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Abstract
We propose a novel collaborative discriminative model based on extreme learning machine
(ELM) for object tracking in this paper. In order to represent the object more precisely, we
first propose a new collaborative discriminative representation model, which includes both
a global discriminative sub-model and a local discriminative sub-model. Different from tra-
ditional local representation models, in particular, our local sub-model integrates several
classifiers which have structural relations to improve the expression. The global discrim-
inative model represents the appearance comprehensively while the local discriminative
sub-model can effectively address occlusions and assist the update. Second, to have better
combination of these sub-models, we propose a novel collaboration strategy based on the
Kullback-Leibler (KL) distance. The novel strategy can determine the weights of the sub-
models adaptively by measuring their KL distances reciprocally. Third, we introduce ELM
into tracking and adopt it to build both the global and the local discriminative sub-models
simultaneously. Since ELM has a good generalization performance and is robust to the
imbalance of the training samples, it is suitable to be used for tracking. Experimental results
demonstrate that our method can achieve comparable performance to many state-of-the-art
tracking approaches.
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1 Introduction

Object tracking is a hot topic in computer vision field and has a wide range of applications,
such as surveillance, human-computer interface (HCI), video editing, motion analysis, etc.
However, it is still a challenging task due to some complex factors, such as occlusions,
illumination variations, pose changes of the objects, fast motion, etc. [39, 43].

Recently, more and more works focus on how to build accurate appearance model to
represent the object, since a more accurate model seems to lead to more reliable tracking
performance. The research of the appearance model has located in the kernel of the tracking.
As a whole, the appearance models can be divided into two types. The first is the generative
model [1, 6, 21, 27, 32, 37], which mainly uses the information of the object. The second is
the discriminative model [2, 3, 51–53], which always formulates tracking as a binary clas-
sification problem and takes use of the information of both the target and the background.
Moreover, some collaborative models based on the combination of the above models have
been proposed as well.

According to the attributes of the features, these models fall into two types: the global
model [2, 12, 28, 32] and the local model [1, 3, 17, 24]. The representation with the global
model always gives an overall description of the object and can reserve the structure of
the object. Yet it is sensitive to occlusions. Conversely, the local model always divides the
object into several patches or blocks, which is more robust to occlusions and can fit the
changes of the appearance more easily, but it is sensitive to large appearance deformation.
Both representation models can be used in either generative or discriminative manner, which
generates different tracking methods.

In order to have an accurate representation of the object, in this paper, we propose a novel
collaborative representation model, which combines both the global and the local models.
In our method, both the global and local sub-models are built as discriminative models.
The collaborative model describes the appearance model more precisely and robustly. In
our local sub-model, the object is divided into several small patches. As for each patch, we
use a corresponding classifier to build the sub-local discriminative model. The final local
sub-model is obtained by integrating all of the sub-local models. The global sub-model
is built in the similar way as the traditional discriminative model is built. Then the final
representation model is built by combining the local sub-model and the global sub-model.
Besides, the local discriminative sub-model ia able to detect occlusions and help to update
the collaborative model.

How to determine the weights of the sub-models under the collaboration framework is a
potential problem, for the representability of the sub-models is not the same. Different from
the existing collaborative methods adopting fixed weight parameters, we propose a novel
KL distance based collaboration strategy to make the collaboration of the global sub-model
and the local sub-model more robust. During tracking, it can be observed that the confidence
score map obtained by the classifier is quite similar to the probability distribution. Thus, we
employ the KL distance, which is usually used to evaluate the importance of the distribution,
to calculate the weights of the sub-models. Because the mutual KL distances between the
sub-models are asymmetric, the weights can be determined adaptively.

Since the discriminative models always formulate tracking as a binary classification
problem, there is an issue that the positive and the negative samples in tracking are often
unbalanced. In this paper, we employ ELM, proposed by Huang [15, 16], as the classi-
fier to build the specific collaborative discriminative model and construct a novel tracking
method. ELM is used for single-hidden layer feedforward networks (SLFNs). Huang also
proved the good generalization performance of ELM in both theory and practice. ELM has
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many advantages, such as robustness to the unbalanced data, powerful classification abil-
ity, fast learning speed, etc. Therefore, it is quite suitable to be used for tracking under the
tracking-by-detection framework. With the collaborative representation model, we evaluate
the performance of our tracker on public benchmark sequences and the results demonstrate
that our tracker can achieve state-of-the-art performance.

The main contributions are as the following:

– We propose a novel collaborative discriminative model for tracking, which includes
a global sub-model and a local sub-model. In particular, the local sub-model is
discriminative that it can address the occlusion problem robustly.

– We propose a novel KL distance based collaboration strategy to combine both the global
and the local sub-models. Due to its asymmetry, the KL distance can determine the
weights of the sub-model adaptively.

– Based on the novel collaborative formulation, we develop a concrete realization by
using ELM as the basic classifier to implement the sub-models, which has the property
of non-linearity, robustness to the unbalance of the samples, etc.

The remainder of this paper is organized as follows. In Section 2, we introduce the related
work of the global, local and collaborative representations, and give an brief introduction
of ELM. In Section 3, we present the proposed collaborative ELM based tracking method,
including the collaborative model based on ELM, the KL distance based collaboration strat-
egy, update model, etc. Section 4 displays the experimental results and Section 5 concludes
the paper.

2 Related work

2.1 Representation

Representation plays an important role in building a suitable appearance model for object
tracking. Both the global and the local representations are widely used in generative or
discriminative models based trackers.

Global representation can capture the structure of the object to have a good description,
and many techniques, such as subspace learning representation with incremental principal
component analysis (PCA) [32], sparse representation [28], compact representation with
3D-DCT [22], etc., have been used in generative models. In the global discriminative model,
SVM [2, 50], on-line boosting [12], random forest [33], multiple instance learning [4],
structured learning [13] are also introduced to build the discriminative models based on
the global representations. Besides, one characteristic that these global discriminative mod-
els have in common is that the global representation is implemented by combining local
features, such as histogram of oriented gradients (HOG) or Haar features, to improve the
robustness. Although the global representation can extract the structural information of the
object, they are sensitive to occlusions. Recently, correlation filter [10, 14, 29, 49] and deep
learning algorithms [30, 41, 45] are also introduced into tracking. Since the correlation fil-
ter can make more full use of the spatial information and deep learning methods have more
powerful representation ability, they have achieved good tracking performance. However,
most of these methods still use the global information while do not pay enough attentions
on the local information, which may affect the tracking performance in complex conditions.

In contrast to the global representation, the local representation describes the object by
dividing the object into several patches. Adam et al. [1] build the template with multiple
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patches and determine the object’s position by voting. However, this method use only the
information of the target. Avidan [3] proposes a local discriminative tracking method with
low-level features. He takes each pixel as a sample and takes Adaboost as the classifier to
judge whether a pixel belongs to the target or the background. The patch strategy is also
adopted to build the local sparse appearance model [17, 24, 54]. Due to its powerful ability
of addressing occlusion and motion deformation problems, the local representation-based
appearance models have attracted more attention recently. For example, Bai et al. [5] take
use of the patches of the object to learn a pool of weak classifiers and treat the weight
vector as a distribution to construct the classifier ensemble. Although some approaches [42,
46] have attempted to exploit the structures of the local patches, most of the tracking-by-
detection-based local models discard the structures of the object, which may lead to the
failure of the tracking.

Collaborative model has been also utilized for object tracking [23, 25, 34, 36, 44, 54].
However, most of these methods build the appearance model by combining two discrim-
inative models or a generative model and a discriminative model, but only use the global
representation. Besides, some collaborative models make use of both the global and the local
models. Sun et al. [35] develop the combination method of scale-invariant feature transform
(SIFT) based local description and PCA based global representation methods. However,
both of the representations are generative and do not use the background information. Zhong
et al. [54] utilize the sparse representation and combine a global sparse model and a local
sparse model for tracking. But in their method, the local model is generative and they assign
fixed weights to both the sub-models, which may not take into account the adjustment of the
weights. Chen et al. [9] propose a hierarchical representation framework for object track-
ing. They use cells to representation local features and integrated them into complex cells
to explore various contextual information. However, the hierarchical property is expressed
only in the feature level, which can be taken as a specific case with sampling and ensem-
ble of the global model. In our method, we construct a novel collaborative representation
model based on the global discriminative sub-model and the local discriminative sub-model,
the structural properties of which are in feature level and classifier level simultaneously, to
improve the robustness.

2.2 Review of ELM

ELM was proposed by Huang [15] in 2006, which is a novel approach for building the
SLFNs. It can be used for both classification and regression with good generalization
performance. Hereby, we give a review of ELM briefly.

Assuming that the input samples are {x j } and the corresponding labels are {y j }, where
x j ∈ Rn and y j ∈ Rm , the standard SLFNs can be modeled as:

Ñ∑

i=1

βi g(wT
i x j + bi ) = y j , j = 1, ..., N , (1)

where Ñ is the number of the hidden nodes, g(x) is the activation function, wi is the
weight vector connecting the i th hidden node and the input nodes, βi is the weight vector
connecting the i th hidden nodes and the output nodes, and bi is the bias.

The above (1) can be written as a compact representation:

Hβ = Y, (2)
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where H j i = g
(
wT
i x j + bi

)
is the element of matrix H, β = [β1, β2, ..., βÑ ]T , and Y =

[y1, y2, ..., yN ]T .
Different from the conventional gradient-based solutions of SLFNs, Huang proposed the

ELMmethod, in which the activation function g(x) is set as the infinity differential function,
such as the sigmoidal function, and the input weights {wi } and biases {bi } are assigned
randomly. Once the {wi } and {bi } are determined, the training of the SLFN is to find the
minimum norm least-squares solution of (2):

β̂ = H+Y, (3)

where H+ is the Moore-Penrose generalized inverse of H. The detailed proof of this theory
is shown in [15]. Since there are no parameters to tune during the training stage, ELM
is simple to be realized. It also provides a unified framework for both classification and
regression. In the classification problem, it can be trained and used for testing easily and
is robust to the imbalance of the input data. Therefore, ELM is quite suitable to be used
in tracking-by-detection framework and we employ it to build the appearance model in our
method.

3 Collaborative ELMs based tracking

In this section, we first introduce the proposed collaborative representation model and the
detailed implementation based on the ELM. With the implemented model, the tracking
approach how to determine the final tracking result is displayed. Besides, the occlu-
sion problem is addressed with the collaborative representation and the update strategy is
proposed.

3.1 Collaborative representation with ELMs

We propose a collaborative discriminative model to represent the object. The collaborative
model contains two parts: the global sub-model and the local sub-model. In our method,
both of these two sub-models are discriminative. They both use the information of the target
and object. We build classifiers for the global sub-model and local sub-model with ELMs
respectively.

First, we introduce the global sub-model ELMG , which is shown in Fig. 1. Assume the
positive sample set is X p

G and the negative set is Xn
G . Web select the positive and negative

samples to build X p
G and Xn

G according to the distance-based rule. The positive and negative
samples and their labels are represented as {xGj , yGj }( j = 1, ..., NG). In order to improve
the robustness of the classifier, ELM adopts another representation for yGj , in which yGj =
[−1, 1]T if xGj is positive, and yGj = [1, −1]T if xGj is negative. The distance-based rule
means that the positive samples are selected near the labeled target, while the negative sam-
ples are chosen far away from the target. For example, if ||l(xGj )− l(xGt )||2 < d1, xGj will
be taken as the positive sample, and if ||l(xGj ) − l(xGt )||2 > d2, xGj will be considered as
the negative sample. Herein, l(xGj ) is the location of xGj , l(xGt ) is the location of the tar-
get, and d1 and d2 are two predefined thresholds. In our method, d1 is set to 2 pixels, while
d2 is set to half of the minimum value of the width and height of the target. Fig. 1a shows
how to select the samples. The rectangles with green color are positive while those with blue
color are negative. In order to deal with the objects with different sizes conveniently, we
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Fig. 1 The global sub-model ELMG for representation. a Select the samples for classification. The regions
with green color are taken as positive while the regions with blue color are considered as negative. These
samples are selected with the distance-based rule. b Normalize the selected samples into a fixed size to sim-
plify the solution. c Extract features from the normalized samples. Hereby, the HOG features are extracted.
d The global sub-model ELMG is trained based on the positive and negative samples

normalize all of the samples into a fixed size NnormG × NnormG . With the normalized sam-
ples, different feature extraction approaches can be adopted and local features are selected
here. After extracting suitable features, we train an ELM classifier to construct the global
model. Assuming that the feature corresponding to xGj is φ(xGj ), and its label is yGj , we
assign random value to the weight vector wGi and bGi , and select sigmoid function as the
activation function. Then according to (2) and (3), the coefficient β̂G of ELMG is

β̂G = H+
GYG , (4)

where HGji = g
(
wT
Giφ(x j ) + bi

)
and YG = [yG1, · · · , yGNG

]T . Thus the ELMG is

implemented with parameters {wGi , bGi }(i = 1, ..., ÑG) and β̂G .
Next, we introduce the local discriminative sub-model ELML , which is shown in Fig. 2.

Firstly, we crop the region of interest (ROI) for extracting the positive and negative samples.
Instead of using the distance-based rule, in the local sub-model, the region-based rule is
adopted, in which the target region is considered as positive, as the green rectangle shows,
and the region between the green and blue boundaries is taken as negative. In a similar
way to ELMG , we normalize the ROI into the fixed size NnormL × NnormL . Note that
NnormL = 2NnormG . In order to build the local model, we partition the ROI into several
patches { pP

l }(l = 1, ..., Mp) and {pN
l }(l = 1, ..., Mn) with compact grids, where pP

l is
from the target and pN

l is from the background. The size of each patch is Nnorml × Nnorml .
In the local sub-model, each patch region is considered as a sample, and the discriminative
model is modeled based on the patches. As Fig. 2b shows, the patches with green color are
set to positive while those with blue color are set to negative, which are in the sets X P

L and
XN
L respectively. In the traditional tracking-by-detection-based local models, a classifier is

trained based on the X P
L and XN

L . However, this training model neglects the inner structure
of the object and mixes the patches. Hereby, we propose a novel local discriminative model
ELML . Instead of mixing all the positive (negative) patches together to fill X P

L

(
XN
L

)
, we
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Fig. 2 The local sub-model ELML for representation. a Select the ROI region with region-based rule by
cropping the target and its surrounding region. The region in the green rectangle is positive while the region
between the green and blue boundaries is negative. b Normalize the ROI into a fixed size and partition the
ROI into several patches with fine grids. The patches with green background are positive and the patches
with blue background are negative. c Divide the patches into several groups. The positive patches in different
positions are sent to different groups, and all of the negative patches are sent to all groups respectively. d
Extract features (HOG) from the groups of samples. e Train a group of classifiers with the features based on
ELMs. The final local sub-model ELML is the combination of the group of ELMLl

divide the positive (negative) patches into groups. Each group gl contains a positive set X
P
Ll

and a negative set XN
Ll . The X P

Ll has the sample corresponding to pP
l of the object, and

the XN
Ll contains all the negative patches {pN

l } with the blue color. It can be seen that the
number of positive samples and the number of negative samples are not balanced. After
extracting features from the samples, for each group gl , we build a corresponding local
classifier ELMLl . Denote the weight vectors of ELMLl as {wLli } and the biases { bLli }(i =
1, ..., ÑL). By setting {wLli } and {bLli } randomly, we obtain the matrix HLl . We train each
ELMLl model according to (2) and (3) and obtain a group of β̂Ll . Therefore, the final local
sub-model ELML is the combination of the group of ELMLl . In practice, the samples of
X P
L and XN

L will be organized with the tracking results along with the time axis but with a
different update speed, which is shown in Section 3.3.

Then, our collaborative representation model ELMC is built based on the collaboration
of ELMG and ELML . ELMG gives the global representation with ELM trained by the
combination of the local features. ELML gives a group of local discriminative ELM clas-
sifiers, which have structural relations. With the assigned { wGi , bGi }(i = 1, ..., ÑG) of
ELMG , {wLli , bLli }(i = 1, ..., ÑL , l = 1, ..., M) of the ELML , and the corresponding β̂G

and {β̂Ll}, the collaborative model ELMC can be used to complete the tracking task.

3.2 Particle filter tracking with KL distance based collaboration strategy

With the collaborative representation model ELMC , we propose a novel tracking algorithm,
named the CET tracker. We first take the particle filter as the basic motion model to sam-
ple several candidate region samples, and calculate the confidence scores of these samples
using the ELMG and ELML respectively. Then, we introduce a novel KL distance based
strategy to combine the scores together, which assigns weights to these sub-models. At last,
the likelihood function is calculated based on the combined scores to determine the final
tracking result.
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3.2.1 Particle filter

The particle filter has been widely used in tracking field. It always has two steps: the
prediction step and the update step,

p(St |O1:t−1) ∝
∫

p(St |St−1)p(St−1|O1:t−1)dSt−1,

p(St |Ot ) ∝ p(Ot |St )p(St |O1:t−1), (5)

where {O1, O2, ..., Ot } are observation variables, p(Ot |St ) is the observation model, and
p(St |St−1) is the transition model. In our method, the state space S of the target is described
with two state variables {sx , sy}, where sx is the translation in horizontal direction and
sy is the translation in vertical direction. It is easy to add more variables to control the
scale or rotation changes if necessary. Hereby, Np particles are sampled to approximate the
state space and the transition model p(St |St−1) is supposed to obey the multi-dimensional
Gaussian distributionN (0,�).

With the above formulation of the particle filter, the main task is to calculate the likeli-
hood function p(Ot |St ), which can be obtained by sending the particle samples {xk}(k =
1, · · · , Np) into the ELMC .

3.2.2 Likelihood calculation with the KL distance based collaboration

The likelihood function is acquired by calculating the confidence score of each particle over
the ELMC . As for the global sub-model ELMG , xk is normalized into the same size with
the trained samples for the ELMG , and then we extract the feature φ(xk). By sending φ(xk)
into the ELMG , we obtain

yGk = hTGk β̂G , (6)

where hGk =
[
g

(
wT
G1φ(xk) + bG1

)
, · · · , g

(
wT
GÑ

φ(xk) + bGÑ

)]T
,wGi , bGi and β̂G are

the model parameters of ELMG , and yGk is the vector with dimension size 2. Therefore,
as the special case of binary classification of ELM [15], the confidence score of xk can be
obtained by taking the value of the second element of yGk :

con f G(k) = yGk(2). (7)

As for the local sub-model ELML , xk is divided into several patches plk(l = 1, · · · , M).
After taking the similar operation with that in the ELMG , we send each plk of xk into the
corresponding ELMLl . Then we get a group of con f Ll(k), according to (7). Since each
patch is a fragment of the complete object and represents a part of the structure of the object,
we calculate the final confidence score of the ELML as

con f L(k) = 1

M

M∑

l=1

con f Ll(k). (8)

The ELMG and ELML do not always have the same expression during tracking. Thus,
we would like to assign a higher weight to the sub-model with the better expression. More-
over, we have an interesting observation that the confidence map obtained by the candidate
samples is very similar to the probability distribution. Figure 3 gives an example of the
confidence score maps obtained by the ELMG and ELML over one frame of sequence
davidindoor. It can be seen that the map shapes of both sub-models are similar to the
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Fig. 3 Example of the confidence maps obtained over ELMG and ELML (on sequence davidindoor) by
horizontal and vertical translation. It can be seen that the confidence maps are similar to the probability
distributions, but they also have some differences

Gaussian probability distribution, but the pseu-variance of the map of ELMG looks larger
than that of ELML in that frame. In our option, the smaller the pseu-variance of the map
is, the more important the model is, because the steeper confidence map means a better dis-
criminability, possibly leading to more accurate location. Thus, we would like to assign a
higher weight to the local sub-model in Fig. 3.

Hereby, we introduce a novel KL distance based strategy to measure the importance of
the sub-models. KL distance is an important concept in both probability and information
theories, which is used to measure the difference between the probabilities. It has a special
property that the KL distance is not symmetric, thus it can determine the weights of the sub-
models adaptively according to the expressions of the sub-models. In practice, there often
exist two differences between the confidence maps of the sub-models. One is the aforemen-
tioned different pseu-variances, and the other one is that the peaks of the maps are not often
consistent. Figure 4 shows two examples with different probability distributions. Denote the
KL distance of p2 from p1 as DKL (p1||p2), and that of p1 from p2 as DKL(p2||p1). In
Fig. 4a, if DKL(p1||p2) is larger than DKL(p2||p1), it implies that p2 is more important
than p1. Figure 4b gets the same conclusion as well. It can be found that the KL distance can
effectively measure the importance of the distributions. Since the KL distance is relative, it
can determine the weights by normalization.

Before using KL distance to calculate the weights of the sub-models, we need to scale
the confidence scores first to avoid the impact of the negative values. Hereby, we scale the
confidence scores of ELMG with min-max rule to get the con f nG :

con f nG(k) = con f G(k) − mini (con f G(i))

maxi (con f G(i)) − mini (con f G(i))
. (9)

Then, scaling the con f nG(k) by dividing the summation, the standard probability can be
obtained:

pG(k) = con f nG(k)
∑N

i=1 con f nG(i)
. (10)
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Fig. 4 Two examples of using KL distance to calculate the weights of two different Gaussian distributions.
In both a and b, these two distributions have different means and variances. In a, DKL (p1 ‖ p2) = 4.05 and
DKL (p2 ‖ p1) = 1.18. In b, DKL (p1 ‖ p2) = 0.36 and DKL (p2 ‖ p1) = 0.52. The weights can be further
determined by normalization in inverse proportion according to (12). The probability with a thinner shape
will be considered better and assigned a larger weight

With the same operation, we can get the normalized confidence score con f nL and proba-
bility pL (k) of the local sub-model. Further, we calculate the KL distance between pG(k)
and pL (k):

⎧
⎪⎪⎨

⎪⎪⎩

DKL(pG ||pL ) = ∑
k
pG(k) ln

pG(k)

pL(k)
,

DKL(pL ||pG) = ∑
k
pL (k) ln

pL (k)

pG(k)
.

(11)

The weights αG and αL of the sub-models can be defined as

⎧
⎪⎨

⎪⎩

αG = DKL(pL ||pG)

DKL(pG ||pL ) + DKL(pL ||pG)
,

αL = DKL(pG ||pL )

DKL(pG ||pL ) + DKL(pL ||pG)
.

(12)

Considering con f G(k) and con f L(k), the confidence score of xk on the collaborative
representation model ELMC is defined as

con f (k) = αGcon f G(k) + αLcon f L(k), (13)

where αG and αL satisfy αG + αL = 1.
We define the likelihood function L(xk) = exp(con f ), then p(Ot |St ) ∝ L( xk). The

optimal candidate sample xopt and its corresponding state St in time t is determined by
maximizing a posterior (MAP) rule:

xopt = argmax
xk

L(xk). (14)

3.3 Model update

In order to cope with the deformation of the object during the tracking process and address
the occlusion problem, the appearance model should be updated timely and properly.
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The model update is realized by updating the positive and negative samples for both sub-
models and retraining all ELMs. We build a positive pool and a negative pool for the positive
and negative samples of the global sub-model respectively. For the local sub-model, we
build a pool for each positive patch position and a unified pool for all the negative patches.
The update of the samples obeys the first-in and first-out (FIFO) rule. Since the surrounding
background of the target always changes faster, we update the negative samples all the time
by adding new samples into the pool to replace half of earlier ones. Then the key problem
is how to update the positive samples.

Since the global sub-model is sensitive to the occlusion noises, whether to update the
positive samples mainly depends on the local sub-model. For a candidate xk , each patch plk
can be classified to be label 1 or −1 by its corresponding ELMLl . Assuming the output of
ELMLl is yLlk , then the label

ŷLlk =
{
1, i f yLlk(2) > yLlk(1)
−1, otherwise.

(15)

The samples of each patch pool of the local sub-model are updated separately by their
labels { ŷLlk}. The samples in the corresponding position will be updated if ŷLlk = 1, and
if ŷLlk = −1, they will not be updated for we judge there exists occlusions. The update of
samples of the global sub-model depends on the summation

ŷs =
M∑

l=1

ŷLlk . (16)

The new sample will be added into the positive pool for updating if ŷs > 0, and vice versa.
This means that, for the obtained optimal candidate sample x̂opt , if there are more nega-
tive patches than the positive, we will not sent it to the positive sample pool for updating.
Figure 5 gives some examples with our occlusion handling strategy, which indicates that
the occlusions can be detected effectively, to help to avoid the wrong update. The detailed
tracking process is illustrated in Algorithm 1.

Fig. 5 Some examples of occlusion detection on sequences (a) faceocc2 and (b) woman. For each patch, the
darker the green color is, the more possible it is to be positive, while the darker the blue color is, the more
possible it is to be negative (or occluded). It can be seen that the occlusions can be effectively detected by
our model

Multimedia Tools and Applications (2020) 79:4965–4988 4975



3.4 Discussion

3.4.1 Co-training

Co-training framework has been widely used in tracking by different ways [23, 34, 44].
Actually, our collaborative representation follows the co-training framework from another
perspective. Both the global sub-model and the local sub-model can be considered as a view
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of the appearance model. Since they are both discriminative, the collaborative representa-
tion model is a co-trained discriminative model. Therefore, our tracking method possesses
the advantages of the co-training framework, which can lead to more robust performance.
Another benefit of the co-training is that the collaboration can be taken as the low-pass
filter, which can significantly reduce the effect of the noise.

3.4.2 Multi-task learning

Multi-task learning has been successfully applied in detection [7, 8, 31, 48] and used by
Zhang et al. to mine the relations of the particles for tracking [47]. In our study, building the
local sub-model can be considered as a simplified multi-task learning formulation. Since
the target and its surroundings are divided into several patches, to build a classifier for
each corresponding patch can be taken as a single task, and the final tracking task is the
combination of these tasks. In other words, the tracking task of the object tracking can be
decomposed into multiple tasks of tracking of fragments of the object. In this formulation,
the classifiers use different positive samples from different fragments of the target and share
the negative samples sampled from the surroundings. The multi-task learning formulation
makes the combination of local classifiers have the structural property, which can improve
the robustness. In addition, the global sub-model can be considered as the regularization to
the multi-task local sub-model, which constraints the local tasks to have the same objective.

4 Experiments

4.1 Experimental setup

The initialization of our CET algorithm is as the following. HOG which is with 5-pixel-
window size and 9 orientation is extracted as the feature for the samples of both the global
and local sub-models, because the HOG with these configurations have been widely applied
in object detection and tracking in many methods [14, 52]. Sigmoid function is chosen as the
activation function in all ELMs, which presses well in nonlinear feature mapping. ELMG

has 1500 hidden nodes while ELMLl(l = 1, ..., M) has 500 nodes. The chosen numbers of
the nodes are reasonable, for less nodes will degrade the tracking performance in our exper-
iment while more nodes will spend more time which is unnecessary. The buffer depth of the
positive pools is 50 while it is 100 for the negative. These numbers are determined exper-
imentally, which can well differentiate the target and the background with good balance.
The weight vectors and biases of all ELMs are assigned to random values according to the
definition of ELM. The normalization size NormG is 32 × 32 and Norml is 8 × 8, which
can adapt to the size of HOG. The number of the particles Np is set to 400. More particles
will increase the computation complexity while fewer particles may not capture the state
changes. All these parameters keep the same on all the testing sequences.

We implement our CET tracker and evaluate its performance on OTB-2013 dataset
which has 51 sequences [38]. These sequences have various complex conditions, such as
severe occlusions, illumination variations, fast motion and blur, pose changes, or slight scale
changes, etc. We compare the performance between our tracker and several state-of-the-
art trackers, including KCF [14], HMT [40], VTD [19], TLD [18], SCM [54], Struck [13],
VTS [20], CXT [11] and ASLA [17]. The parameters of the competing trackers are tuned
carefully to achieve their best performance as far as possible.
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4.2 Comparison results

We give both the quantitative and qualitative comparison results of these trackers on all
sequences. We evaluate the performance quantitatively with four criteria [26]. The first is
the average center location error (CLE), which is defined as the average of the errors of the
center location and the ground truth in each frame. The second is the average VOC overlap
rate (VOR), which is from pascal voc and defined as the average value of the scores, where
score = area(RS∩RG )

area(RS∪RG )
. RS and RG are the rectangle boxes of the tracking and ground truth

respectively. The third is precision, which is obtained by calculating the ratio of the number
of frames in which CLE is smaller than a threshold Th p and the number of the total frames.
The fourth is success rate (SR), which is defined as the ratio of the number of success frames
and the total frames. If the VOR in a frame is larger than a predefined threshold Ths , the
tracking is considered successful in that frame. Moreover, the precision plots and success
plots can be obtained to demonstrate the overall performance of the tracker, and the area
under the curve (AUC) is also used as the evaluation criterion.

First, we compare the overall performance of the competing trackers on all the 51
sequences. Table 1 shows the comparison results on average CLE, average VOR, precision
(Th p = 20 pixels) and SR (Ths = 0.5), from which we can find that the proposed CET
method obtains the best results among the competing trackers. The average CLE of CET
is 31.2 pixels which is smaller than all the competing trackers, while the average VOR of
CET is 0.5656 which is the largest among the trackers. The precision with Th p = 20 pix-
els of CET is 0.775, which outperforms KCF and Struck by 3.3% and 12% respectively. In
addition, CET also outperforms KCF and HMT by about 5% in SR which is the best among
the competing trackers. The precision plots and the success plots are displayed in Fig. 6.
It can also be observed that the overall performance of CET is better than most existing
state-of-the-art trackers in the OTB-2013 dataset.

Next, we evaluate the performance of the trackers in different conditions, including
occlusion, deformation, scale variation, background clutter, according to the attributes of the
sequences. The average precision plots and success plots are shown in Fig. 7, from which
we explain the details of the performance of the proposed CET tracker.

Occlusions Figure 8a shows the precision plots and success plots of the competing trackers
in the condition of occlusions. It can be observed that, the proposed CET tracker performs
second best precision and the best AUC. As mentioned above, CET uses the collaborative

Table 1 The comparison results
of average CLE (in pixel),
average VOR, Precision
(Th p = 20) and SR (Ths = 0.5)
results of CET and several
famous trackers in the benchmark

Method Average CLE Average VOR Precision (20) SR (0.5)

CET 31.2 0.5656 0.775 0.674

KCF 35.3 0.5216 0.742 0.625

HMT 39.9 0.5278 0.736 0.624

Struck 50.5 0.4771 0.656 0.559

SCM 54.1 0.5052 0.649 0.616

TLD 48.1 0.4404 0.608 0.521

ASLA 73.0 0.4384 0.532 0.511

CXT 68.4 0.4292 0.575 0.492

VTD 47.4 0.4184 0.576 0.493

VTS 50.7 0.4189 0.575 0.496
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Fig. 6 Precision plots and success plots obtained by CET and several famous trackers in the benchmark. The
values in the square brackets represent the precision with Th p = 20 pixels on precision plots and the area
under the curve (AUC) on success plots, respectively

model with extreme learning machine to improve the representation ability. Specifically, it
makes use of the local model to control the update, which can reduce the impact of the
occlusions.

Deformations Figure 8b displays the precision plots and success plots on the sequences
with deformations. It can be seen that the plots obtained by CET are much better than the
competing methods. The collaborative appearance model based on extreme learning and the
on-line update model can adapt to the appearance changes caused by deformation of the
object, which makes CET outperform in the condition of deformation.

Out-of-plane variations Figure 8c. displays the comparison results of precision plots and
success plots in the condition of out-of-plane variations. We can find that CET outperforms
most of the others on both plots. Benefiting from the collaborative model and the update
mode, CET can get good result in this condition as well.

Scale variations Figure 8d demonstrates the precision plots and success plots on sequences
with scale variations. It can be found that CET gets the highest precision and the second
best AUC. Since our CET method takes the fixed size bounding box for representation, it
does not work as well as SCM, but it still outperforms the rest competing trackers.

Fast motion Figure 8g demonstrates that CET can obtain significant advantage in the con-
dition of fast motion. Since the particle filter used in our method is good at dealing with
nonlinear motion and the collaborative model is discriminative, the CET method achieves
desirable performance when the objects move fast.

Background clutter in Fig. 8h displays the comparison results in the condition of back-
ground clutter. We can see that CET is superior to the competing trackers. Since the
collaborative model can use both the global and local information and both of the submod-
els are realized based on extreme learning machine which has powerful discriminability, our
CET method can build more accurate appearance model and works well on the sequences
with background clutter.

We also evaluate the performance of the CET tracker and competing trackers (e.g. KCF,
HMT and Struck) qualitatively and display some tracking result examples on the key frames
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Fig. 7 Precision plots and success plots of CET and the competing trackers on the sequences with different
attributes

in Figs. 9 and 10. Sequence basketball has severe deformation, illumination changes and
disturbance of the similar object. It can be found that only CET and KCF complete tracking
successfully. There are different occlusions on SUV, and fast motion and out-of-rotation on
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Fig. 8 Precision plots and success plots of CET and the competing trackers on the sequences with different
attributes
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tiger1. Since CET uses the local model to judge the occlusion part and use the collaborative
model for representation, it successfully tracks the target while both the HME and Struck
drift. Shaking has fast deformation and serious illumination changes. The HOG feature used
in CET is robust to illumination changes while the online update can make CET adapt to
the pose changes. Moreover, we can also observe that CET successfully locate the target
in football1 together with HMT and Struck, while KCF drift on this sequence. Because the
huge occlusion on jogging2, only CET can complete the tracking while the occlusion makes
all of the competing trackers drift.

4.3 Role analysis of the submodels

We investigate the role of the global sub-model ELMG and the local sub-model ELML for
the complete tracking framework. In our method, we utilize the KL distance to adaptively
determine the weights of each sub-model for the collaboration. To evaluate its contribution
of the global and the local submodels, we implement the trackers based on only ELMG

and only ELML , and represent them as CET g and CET l , respectively. In practice, these
comparison trackers can be obtained by manually assigning different values to αG and αL .

Figure 11 indicates the overall performance comparison between the collaborative
model with ELM and the submodels. It can be observed that the standard CET based on
collaborative model with KL distance significantly outperforms the trackers CET g and
CET l . The precision at Th p = 20 pixels of CET is 0.775, which outperforms CET g and

Fig. 9 Examples of the comparison tracking results on some representative frames. Top to down: basketball,
SUV, tiger1
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Fig. 10 Examples of the comparison tracking results on some representative frames. Top to down: shaking,
football1, jogging2

CET l by about 9.4% and 17% respectively. CEL also gets the similar result on AUC crite-
rion, as the success plots in Fig. 11b illustrates. Further, we also demonstrate the comparison
results in three representative sequences, which are shown in Fig. 12. We can observe that
the CLE tracker with both ELMG and ELML expresses much better than the submodels in
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Fig. 11 Precision plots and success plots obtained by CET and submodels in the benchmark. The values in
the square brackets represent the precision with Th p = 20 pixels on precision plots and the area under the
curve (AUC) on success plots, respectively
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Fig. 12 Precision plots and success plots of CET and the submodels on the sequences with different attributes

these conditions as well. Besides, CET g have better results than CET l , indicating that the
global information plays an important role to retain the accuracy of the appearance model.
The quantitative analysis is conducted on some sequences including basketball, singer2
and woman, and the results are shown in Fig. 13. On basketball, only the collaborative
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model can complete the tracking successfully while either of the trackers with only ELMG

or ELML loses the target. On singer2 with cluttered background, CET g drifts but both the
CET and CET l get the good tracking result because ELML can improve the discriminabil-
ity in the local region. T iger has out-of-plane rotation and fast motion during the tracking
process, which makes CET l fail. Because the ELMg can effectively preserve the global
information, both CET and CET g can complete the tracking on that sequence.

The ELMG mainly takes use of the combination of the local features. However, the
ELML is the ensemble of several local classifiers with structural configuration. There-
fore, they capture the structural property of the object’s appearance from the feature and
the classifier levels respectively. The collaborative representation based on the adaptive
combination of the global and the local sub-models can improve the tracking robustness
significantly.

5 Conclusion

In this paper, we develop a novel collaborative representation model for object tracking. This
model is constructed based on a global discriminative sub-model and a local discriminative

Fig. 13 Examples of the comparison tracking results on some representative frames. Top to down: shaking,
football1, jogging2
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sub-model, where the global sub-model captures the structure of the local features while the
local sub-model builds a structured ensemble of the local classifiers. Both the global sub-
model and the local sub-model are discriminative, the combination of which significantly
improves the robustness. Moreover, we propose a novel KL distance based strategy to mea-
sure the importance of the sub-models, and determine their weights dynamically, which
makes the combination more accurate and robust. In addition, the ELM algorithm is uti-
lized to implement both of the sub-models and the novel CET tracking approach is realized.
We compare the CET with many other famous trackers on several public sequences and
the experimental results show that the CET can achieve the state-of-the-art performance.
Furthermore, our collaborative representation model is a framework, which various feature
extraction methods and classifiers can be embedded in.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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