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a b s t r a c t

The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of
spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to
spill incidents, but it is also challenging. With a focus on the on-site optical imaging of HNS, this study
explores the potential of single spectral imaging for HNS identification using the Faster R-CNN archi-
tecture. Images at 365 nm (narrow UV band), blue channel images (visible broadband of ~400e600 nm),
and RGB images of typical HNS (benzene, xylene, and palm oil) in different scenarios were studied with
and without Faster R-CNN. Faster R-CNN was applied to locate and classify the HNS spills. The seg-
mentation using Faster R-CNN-based methods and the original masking methods, including Otsu, Max
entropy, and the local fuzzy thresholding method (LFTM), were investigated to explore the optimal
wavelength and corresponding image processing method for the optical imaging of HNS. We also
compared the classification and segmentation results of this study with our previously published studies
on multispectral and whole spectral images. The results demonstrated that single spectral UV imaging at
365 nm combined with Faster R-CNN has great potential for the automatic identification of transparent
HNS floating on the surface of the water. RGB images and images using Faster R-CNN in the blue channel
are capable of HNS segmentation.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

With the demand for chemicals increasing worldwide, the
number of chemical spill incidents has increased because more
chemical tanks are travelling by ocean (Cunha et al., 2015). Haz-
ardous and noxious substances (HNS) are defined by the Interna-
tional Maritime Organization (IMO) as any substance other than
crude oil, which, if spilled into the marine environment, is likely to
create a hazard to human health, harm living resources and other
marine life, damage amenities, or interfere with other legitimate
uses of the sea (IMO, 2000). There are many types of HNS with
different physical and chemical properties that are shipped
together (Harold et al., 2014). Different types of HNS often have
different levels of toxicity and require different emergency
e by Baoshan Xing.

).
measures (Mackay et al., 2006). Hence, to deal with spill incidents,
instant identification of the HNS location, area, and category help
initiate emergency countermeasures to control the damage
(Purnell, 2009).

Frequently-shipped HNS include petrochemicals (G�erin et al.,
1998) such as benzene and xylene, and vegetable oils (Cunha
et al., 2015). There have been many laboratory methods devel-
oped to detect types of HNS, such as chromatography (Koeber et al.,
1999) and mass spectrometric (MS) (Li et al., 2000) and electro-
chemical methods (Hilmi and Luong, 2000), which are limited to
on-site area detection. Other on-site methods, such as RADAR and
synthetic aperture radar (SAR) imaging, have shown effectiveness
for area detection of remote oil spills with high cost and complex
signals (Alpers et al., 2017). HNS monitoring has shown that three
chemicals (toluene, heptane, and methanol) are undetectable from
SAR images (Singha et al., 2016). This seems to be caused by the
high transparency and volatility of the chemicals, and the relatively
long time lag between discharge and observation.
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Comparedwith RADAR and SAR images, optical images allow for
swath width monitoring and relatively low cost, and provide more
frequent information (Taravat and Del Frate, 2012; Zhao et al.,
2014). However, unlike crude oil, transparent HNS is quite chal-
lenging to detect due to its lack of colour and thin layer. Limited
work has been published on HNS identification. Studies on the
segmentation and classification of chemicals indicate that spectral
imaging, especially UV band imaging, supported by proper data
analysis has great potential for on-site HNS identification using
unmanned aerial vehicle (UAV) (Huang et al., 2019; Zhan et al.,
2019). In the context of transparent HNS spill segmentation, an
improved local fuzzy thresholding methodology (LFTM) combining
target enhancement and the original LFTM (Aja-Fern�andez et al.,
2015) outperformed segmentation algorithms such as the original
LFTM, Otsu, (1979), andmaximum entropy (Max entropy) (Gull and
Skilling, 1984), while it performed well on UV images to distinguish
HNS and look-alike objects (Zhan et al., 2019). However, the
improved LFTM does not classify different HNS. For HNS classifi-
cation, partial least squares discriminant analysis (PLS-DA) and
least squares support vector machine (LS-SVM) have been
compared on multispectral images (Huang et al., 2019). Four
spectral bands were suggested for the classification of benzene,
xylene, and palm oil. It would benefit the system design of UAV
imaging if spectral bands could be optimised to a small number, or
even a single band. Proper data processing may reveal the most
efficient information, thus assisting in the reduction of imaging
spectral bands.

In recent years, numerous approaches based on deep convolu-
tional neural networks (DCNNs), which were derived from con-
volutional neural networks (CNNs), have shown impressive
performance on object classification and detection in natural im-
ages. AlexNet, proposed by Krizhevsky et al., (2012) in 2010, was the
first DCNN capable of achieving a promising result on a historically
difficult ImageNet dataset. The network was used for classification
with 1000 possible categories. Ren et al., (2015) proposed a faster
Fig. 1. The flowchart o
region-based CNN (Faster R-CNN) using a region proposal network
(RPN) to replace the selective search in R-CNN (Girshick et al., 2014)
and Fast R-CNN (Girshick, 2015), and combining CNN to classify
targets in the proposals generated by the RPN. This improvement
reduced the computation required for the generation of proposals.

No application of DCNN has yet been used for HNS identification
on the surface of water. However, there have been studies using
CNN to detect oil spill locations in optical images. Reports have
been made on the detection of other sea targets, such as ships (Liu
et al., 2017; Nieto-Hidalgo et al., 2018; Yao et al., 2017). Meanwhile,
research on the use of CNNs to detect oil spills in SAR images has
also been reported (Nieto-Hidalgo et al., 2018; Yu et al., 2018). As an
improvement to the CNN, it is interesting to explore the potential of
the DCNN, especially the Faster R-CNN, for the identification of HNS
in optical images.

This study explores the potential for classification and seg-
mentation of a floating HNS spill in a single spectral band image,
combining state-of-the art object detection networks based on
Faster R-CNN architecture. RGB, 365 nm, and blue channel spill
images were collected and processed with Faster R-CNN using
different segmentation methods. The location bounding boxes and
classification results for the spill area were generated by Faster R-
CNN, while the segmentation results were generated by applying
different segmentation methods on the original images or location
bounding boxes using Faster R-CNN. Both the classification and
segmentation performance were compared with the related find-
ings in (Huang et al., 2019; Zhan et al., 2019). Finally, the possibility
of HNS identification using a single spectral band image was
evaluated.

2. Materials and methods

This paper proposes a framework for HNS spill identification
using both 365 nm and RGB images by combining Faster R-CNN and
a segmentation process to extract the pixel-level spill area. The
flowchart of this framework is illustrated in Fig. 1.
f this framework.



Table 1
Learning rate settings.

Steps Learning rate

0-50,000 0.002
50,000e120,000 0.001
120,000e160,000 0.0006
160,000e180,000 0.0003
160,000e200,000 0.00006
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2.1. Experimental system

Three colourless HNS were selected as typical samples to eval-
uate the capability of the identification method: benzene (Analyt-
ical Reagent, AR, Aladdin, Shanghai), xylene (Analytical Reagent,
AR, Aladdin, Shanghai), and palm oil (purchased from a super-
market in Zhoushan). In order to obtain spill images of different
scenes and create a dataset for model training, the spill experi-
ments were conducted in three different environments: a plastic
swimming pool, a lake, and an artificial channel, and on the campus
of Ocean College, Zhejiang University, Zhoushan, Zhejiang, China.
The UV images were captured using a lab-made multispectral im-
aging system consisting of a UVTEC-L000 camera body (Indigo,
China), narrow band pass filters (only 365 nmwas used here based
on our previous work), and a 75mm optical lens that generated an
8 bit grey-level image with a resolution of 2016� 1296. The
exposure time was set to 1/50 s. UV images were captured
approximately 30 s after the sample was released, allowing enough
time for spill stabilisation. Broadband RGB images were captured
using a digital camera (a6000, Sony, Japan) with a 16e50mm Sony
lens to generate 8 bit grey-level images with a resolution of
3008� 2000. The experiments were conducted under protected
conditions, and all pouring chemicals were cleaned according to
the Regulation on the Safety Management of Hazardous Chemicals
(General Office of the State Council 2011).

The computational process was implemented with the Tensor-
Flow deep learning framework and was executed on a computer
with an Intel Core i5-6500 processor running at 3.2 GHz, 16 GB
DDR4 RAM, and an Nvidia GTX 1080 graphics card with 6 GB
GDDR5 on the Windows 10 operating system. Due to the limited
computing resources, all images were downsampled to a resolution
of approximately 350� 250.

2.2. Imagery collection and augmentation

Normally, there are thousands of images in a dataset for CNN
training to reduce overfitting on the models, such as the open
datasets ImageNet and COCO. However, to the best of our knowl-
edge, there are no open datasets for HNS spill detection. Hence, we
created an HNS spill dataset for model training using spectral and
digital imaging systems. To simulate the location and angle changes
in airborne imaging, we captured HNS images from different lo-
cations and angles (20e40�). To simulate scale changes caused by
the flying altitude in airborne imaging, we recorded images from
different distances, ranging from 1.5 to 10.0m. These setups rep-
resented the diversity of airborne images and helped to improve
the generalisability of the built HNS identification model. For this
step, the number of training and testing RGB images were 468 and
60, respectively. The training and testing datasets of UV images
contained 387 and 60 images, respectively. The number of images
for each HNS category in the test set was equal (20 images for each
category).

Because the number of imageswas not sufficient for training, we
conducted data augmentation, including flip, rotation, scale, and
affine transformations, to increase the volume of the training
dataset (Perez and Wang, 2017). After data augmentation, the
number of RGB and UV training images increased to 1096 and 958,
respectively. The exact location (bounding) boxes of all spill sam-
ples were annotated for model training.

2.3. Spill location detection and classification based on faster R-
CNN

Faster R-CNN is a state-of-the-art, real-time detection archi-
tecture used in multiclass object detection, which can extract the
implicit features of an image. In this study, the Faster R-CNN model
was trained on three kinds of HNS samples (benzene, xylene, and
palm oil) to extract features at both the local and global scales,
which was then input into the RPN and CNN classifier. Recently, the
residual networks (ResNet) architecture proposed by He obtained
successful results in an ImageNet andMS-COCO competition due to
its deeper convolution network (He et al., 2016). ResNet solves the
vanishing gradient problem caused by the increment in network
depth. In this work, ResNet-101 (He et al., 2016) was selected as the
backbone for feature extraction. The network was 101 layers deep
with additional shortcut connections and a bottleneck design. The
feature map extracted by ResNet-101 was shared to an RPN and
classifiers.

For the RPN of the Faster R-CNN, the key step is calculating the
loss of classification and location. The RPN training is intended to
minimise the multi-task loss function for an image, defined as
(Girshick, 2015):

Lðfpig; ftigÞ¼
1
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where i is the index of an anchor and pi is the predicted probability
of anchor i being a spill target. The ground-truth labelled pi* equals
1 if the anchor is positive, otherwise it equals 0. ti is a vector con-
taining the four parameterised coordinates of the predicted
bounding box, and ti* is the vector of the ground-box labelled as a
positive anchor. The classification loss Lcls is a cross-entropy loss
over two classes. The regression loss Lreg is smooth L1 defined in
(Dai et al., 2015). These two parts are normalised by Ncls and Nreg

with a balancing parameter l. The default settings of Ncls, Nreg, and l

are 254, 2400, and 10, respectively (Ren et al., 2015).
After the above steps, the classifier in Faster R-CNN is the same

as Fast R-CNN, using two fully connected layers to produce a class
score for each location bounding box.

Transfer learning provides a time-saving way to build accurate
models for specific detection tasks, and it is a popular method in
computer vision (Rawat and Wang, 2017). By using pre-trained
models which have been previously trained on large datasets
instead of starting the learning process from scratch, we can
directly use the trained architecture and obtained weights and
apply the learning on HNS spill detection. The pre-trained ResNet-
101 based on the COCO dataset was adopted to accelerate the
training process for the HNS detection models. To adapt the pre-
trained ResNet-101 to the HNS spill detection task, we fine-tuned
the network weights using the augmented dataset. Because the
pre-trained model was well-trained, the learning rate could not be
set too large to reduce the risk of losing previous knowledge. In this
work, the multi-level learning rates are listed in Table 1.

2.4. Spill area segmentation based on faster R-CNN

The image segmentation algorithms, including LFTM, Otsu, and
Max entropy, extracted the HNS area at pixel level from the location
bounding box generated by the Faster R-CNN. The segmentation
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results were compared with each other and the results by applying
improved LFTM, Otsu, and Max entropy algorithms to the original
images, as proposed by Zhan et al. (2019).
2.5. Evaluation indicator

To evaluate the location detection of the Faster R-CNN model,
intersection-over-union (IoU, Eq. (2)) was adopted to calculate the
overlap of the detected bounding box with the ground-truth
bounding box.

IoU¼ areaðDbox∩GTÞ
areaðDbox∪GTÞ (2)

where Dbox ∪ GT and Dbox ∩ GT denote the union and intersection
of the detected bounding box (Dbox) and ground-truth (GT)
bounding box, respectively, and area is the area/total pixels of the
box.

To evaluate the classification results of Faster R-CNN and the
results of Faster R-CNN-based segmentation, we chose the accuracy
(AC), precision (PR), recall (RE), and F1 score (F1) as typical in-
dicators at pixel level, and these are defined as:

AC¼ TP þ TN
TN þ TP þ FN þ FP

(3)

PR¼ TP
TP þ FP

(4)

RE¼ TP
TP þ FN

(5)
Fig. 2. Examples of Io
F1¼2PR� RE
PRþ RE

(6)

where true positive (TP) is the number of pixels being classified into
the correct target category, and true negative (TN) is the number of
pixels that are correctly recognised as non-target categories. False
negative (FN) is the number of target pixels being classified into the
wrong category, and false positive (FP) is the number of pixels of a
non-target category being incorrectly classified as a target. AC, PR,
RE, and F1 range from 0 (worst) to 1 (best), respectively. The
ground-truth of HNS segmentation refers to the mask in the orig-
inal images instead of the HNS mask in the location bounding box.
3. Results and discussion

3.1. RGB and blue channel images

3.1.1. Location bounding box
The test RGB images were detected by the RGB trained model,

and the average processing time was approximately 0.6 s per im-
age. For RGB images, the location bounding box produced by Faster
R-CNN is shown in Fig. 2, where the green bounding box indicates
the ground-truth location, the blue bounding box indicates the
bounding box detected by Faster R-CNN, and the red bounding box
indicates the intersection of the above two bounding boxes.

In Fig. 2, most locations of the transparent HNS targets could be
detected by Faster R-CNN, evenwhen there were no complete HNS
profiles in Fig. 2(d) and (f), which suggested that with the help of
the proper method, colourless HNS could be detectable, although
they may be indistinguishable by common methods, especially in
images containing a background with different water colours,
surface waves, or illumination conditions. Similar objects like sun
reflectance and clouds in Fig. 2(g) could also be distinguished as
U in RGB images.



Table 2
Statistical classification performance of RGB test images.

Category AC PR RE F1

Benzene 0.700 0.555 0.500 0.526
Xylene 0.716 0.578 0.550 0.564
Palm oil 0.950 0.869 1.000 0.930
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background successfully, due to the powerful feature extraction
capacity of deep neural networks. In Fig. 2(h) and (i), the reflectance
of the sun coincides with the spill area; the spill area is highly
overlapped with the reflectance area and cannot be accurately
distinguished from the sun reflectance, resulting low IoU. However,
part of the bounded region can still be recognised, even though it
has a strong similarity to the water background.

Fig. 3 presents the IoU statistics for 60 test images. Most of the
detected bounding boxes for the three kinds of HNS were correct,
except that the IoU values of two xylene samples are close to 0.5, as
shown in Fig. 2(h) and (i). The average IoU values for benzene,
xylene, and palm oil were 0.821, 0.817, and 0.926 respectively. The
Faster R-CNN model yielded better location detection results for
palm oil than for benzene or xylene, which may be associated with
the more significant reflectance of palm oil at the 500e700 nm
wavelengths (Huang et al., 2019). Successful location detection of
HNS in a mosaicked image combined with airborne GPS informa-
tion could assist in instantaneously locating HNS after an incident.
3.1.2. Classification based on faster R-CNN
The classification result of Faster R-CNN-processed RGB is

shown in Fig. 4. The number of misclassified images was 10, 9, and
0 out of 20 samples for benzene, xylene, and palm oil, respectively.
The statistical results of classification are listed in Table 2. Consis-
tent with location detection, the classification results of palm oil
Fig. 3. IoU results of RGB test images.

Fig. 4. Classification result of RGB test images.
achieved an F1 score of 0.930, higher than the 0.526 of benzene or
the 0.564 of xylene. The AC and PR of palm oil were slightly lower
than 1, as only two samples were misclassified as benzene and only
one sample was misclassified as xylene. Both the chemical
composition and reflectance characteristics of the three HNS under
visible light were similar, which increased the difficulty of
classification.

In an incident, there are different response measures for spills
with different toxicity. Therefore, BTEX chemicals (which includes
benzene and xylene) should be identified correctly as BTEX
chemicals are much more harmful to both the environment and
humans than palm oil. In a binary classification between BTEX
chemicals (benzene and xylene) and palm oil, the classification
resulted in an F1 score of 0.762. It may be possible to classify BTEX
and palm oil using RGB imaging and Faster R-CNN.

3.1.3. Segmentation based on faster R-CNN
Different segmentation methods were used on images with

bounding boxes to extract the exact HNS area (region of interest) at
the pixel level. Otsu and Max entropy are fully automatic methods
without parameter settings. The LFTM requires an initial number of
clusters, which was set to 2 clusters here, i.e. background and HNS,
due to the comparatively homogeneous background in the location
bounding box.

To analyse the efficiency of Faster R-CNN based segmentation,
we also tested the masking on 60 original test images (without
Faster R-CNN) using Otsu, Max entropy, and the improved LFTM
proposed in Zhan et al. (2019), respectively. Based on the recom-
mended parameter settings of the improved LFTM, three important
parameters, constth, th1, and th2, were selected as the tuning object,
and a total of 45 parameter combinations were traversed to select
the optimal set of parameters. The constth, th1, and th2 of the
improved LFTMwere set to 85, 5, and 0.25, respectively. The cluster
number of the improved LFTM was adapted to the images.

The mean values of the four quantitative evaluation measures
(AC, PR, RE, F1) for segmentationwith and without Faster R-CNN are
listed in Fig. 5 and Table 3. All three Faster R-CNN-based segmen-
tation methods performed well. The highest computational time
was approximately 0.647 s per image using Faster R-CNN þ LFTM.
The results proved that Faster R-CNN-based segmentation is suit-
able for RGB images. The segmentation on the original RGB images
using Otsu, Max entropy, and the improved LFTM failed with low PR
and F1. The high recall (RE) of Otsu and Max entropy was ‘fake’ due
to the misrecognition of many non-target images as target images.
The improved LFTM failed to extract the HNS mask from the RGB
images, possibly because it was proposed in UV images [14]. The AC,
PR, RE, and F1 of the spill segmentation in the RGB images was
significantly enhanced after the implementation of Faster R-CNN.
The bounding box which was generated by Faster R-CNN deter-
mined the approximate range of the HNS against a complicated
background, thereby simplifying the background and highlighting
the differences between it and the HNS, which resulted in the
successful masking of the HNS spill.

3.1.4. Single blue channel images
According to the results in [15], the four wavelengths 365, 410,

450, and 850 nm were suggested for HNS classification, where 410



Fig. 5. Segmentation examples of RGB images. (a) Original images (the blue box is a location bounding box), (b) Faster R-CNN þ Otsu, (c) Faster R-CNN þ Max entropy, (d) Faster R-
CNN þ LFTM with Ncluster¼ 2, (e) Otsu, (f) Max entropy, (g) improved LFTM (h) ground-truth. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Table 3
Results of different segmentation methods on RGB test images.

Method AC PR RE F1 Average time(s)

Faster R-CNN þ Otsu 0.933 0.771 0.833 0.792 0.606
Faster R-CNN þ Max entropy 0.921 0.703 0.734 0.696 0.608
Faster R-CNN þ LFTM with Ncluster¼ 2 0.943 0.807 0.860 0.826 0.647
Otsu 0.545 0.252 0.852 0.361 0.009
Max entropy 0.606 0.222 0.575 0.271 0.012
Improved LFTM 0.815 0.292 0.224 0.236 0.551
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and 450 nm were covered by the broad blue channel. In order to
verify whether RGB images using a single blue channel can be used
for location detection, classification, and segmentation, a Faster R-
CNN model using blue channel images was trained. The spectral
range of the single blue channel was approximately 400e600 nm,
and the full width at half maximum (FWHM) was approximately
100 nm.

Consistent with the RGB images, the single blue channel images
obtained a satisfactory location detection result, where the average
IoUs of benzene, xylene, and palm oil were 0.756, 0.773, and 0.919,



Table 4
Statistical classification performance of single blue channel test images.

Category AC PR RE F1

Benzene 0.700 0.555 0.500 0.526
Xylene 0.683 0.529 0.450 0.486
Palm oil 0.916 0.800 1.000 0.888
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respectively. The classification and segmentation results are shown
in Tables 4 and 5, respectively, and are consistent with the results of
the RGB images. Palm oil can be distinguished from benzene and
xylene, while it is difficult to distinguish benzene and xylene from
the blue channel images.

After tuning the model as described in Section 3.1.3, the pa-
rameters of the improved LFTM for segmentation in the original
blue channel images were set to consth¼ 80, th1¼25, and
th2¼ 0.25. Otsu, Max entropy, and the improved LFTM did not
perform well on the blue channel images, but performed slightly
better than on the RGB images, suggesting that there was redun-
dant information in the RGB images for HNS spill segmentation. It
was indicated that segmentation of the HNS spill was a challenging
task for both RGB images and blue channel images.

However, implementing the Faster R-CNN improved the seg-
mentation performance significantly. The HNS masks were suc-
cessfully extracted from the blue channel images by different Faster
R-CNN-based segmentation methods with the assistance of the
Table 5
Results of the different segmentation methods on single blue channel test images.

Method AC PR

Faster R-CNN þ Otsu 0.931 0.761
Faster R-CNN þ Max entropy 0.923 0.737
Faster R-CNN þ LFTM with Ncluster¼ 2 0.932 0.773
Otsu 0.563 0.274
Max 0.599 0.233
Improved LFTM 0.829 0.384

Fig. 6. Examples of IoUs of 3
accurate location bounding boxes that were generated by the Faster
R-CNN. In Tables 3 and 5, the HNS in both the RGB and single blue
channel images were successfully segmented by using Faster R-
CNN, where the computational complexity could be further
improved.

3.2. Spectral images at 365 nm

3.2.1. Location bounding box
UV images captured at 365 nm in different scenarios, such as a

swimming pool, an artificial channel, or a lake, were adopted to
train and build a Faster R-CNN model. The different scenarios
included different interference, lighting conditions, shadows, and
sun reflectance for HNS identification. The test images were pro-
cessed by the UV images trained by the Faster R-CNN model, with
an average processing time of 0.6 s per image.

Examples of the bounding box of the detected location in the
365 nm test images by Faster R-CNN are shown in Fig. 6. In Fig. 6,
various geometric shapes of HNS, such as a long line, an oval, and a
circle, are detectable in different environments, which indicates the
generalisability of the Faster R-CNN-based detection for images
recorded by UV sensors.

Fig. 6(a)e(c) shows the detection results under different water
environments (lake, swimming pool, and artificial channel) with
different surface texture features. Noise like sun glitter partly
crosses the target (Fig. 6(c)) or beside the target (Fig. 6(h) and (i)),
RE F1 Average time(s)

0.812 0.776 0.606
0.771 0.722 0.608
0.808 0.781 0.647
0.903 0.388 0.009
0.631 0.284 0.012
0.293 0.309 0.666

65 nm spectral images.



Table 6
Statistical classification performance of 365 nm spectral test images.

Category AC PR RE F1

Benzene 0.866 0.833 0.750 0.789
Xylene 0.883 0.809 0.850 0.829
Palm oil 0.983 0.952 1.000 0.975
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and the shadows (Fig. 6(d), (e) and (g)) were successfully detected
as the correct category. Fig. 6(g) shows that the model can detect
spill targets in an image with uneven illumination. The detection
result shows that the generalisability of themodel is satisfactory for
spills floating on water.

The average IoUs of benzene, xylene, and palm oil were 0.849,
0.818, and 0.940, respectively. By examining Figs. 3e7, the 365 nm
spectral images yield better location results for the test samples
than the RGB images. The location detection performance for palm
oil in UV images was still the best of all three types of HNS, as palm
oil also outperformed the other HNS in RGB images.
3.2.2. Classification using faster R-CNN
The number of misclassified images was 5, 3, and 0 for benzene,

xylene, and palm oil, respectively (Fig. 8). Statistical classification
results for each category at the pixel level are listed in Table 6. The
mean F1 score for the classification of spectral images at 365 nm
increased to 0.864, which was better than the 0.673 of RGB images,
demonstrating significant improvement to the classification by UV
images. All of the evaluation indicators were greater than or equal
to 0.750, with the contribution to accurate selection by the
bounding box and the different absorption features of HNS at
365 nm (Huang et al., 2019; Zhan et al., 2019). The classification of
xylene and benzene could be improved further. Compared with the
classification accuracy (�95%) by PLS-DA and LS-SVM of the
Fig. 7. IoU results of 365 nm spectral test images.

Fig. 8. Classification results of 365 nm spectral test images.
multispectral images at four wavelengths by Huang et al. (2019),
the classification results by Faster R-CNN are acceptable but could
be improved. These results indicate that it is quite possible to
classify floating HNS in a single spectral UV image using Faster R-
CNN.
3.2.3. Segmentation results based on faster R-CNN
As was done with the RGB and blue channel images, we used

three segmentation methods on the location bounding box in the
UV images captured at 365 nm by Faster R-CNN, and we used Otsu,
Max entropy, and an improved LFTM (Zhan et al., 2019) on the
original UV images. The constth, th1, and th2 of the improved LFTM
were set to 80, 5, and 0.45, respectively.

As shown in Fig. 9 and Tables 3, 5 and 7, with similar compu-
tational complexity, the segmentation on single spectral UV images
generally outperforms the RGB and blue channel images, where
Faster R-CNN þ Max entropy achieves a large improvement in F1
from 0.696 to 0.791. The high contrast between HNS and the
background in UV images contributed to the HNS segmentation.

In Table 7, the comparison between the segmentation on UV
images with and without Faster R-CNN proves that the efficiency of
the HNS segmentationwas improved significantly by Faster R-CNN,
especially in vivid scenarios where the segmentation can be
affected by the complex background, which is mostly outside the
location bounding box.

Similar to the results obtained by Zhan et al. (2019), and
different from the RGB and blue channel images, the improved
LFTM significantly improved the segmentation results for the
original UV images comparedwith Otsu andMax entropy, as shown
in Fig. 9 and Table 7. The RE and F1 of the improved LFTM on 60 test
UV images did not achieve a result as good as the one by Zhan et al.
(2019), where the UV images were only collected in an artificial
channel instead of the vivid scenarios of swimming pool, lake and
artificial channel in this study. This would affect the enhancement
and clustering by the improved LFTM, and image details in a
swimming pool scenario would be lost due to the low shooting
distance. Many target pixels were falsely recognised as non-target,
which indicated that further training of the improved LFTM was
necessary, as the parameter tuning could help improve the model
generalisation.

The F1 score of the improved LFTM on the original images is
lower than that of the Faster R-CNNþ Otsu/Max entropy/LFTM. The
AC of the improved LFTM outperformed the Faster R-CNN-based
methods, indicating a high accuracy of segmentation. The results
indicated that spectral images captured at 365 nm used with Faster
R-CNN have great potential for segmentation in multiple scenarios.
3.3. Possibility of single spectral band for HNS identification

Three models using the same Faster R-CNN architecture were
trained on the spectral dataset for the 365 nm, RGB, and blue
channel images, respectively. All models performed well on loca-
tion detection with an average IoU greater than 0.756, while the
models performed differently on classification and segmentation.
The processing time per image was approximately 0.6 s, which
means that the spill area could be segmented from an HNS image in



Fig. 9. Segmentation examples of UV images. (a) Original images (the blue box is the location bounding box), (b) Faster R-CNN þ Otsu, (c) Faster R-CNN þ Max entropy, (d) Faster R-
CNN þ LFTM with Ncluster¼ 2, (e) Otsu, (f) Max entropy, (g) Improved LFTM (h) ground-truth. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Table 7
Results of segmentation on 365 nm spectral test set by different methods.

Method AC PR RE F1 Average time(s)

Faster R-CNN þ Otsu 0.934 0.800 0.862 0.822 0.607
Faster R-CNN þ Max entropy 0.928 0.761 0.861 0.791 0.610
Faster R-CNN þ LFTM with Ncluster¼ 2 0.935 0.807 0.856 0.823 0.652
Otsu 0.631 0.313 0.951 0.443 0.009
Max entropy 0.644 0.329 0.946 0.459 0.012
Improved LFTM 0.888 0.765 0.590 0.649 0.666
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less than a second in common detection applications.
The classification of single spectral images at 365 nm demon-

strated better classification capability of UV images compared to
RGB and blue channel images. UV images were more stable than
RGB and blue channel images, with better AC, PR, RE, and F1.
Although existing studies have shown that the LS-SVM model can
achieve an accuracy greater than 95% on spectral images at four
optimal spectral bands (Huang et al., 2019), the cost and difficulty of
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acquiring multi-spectral spill images is higher than the cost of
acquiring single band images. With an increase in training data and
the optimisation of deep learning frameworks, HNS classification
on single spectral images combined with Faster R-CNN may be
further improved. The results also indicate that the key factor
affecting the classification accuracy may be the imaging band, as
the classification of the RGB and blue channel images requiresmore
improvement than the UV images at 365 nm.

Compared with the floating HNS segmentation using UV images
of one scenario in Zhan et al. (2019), HNS segmentation based on a
location bounding box by Faster R-CNN, and Otsu, Max entropy, and
LFTM yielded satisfactory results for single spectral band images at
365 nm, single blue channel images, and RGB images, with the best
performance on 365 nm UV images. Comparing the masking result
on original images to the one in bounding box, the segmentation of
HNS in the RGB images and the blue channel images became
possible after the adoption of Faster R-CNN. In addition, the floating
HNS segmentation in different scenarios would be much more
efficient if Faster R-CNN were used.

Single spectral images captured at 365 nm used with Faster R-
CNN demonstrated great potential for the automatic location
detection, classification, and segmentation of floating HNS spills.
More training would help to improve the Faster R-CNN-based
method.

3.4. Analysis for practical implementation

Speed is one of the main concerns for the practical imple-
mentation of the proposed algorithm in rapid response. There
would be technological limitations for both the hardware and the
algorithm at the current stage of implementation. In an UAV
application, hardware affecting speed mainly involves camera,
wireless transmitter, and computer on the ground.

The camera affects the contrast between the spill target, the
background, and interference in UV images. A camera with high
sensitivity is required for the proposed method to guarantee the
accuracy or even reduce the complexity of the algorithm and
enhance the speed. The detection time of the proposed method is
acceptable (currently approximately 0.6 s per image), but it should
be improved further as there are many images used in real-time
detection. The images could be processed on board or trans-
mitted to a ground station followed by processing by the proposed
method. Assuming stable and fast wireless data transfer between a
UAV platform and a ground station, images could be analysed on
any computer, where computers on the ground could be expanded.
Therefore, HNS detection using a Faster R-CNN framework on a
high-performance workstation (e.g. equipped with a graphic pro-
cessing unit) on the ground is preferable to on board DCNN
detection. Limitation of computer may slow down the response
speed in real time detection in sea water case.

For the algorithm aspect, the limitation of Faster R-CNN is the
high computational hardware demand and the massive amount of
data required for long-term training, which mainly results from the
convolution in the architecture. Research has been conducted to
reduce the training time by means of separable convolution (Chen
et al., 2018; Chollet, 2017). Compared with the standard convolu-
tion of ResNet-101 in our study, separable convolution decomposes
a standard convolution into depth-wise convolution and pointwise
convolution to reduce the total number of parameters in the
network and accelerate convergence, thus generating a model of
lesser volume. A low-volume model reduces the hardware
requirement and is more suitable for deployment on a variety of
terminals (e.g. PC, smartphone, even industrial computer on board)
to improve the efficiency of real-time monitoring.

In a realistic sea scenario, various conditions may lead to
incorrect results, i.e. errors or low accuracy. There are several
possible errors and causes.

1) Over-fitting problems. This happens when the model learns the
features and noise in the training data so deeply that it may not
generalise well to unseen features and noise. In this study, im-
ages were collected under different lighting conditions, most
with sufficient lighting. To build a large database, we applied
data augmentation, the effectiveness of which has been proved
in a large number of applications (Ding et al., 2016; Yu et al.,
2017). However, data augmentation cannot introduce unseen
image features or noises in the augmented images, thus
resulting in over-fitting problems or limited generalisability of
the network. Suggested solutions to this problem are to collect
more data containing various scenarios for training, such as
various lighting conditions (Mikołajczyk and Grochowski, 2018).

2) Low contrast between the spill area and the background or the
blurred edge of the spill area on seawater. This is mainly due to
the low viscosities and low surface tension forces of the studied
liquid chemicals, which makes them form a thin liquid film on
the surface of the water. When the illumination is insufficient,
the UV image quality may be poor. Images in various scenarios
and efficient image pre-processing may be explored, whereas
the recommended solution is a sensitive imaging device.

3) Complex backgrounds, including interferences such as re-
flections, increase the difficulty of HNS detection. Some re-
flections had features similar to those of a spill in the selected
UV images. Our current dataset included images with reflections
on fresh and saltwater, on which the Faster R-CNN performed
well. However, reflections on seawater may have their own
pattern. Images in different realistic scenarios should be com-
plemented in the training set, and image pre-processing
methods could be explored to assist the proposed method.

4. Conclusion

In this paper, we proposed a Faster R-CNN architecture-based
method for automatic identification, i.e. the location, classifica-
tion, and mask of transparent floating HNS. Spectral images at
365 nm, RGB, and blue channel images were studied to explore the
optimal imaging method for HNS identification. The results
demonstrated that single spectral images at 365 nm used with
Faster R-CNN were suitable for HNS spill location detection, clas-
sification, and segmentation. RGB and blue channel images used
with Faster R-CNN were suitable for the location and mask detec-
tion of HNS. Instead of SAR and RADAR, successful HNS identifica-
tion of single spectral images at 365 nmwould significantly reduce
the complexity and cost of an HNS imaging system, and thus
enhance the efficiency of HNS imaging.

Possible errors may occur in the practical implementation of the
proposed method, with interference from overfitting, low contrast,
and complex backgrounds. It is reasonable to believe that further
improvement can be achieved for the proposed Faster R-CNN-
based practical identification with single spectral images by
inputting more images in various scenarios as the training set.
Future research work will focus on improving the speed and ac-
curacy of the proposed method, especially for practical application.
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