoreflection from
the grating is established for the principal rays. However, the
off-axis incident rays will not propagate along the original path
after diffracted from the spherical grating at the Littrow angle,
and will cause the noncoincidence of the meridian focus plane
and the sagittal focus plane. Therefore, the wavefront aberra-
tions under Littrow conditions increase the testing difficulty.
Confronting the toric characteristic of the wavefront diffracted
from a concave grating, a similar toric wavefront reconstructed
by a lensless Fourier-transform-type hologram was proposed as a
reference wavefront. And the good match between the reference
wavefront and diffracted wavefront of the concave grating was
obtained [8]. In addition, the method that compares the mea-
sured wavefront and computer-modeled diffracted wavefront
of the grating was proposed to monitor the quality of concave
gratings [9]. A hologram was used in the wavefront testing
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layout to compensate the dominant astigmatic aberration of
the grating, and the difference between the computer modeled
and the experimental captured interferograms indicated the
fabrication errors of the grating. A unique hologram is necessary
for each grating; so this method is not cost-effective.

Grating testing under its working condition has also been
considered to obtain a null interferometric testing configura-
tion. To test a constant line spacing convex grating, a nulling
wavefront metrology method was designed with a custom
Offner-type layout under similar condition as in use in the
spectrometer [10]. However, the optical layout is complex and
necessitates the sophisticated alignment. The constant line
spacing convex grating was then preferred to be tested under
Littrow conditions due to its ease to execute, and the result
was acquired after roughly removing piston, tilt, defocus, and
astigmatism from the measured data. The tested diffracted
wavefront error was consistent with the testing result under
its working condition [11]. In Ref. [11], a varied line spacing
(VLS) grating was also tested under Littrow conditions, and the
residual cubic behavior in the testing results induced by groove
pattern contributions should be calculated and further removed
from the measured data. The calculation of the groove pattern
contributions for VLS spherical gratings requires knowledge of
the specific equation of the groove distribution and complicated
calculations. Moreover, there are some replicated gratings with
only the known specifications as radius of curvature, effective
aperture, and groove density at its vertex, but unknown groove
distributions. However, the wavefront testing of this type of
replicated grating is still in demand.

The testing of spherical gratings under Littrow conditions
without using extra compensation components is a general
way. Consequently, the elimination of groove pattern contri-
butions from the measured data for VLS spherical gratings
with unknown groove distributions is a crucial advance and
is proposed and elaborated in this paper. In this paper, based
on the aberration analysis of the diffracted wavefront of the
spherical grating placed at its Littrow angle in the interferomet-
ric testing setup, we present a simple method to directly test
wavefront error of spherical gratings. In Section 2, we discuss the
theory of the diffracted wavefront of spherical gratings and the
analysis of the testing layout of spherical gratings under Littrow
conditions. In Section 3, the dual measurements method and
the corresponding processing procedure are elaborated on.
Section 4 shows the simulation results of the nonnull inter-
ferometric testing method and the misalignment aberrations
analysis. The experimental results of a VLS concave grating are
presented in Section 5. Some concluding remarks are drawn in
Section 6.

2. DIFFRACTED WAVEFRONT ANALYSIS

A. Diffracted Wavefront of Spherical Gratings

The diffracted wavefront of spherical gratings is generally
demonstrated by geometric analysis. The theory has been widely
used in grating spectrometer design [12,13]. The wavefront W
is expressed as the sum of substrate surface contributions WM

and groove pattern contributions WH ,

W =WM+WH

=

∞∑
i=0

∞∑
j=0

Mijx i y j
+

∞∑
i=0

∞∑
j=0

Hijx i y j

=

∞∑
i=0

∞∑
j=0

(Mij + Hij)x i y j , (1)

where WM and WH are expressed as the power series expan-
sion in terms of (x , y ) coordinates on the grating surface. The
polynomial expansion coefficients of WM and WH are Mij and
Hij, respectively. The coefficient Mij, expressed as the expan-
sion coefficient of the (i , j ) term, describes how the wavefront
diffracted from arbitrary point P (x , y ) on the grating toward
the ideal image point from an object point. The other term
Hij is generalized to account for the image-modifying effects
of the variations in curvature and spacing of the grooves. The
wavefront from the constant line spacing gratings is dominated
by the Mij term, and the Hij term is zero when (i + j )≥ 2.
While for VLS gratings, the Hij term describes effects of the
groove pattern. As a holographic grating, the Hij coefficient can
be written in terms of the parameters of the recording geometry,

Hij =
mλ
λ0

h ij, (2)

where λ0 is the recording wavelength in the fabrication of
holography, m is the diffraction order, and λ is the diffracted
wavelength. Although the specific expression of the Hij term
for ruled gratings is a little different, they can be transformed
by each other [14]. In this case, the diffracted wavefront of the
holographic gratings is coincident with that from the ruled
gratings.

B. Diffracted Wavefront under Littrow Conditions

Various commercial interferometers have been applied for
measuring the spherical surface. Generally, we take the Fizeau
interferometer for testing layout analysis. In the traditional
spherical surface testing, the curvature center of the test surface
is ideally positioned to coincide with the curvature center of the
reference surface of the transmission sphere. Similarly, position-
ing a spherical grating following the above criteria allows testing
the diffracted wavefront at its 0 order. To measure wavefront
from other orders, the grating is tilted about its vertex at a spe-
cific angle, which is referred to as the Littrow angle. The Littrow
angle for the unique order is derived from the grating equation
when autoreflection from the grating surface is acquired for the
principal rays. And the Littrow angle is determined by Eqs. (3)
and (4) whenα = β,

dv(sin α + sin β)=mλ, (3)

θL = sin−1

(
mλ
2dv

)
, (4)

where dv is the groove spacing at the vertex of spherical grat-
ings, α is the incident angle, β is the diffraction angle, and θL

is the Littrow angle. As shown in Fig. 1, the concave grating is
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Fig. 1. Spherical grating test under Littrow conditions.

placed at the Littrow angle, point O is the focus of the reference
surface, point C is the vertex of the grating, and the distance
between point O and C is equal to the radius of the grating. In
this instance, the diffracted wavefront at the point O can be
expressed as

OPD= 2(|O P | − |OC |)+mλN

=

∑∞

i=0

∑∞

j=0
(Mijx i y j

+ Hijx i y j ). (5)

The optical path difference (OPD) is equivalent to the sum of
the optical path difference by the substrate and the phase retar-
dation mλN by the grooves. The diffraction order is m. N is sup-
posed to be the groove numbers between the vertex point C and
the arbitrary point P on the grating surface.

The Mij term in Eq. (5) is expanded to the sixth order in this
paper such that the precision of the calculated wavefront can be
as high as 10−3λ RMS. Since the object distance is equal to the
image distance under Littrow conditions, the coefficients Mij

can be simplified as

M20 =
cos2θL

rOC
−

cos θL

R
, (6)

M02 =
1

rOC
−

cos θL

R
, (7)

M30 =
sin θL

rOC

(
cos2θL

rOC
−

cos θL

R

)
, (8)

M12 =
sin θL

rOC

(
1

rOC
−

cos θL

R

)
. (9)

Specific expressions are shown in the Appendix A. Deducing
from Eqs. (6) and (7), M20 and M02 cannot be zero simultane-
ously. Astigmatism is the dominant aberration in the wavefront
diffracted from the spherical grating, for the meridional and
sagittal foci are not coincident. When testing a spherical grat-
ing under Littrow conditions, the measured wavefront data
are composed of an ideally diffracted wavefront as expressed
by Eq. (5) and the wavefront error induced by manufactur-
ing imperfections. Consequently, we believe that three issues
dominate the construction of the spherical gratings testing
configuration for nonnull interferometric testing:

(1) the grating is placed at Littrow angle according to the
expected testing order;

(2) the position of the grating along the optical axis has to be
located with the point O lies between its meridional and

sagittal image plane, where astigmatism is observed as the
dominant aberration in the interferogram; and

(3) the ideally diffracted wavefront should be conveniently and
precisely removed from the measured data.

3. DUAL MEASUREMENTS WITH OPPOSITE
DIFFRACTION ORDERS

A. Components of the Measured Wavefront Data

The diffracted wavefront of the ideal spherical grating placed
under nominal Littrow conditions is analyzed in Section 2.
However, misalignment of spherical grating is unavoidable in
the experimental setup. When testing a spherical surface, the
spherical wavefront error induced by the surface figure error
is routinely obtained by eliminating the misalignment errors
expressed as piston, tilt, and defocus terms from the measured
wavefront data. However, other than the misalignment error of
the spherical surface, the measured wavefront data also contain
the contributions from the groove pattern of spherical gratings.
Therefore, the conventional misalignment elimination method
needs to be analyzed and discussed.

In addition to the ideally diffracted wavefront analyzed in
Section 2, the manufacturing imperfections of a grating will
induce wavefront error in the measured wavefront data, and
misalignment in the testing configuration will also introduce
misalignment aberrations. Therefore, the measured wavefront
data are composed of the ideally diffracted wavefront, the wave-
front error, and misalignment aberrations. The ideally diffracted
wavefront is further divided into substrate surface contributions
induced by geometry of the testing configuration and groove
pattern contributions. The wavefront error induced by manu-
facturing imperfections of the grating is the component we care
about, which should be precisely extracted from the measured
wavefront data. Without loss of generality, the components
of the measured wavefront data of a holographic grating are
expressed as

Wt =WM +WH +We +Wmis, (10)

where Wt is the measured wavefront data. WM is the substrate
surface contributions under Littrow conditions. It contains
two parts. One of them is the figure of substrate, which could
be measured at 0th diffraction order. The other part is aber-
ration caused by changed substrate posture. The latter could
be calculated using the Mij term. WH is the groove pattern
contributions, We is the wavefront error, and Wmis is the
misalignment aberrations.

B. Wavefront Error Extraction with Unknown Groove
Pattern

According to the analysis of wavefront error testing under
Littrow conditions, the wavefront error can be extracted from
the measured data by removing ideally diffracted wavefront
and misalignment aberrations. However, the expression of the
groove distribution is specific for gratings with different process-
ing methods. For a holographic grating, the groove distribution
is determined by recording geometry during the fabrication
process, while for a ruled grating, the groove distribution is an
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infinite polynomial in its projection plane. Thus, the calculation
of groove pattern contributions needs the specific equation of
the groove distribution and complicated calculations. Moreover,
there are some replicated gratings only known by the param-
eters of radius of curvature, effective aperture, and groove
density at its vertex, but the groove distributions are unknown.
According to the analysis of the diffracted wavefront as Eq. (2),
Hi j (m=1) =−Hi j (m=−1) is obtained such that the groove pat-
tern contributions are contrary for the opposite diffraction
orders. The wavefront term WH can be eliminated by com-
bining two testing results for a grating with dual measurments
using opposite diffraction orders, respectively. Since a grating
is always working at +1 or −1 orders in the spectrometer, the
groove pattern contributions can be eliminated by adding
Eqs. (11) and (12),

Wt(m=1) =WM(m=1) +WH +We +Wmis1, (11)

Wt(m=−1) =WM(m=−1) −WH +We +Wmis2, (12)

where Wt(m=1) and Wt(m=−1) are the measured wavefront data
at +1 and −1 orders, respectively. The diffracted wavefront
error can be extracted from the measured wavefront data by sub-
tracting the substrate surface contributions and misalignment
aberrations using Eq. (13),

We = (Wt(m=1) +Wt(m=−1) −WM(m=1) −WM(m=−1)

−Wmis1 −Wmis2)/2. (13)

Figure 2 shows the general procedure for the dual
measurements with opposite diffraction orders.

The procedure can be summarized as follows: first, the
grating is aligned at its 0th order where the interferogram is a
null-fringe status; then the grating is tilted around its vertex

Fig. 2. Procedure for the dual measurements with opposite diffrac-
tion orders.

with the Littrow angle of the test order; after that, the astigmatic
interferogram is acquired by shifting the grating along the axis;
meanwhile the wavefront data can be measured, and the axial
distance OC is obtained; the above steps are repeated to acquire
the data for the opposite order; subsequently, the wavefront
term WM is calculated according to the Eq. (5) and the wave-
front error is outputted after removing WM , piston, tilt, and
power terms.

4. SIMULATION

A. Comparison of Traditional Spherical Surface
Testing Method and Dual Measurements with
Opposite Orders

The test setup in a Fizeau-type interferometer with the working
wavelength of 632.8 nm for a VLS concave grating is modeled
to analyze the feasibility and precision of the proposed method
elaborated in Section 3. Its radius of curvature is 96 mm, the
effective aperture is 25 mm, and the groove density at its vertex is
256 lp/mm. The simulated optical configuration is shown in the
Fig. 3. Dual measurements are executed by placing the grating at
+1 and−1 orders under Littrow conditions, respectively.

Figure 4 shows the residual wavefront errors of +1 and −1
orders by removing piston, tilt, defocus, and dominant astigma-
tism terms with the traditional spherical surface testing method.
The results by measuring the grating working at +1 order and
−1 order, respectively, and subtracting the substrate surface
contributions with Eq. (13) are illustrated in the Fig. 5.

According to the Fig. 4, the residual PV values are 7.0574λ
and 6.9989λ, and the RMS values are 1.0301λ and 1.0230λ
applying the traditional method at +1 order and −1 order,
respectively. The dominant residual error is coma-induced by

Fig. 3. Schematic of concave grating testing at its +1 and −1
orders.

Fig. 4. Residual error with traditional testing method in simulation:
(a) at+1 order; (b) at−1 order.
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Fig. 5. Simulation with dual diffraction order wavefront measure-
ment method: (a) diffracted wavefront at +1 order; (b) diffracted
wavefront at −1 order; (c) calculated wavefront term at +1 order;
(d) calculated wavefront term at −1 order; (e) residual error in
simulation.

Fig. 6. Simulation for gratings with various NA and groove density.

the groove pattern contributions of the grating that impact
the measuring results. While in Fig. 5(e), the PV value of the
residual error is 0.0126λ, and RMS= 0.0014λ is obtained.
More simulations are implemented for spherical gratings with
the F-number slower than 1.5 and the groove density varying
from 150 to 300 lp/mm. The results are plotted in Fig. 6 such
that the residual wavefront error of the proposed method is less
than 0.004λ RMS, validating the feasibility of the method we
proposed.

B. Analysis of Misalignment Aberrations

For the traditional spherical surface measurement, mis-
alignment aberrations can be constrained by adjusting the
interferogram to null-fringe status. Whereas for spherical grat-
ing testing, the grating has to be tilted around its vertex with
a certain angle precisely which is difficult to realize. Thus, we
analyzed the misalignment aberrations induced by tilt error and
corresponding wavefront aberrations in the test results. When
the grating is tilted not exactly around its vertex, the actually
tilted grating surface and ideally tilted grating surface are shown
in the Fig. 7(a). As C is the vertex of the ideally tilted grating, C ′

is the vertex of the actually tilted grating; the misalignment can
be decomposed into defocus and lateral displacement as shown
in Figs. 7(b) and 7(c). In this case, we analyzed the measurement
precision in our experiment by just removing the tilt and defocus
terms as the misalignment aberrations.

Figure 7(b) shows a small longitudinal displacement of the
grating, and d represents the longitudinal shift. According to
the illustration in Subsection 2.A, the relative OPD between the
actually measured wavefront data and the calculated wavefront
using the Eq. (5) can be expressed as

OPDmis =WM −WM(d) =
∑∞

i=0

∑∞

j=0
(Mij −Mi j (d))x i y j .

(14)
Considering M20 and M02 terms:

W20 +W02 =M20 X 2
m x 2
+M02Y 2

m y 2

=
M20 X 2

m +M02Y 2
m

2
(x 2
+ y 2)

+
M20 X 2

m −M02Y 2
m

2
(x 2
− y 2). (15)

The first term and second term represent power and pri-
mary astigmatism terms in Zernike polynomials, respectively.

Fig. 7. Misalignment of test spherical grating: (a) tilt; (b) defocus;
(c) lateral displacement.
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Fig. 8. Residual error in the calibration of misalignment aberra-
tions: (a) RMS values in the calibration of defocus; (b) RMS values in
the calibration of lateral shift.

According to the Eq. (15), the astigmatism term Z6 can be
calculated as

Z6=
M20 X 2

m −M02Y 2
m

2
−

M20(d)X 2
m −M02(d)Y 2

m

2

=

[
cos2θL

rOC
−

cos θL

R
−

(
1

rOC
−

cos θL

R

)
−

cos2θL

rOC + d

+
cos θL

R
+

(
1

rOC + d
−

cos θL

R

)]
Y 2

m

2

= (cos2θL − 1)
d

r 2
OC + drOC

Y 2
m

2

= (cos2θL − 1)d N A2/2, (16)

where X 2
m = Y 2

m for circular aperture gratings, and the NA can
be similarly expressed as NA= Ym/rOC. According to Eq. (16),
the astigmatism induced by misalignment can be neglected
when measuring a grating with a small Littrow angle and a low
NA. For high-NA gratings the astigmatism term should be
removed to calibrate misalignment aberrations.

Figure 8 shows the residual error with different lateral shift
and defocus after removing piston, tilt, and power terms as mis-
alignment aberrations. According to Fig. 8(a), the residual error
introduced by the wavefront defocus is less than 0.007λ RMS
within a 10 µm defocusing amount. From Fig. 8(b), the RMS
value of the residual error for the F= 1.5 test grating is less than
0.003λ corresponding to a 20µm lateral shift amount. The mis-
alignment aberrations induced by the tilt error are the synthetic
residual error of lateral shift and defocus. Consequently, the
general residual error is less than 0.001λ RMS for gratings with
an F-number slower than 1.5. According to the Eq. (16), the
astigmatism term should be removed for measuring high-NA
gratings. In our simulation, we removed the piston, tilt, and
defocus as the misalignment aberrations for the low-NA grating
we used. Measurement of high-NA gratings requires further
analysis and experimentation.

5. EXPERIMENTAL VALIDATION

In order to verify the feasibility of the dual measurements with
opposite diffraction orders, we carried out the experiments
utilizing the commercial Fizeau interferometer working at

Table 1. Testing Parameters of the Experiment

Test at+1 Order Test at−1 Order

Axial translation distance (mm) +5.251 −5.730
Tilted angle (◦) +3.61 −3.61

Fig. 9. Measurement result with dual diffraction order measure-
ment method: (a) photograph of the grating; (b) measured diffracted
wavefront at+1 order; (c) measured diffracted wavefront at−1 order;
(d) calculated substrate surface contributions at +1 order; (e) calcu-
lated substrate surface contributions at −1 order; (f ) wavefront error
with dual diffraction order measurement method.

λ= 632.8 nm. A VLS concave grating, with curvature radius
R = 88.2 mm, groove density at its vertex p = 200 lp/mm,
numerical aperture NA= 0.13, and unknown groove pattern,
was used for testing the diffracted wavefront. In our experiment,
the grating was placed at a null-fringe status as an original posi-
tion when the grating worked at its 0 order. Then the diffracted
wavefront was first measured at its +1 order. The grating was
tilted around its vertex according to the Littrow angle and was
moved forward along the axial. Second, the grating was mea-
sured at its−1 order. The grating was restored to the null-fringe
status, then tilted around its vertex according to the Littrow
angle, and moved backward along the axial. The tilt angle and
axial translation distance relative to the original position are
presented in the Table. 1. The precision of the displacement
stage used in our experiment is 10 µm, which did not impact
the testing result according to the analysis of misalignment
aberrations induced by defocus in Fig. 8(a).
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The photograph of the tested concave grating is shown in
Fig. 9(a). Figs. 9(b) and 9(c) present the measured data at +1
order and −1 order, respectively, in which astigmatism is the
dominant aberration. The PV value is 24.038λ and RMS is
4.684λ at +1 order. And the PV value is 13.564λ and RMS is
2.529λ at−1 order. The corresponding substrate contributions
based on the experiment setup parameters according to Table 1
are shown in Figs. 9(d) and 9(e). The measured wavefront error
after removing substrate surface contributions and misalign-
ment aberrations is shown in the Fig. 9(f ). The PV value of the
test wavefront error is 0.1834λ, and RMS 0.018λ indicates the
fabrication error.

6. CONCLUSION

According to the diffracted wavefront analysis of spherical grat-
ings, the wavefront error test under Littrow conditions suffers
from aberrations caused by substrate surface contributions and
groove pattern contributions. In order to test gratings without
foreknowledge of the groove pattern, we propose a nonnull
interferometric testing method under Littrow conditions with
opposite diffraction orders. Both the computer simulation and
experimental results confirm the feasibility of the proposed
method. The analysis of the misalignment aberrations of the
measurement demonstrates that the traditional misalignment
calibration method is still applicable for low-numerical spherical
gratings, while the astigmatism term should be further removed
as the residual error for high-numerical spherical gratings. The
method achieves high measurement precision, providing a
feasible way for spherical grating testing without knowledge of
the specific groove pattern.

APPENDIX A: SUBSTRATE SURFACE
CONTRIBUTIONS Mij TERMS UNDER LITTROW
CONDITIONS
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