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Space target detection in optical image sequences for 
wide-field surveillance
Dan Liua,b, Xiaodong Wanga, Yunhui Lia, Zeming Xua,b, Jianing Wanga,b 

and Zhonghui Maoa,b

aChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 
China; bUniversity of the Chinese Academy of Sciences, Beijing, China

ABSTRACT
A wide-field surveillance system with a long exposure time has 
a stronger detection capability for faint space targets. However, 
some of the complexities it generates also pose difficulties for 
space target detection; a large amount of image data, numberless 
object points, some stars manifesting as streak-like sources, and 
possible discontinuous or nonlinear target trajectories. This paper 
presents a high precision and low computational-cost space target 
detection method to overcome these obstacles. Firstly, the mini
mum external rectangle method is implemented to effectively 
remove stars and noise. Secondly, the motion velocity of the targets 
is calculated as the basis for predicting the allowed state transition 
region in each image of the frame set. Finally, a dynamic program
ming sliding window method is proposed to detect space targets 
with continuous, discontinuous, linear or nonlinear trajectories. The 
experimental results show that this method can effectively detect 
faint space targets in wide-field surveillance under a long exposure 
time. This method also has the advantage of a low computational 
cost.
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1. Introduction

Space targets are mainly satellites and space debris in near-earth space (Mehrholzet, 
Leushacke, and Flury 2002; Yang and Lin 2010). Since sputnik-1 was launched in 1957 
(Castronuovo 2011), the number of space targets has been constantly increasing 
(Wirnsberger, Baur, and Kirchner 2015; Esmiller et al. 2014). Only a small portion of the 
detected space targets are active satellites, and the rest can be regarded as space debris; if 
such a large number of space targets collide with one other, it will pose a remarkable 
threat to human space activities (Nunez et al. 2015; Li et al. 2019). In order to ensure the 
safety of the working spacecraft and the normal progress of human space activities, it is 
necessary to deeply study the detection, warning, protection and other aspects of space 
targets, and space target detection technology is the basis of the above work. Hence, it is 
imperative that we can detect space targets. At present, the commonly used space target 
detection methods include radar detection and photoelectric detection. Although radar 
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detection can achieve all-weather work, it has poor concealment, high cost, and poor 
detection accuracy and distance. The photoelectric detection technology is relatively 
mature, with high accuracy, low cost and low energy consumption. Therefore, this 
paper uses the photoelectric detection method to detect the space target.

Detection and tracking of faint space targets from optical images is problematic in 
many wide-field space surveillance applications. Typically, the space targets imaged on 
the focal plane only cover a small number of pixels, because of their large distance from 
the charge-coupled device (CCD) sensors. This means the target looks like a point with 
a low intensity embedded in a strong background clutter (Sease, Flewelling, and Black 
2017). Therefore, feature-based methods that perform well in the case of a homogeneous 
background, such as template matching (Liu et al. 2012, 2013), morphological operators 
(Bai 2013; Bai et al. 2009; Wei, Xing, and You 2018), and threshold methods (Xu et al. 2013), 
fail to detect faint space targets in a single frame image. Many methods for detecting faint 
targets from images with a low signal-to-noise ratio (SNR) have been proposed, especially 
for applications in infrared surveillance (Gao, Lin, and An 2019; Chen 2019; Dong et al. 
2014; Zhang et al. 2018). Reed, Gagliardi, and Stotts (1990) developed the recursive space 
target detection method based on three-dimensional matched filtering. This method can 
exhibit a theoretically optimum performance in detecting space targets moving at the 
same velocity. However, for targets with unknown velocities, the performance of the 
algorithm was degraded. Chu (1988) proposed a moving target detection algorithm 
called maximum value projection, which downscales three-dimensional detection into 
two-dimensional detection to reduce the computation. This method performs 2D velo
city-matched filtering to detect the target streak. However, because of velocity mismatch 
resulting from the partition of the velocity space (Chu 1989), the SNR at the output of the 
matched filter is reduced.

To solve this problem, a series of methods were proposed. Based on the maximum 
projection method, Yao et al. (2015) proposed a method to detect space targets and 
estimate their velocities. Kravchonok (2011) used an improved optical flow method to 
detect moving objects by judging the change in the optical flow vector in images. 
Blostein and Huang (1991) proposed a method called multistage hypothesis testing 
(MHT), which is used to detect faint space targets. In this method, a large number of 
candidate trajectories are made into a tree structure lookup table. Hypothesis testing is 
used to delete the structure of each layer, and the unconfirmed trajectories are removed. 
On this basis, many improved algorithms have been proposed. Blostein and Richardson 
(1994) proposed the multiple multistage hypothesis test tracking (MMHTT) method to 
detect faint space targets. This method extends tracks formed from sequentially detected 
target trajectory segments using a multiple hypothesis tracking strategy. Ahmadi and 
Salari (2015) proposed a hierarchal tracking system to solve the problem of processing 
a tree structure with a large number of branches in MHT. Barniv (1985) proposed the 
Dynamic Programming Algorithm (DPA) which solves the problem of small and dim 
target trajectory search by segmentation optimization. This method transforms the 
problem of faint target detection into the problem of finding the line with the largest 
grey cumulative value in a series of trajectories. Arnold, Shaw, and Pasternack (1993) 
modified the likelihood function in the recursive equation to a log-likelihood ratio func
tion, therefore enhancing the method to better adapt to the nonlinear noise model. 
Tonissen et al. (1996) used the sum of the measurements as the optimal value function in 
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order to eliminate the complex transfer function in the recursive process. The DPA is 
performed in an efficient manner; exhaustive search for all possible space target trajec
tories (Johnston and Krishnamurthy 2000). However, these algorithms still have some 
obstacles. Firstly, the computational cost is high (especially in wide-field surveillance), the 
amount of image data is large, and the number of objects is numerous. Secondly, in the 
case of a long exposure time, some stars manifest as streak-like sources, background noise 
increases, and the target trajectory may be discontinuous or nonlinear; resulting in 
a decrease in the detection performance of the algorithm. The target detection is 
unsatisfactory.

To overcome these obstacles, we propose a high precision and low computational-cost 
space target detection method named dynamic programming sliding window method 
(DPSWM). Firstly, the bright stars and noise are removed by using the proposed minimum 
external rectangle method. We use the minimum external rectangle method in the time 
index image instead of the single frame image to increase the difference between motion 
characteristics of stars and targets, this means that the stars and noise can be filtered from 
the image as much as possible. The intensities of the stars are estimated to further eliminate 
them from the image. Secondly, the motion velocity of the targets can be calculated as the 
basis for predicting the allowed state transition region in each image of the frame set. We 
only need to search for different orbital altitude targets in the allowed state transition 
region rather than at every pixel in every sequence image. Therefore, this method can 
effectively detect space targets with different orbital altitudes and nonlinear trajectories, 
and significantly save computational cost. Thirdly, the dynamic programming sliding 
window method is adopted to detect space targets. The forward and reverse bidirectional 
detection methods ensure the detection probability of discontinuous trajectories.

2. Imaging characteristics

An optical image is modelled as: 

fði; j; kÞ ¼ Bði; j; kÞ þ Sði; j; kÞ þ Tði; j; kÞ þ nði; j; kÞ (1) 

where ði; jÞ denotes the pixel coordinates of the image, k is the frame index, fði; j; kÞ is an 
ðM � NÞ greyscale image, M and N represent the number of rows and columns of the 
image respectively. Bði; j; kÞ is the background, Sði; j; kÞ is the star, Tði; j; kÞ is the target, 
and nði; j; kÞ is the noise.

2.1. Characteristics of stars

Influenced by the hardware limitation of the sensor and atmospheric interference, the 
imaging process has the effect of point spread function (PSF) blurring. The grey level of 
the target decreases gradually from the centre to the surrounding area, which can be 
fitted to a gaussian function. Assuming that fðx; yÞ is the intensity of the image at ðx; yÞ
and ðx0; y0Þ is the target centre, the model is as follows: 

fðx; yÞ ¼ A exp �
1
2
½
ðx � x0Þ

2

σx
2 þ

ðy � y0Þ
2

σy
2 �

( )

(2) 
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where A is the fixed coefficient (the energy of the object imaging in the coordinate ðx0; y0Þ), 
and σx and σy refer to the horizontal and vertical spread radius of the object, respectively. 
Ideally, a distant star appears as a symmetrical point source object, i.e. the horizontal spread 
radius is equal to the vertical spread radius ðσx ¼ σyÞ (see Figure 1(a,b)).

2.2. Characteristics of space targets

The space target is very far away from the charge-coupled device (CCD) sensor and 
can be regarded as a point light source at infinity. Under the conditions of a long 
exposure time and sidereal tracking mode, the space target image on the focal plane 
is seen as a streak-like source object, thus the horizontal spread radius is not equal to 
the vertical spread radius ðσx � σyÞ, Moreover, the motion direction of the space 
target is random (see Figure 1(c,d)). Typically, the space targets imaged on the focal 
plane only cover a small number of pixels. For better representation, an angularly 
related anisotropic gaussian diffusion function is applied to construct a streak-like 
target imaging model. 

Figure 1. (a) Imaging model of an ideal star; (b) 3D plot of a star; (c) imaging model of a space target; 
(d) 3D plot of a space target.
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fðx; yÞ ¼ A exp �
1
2
½ðx � x0Þ cos θ þ ðy � y0Þ sin θ�2

σx
2

"(

þ
½ðx � x0Þ sin θ þ ðy � y0Þ cos θ�2

σy
2

#)

(3) 

The orientation parameter θ determining the rotation angle of the target, is defined as the 
angle that the original coordinate system rotates counterclockwise relative to the new 
coordinate system (see Figure 2)

3. Star and noise removal

3.1. Principle of a time-index image

Chu (1988) proposed a moving target detection algorithm called maximum value 
projection. If K frame images are selected to form a frame set, then the maximum 

Figure 2. Angle-related imaging model of a space target.
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value projection image (maximum image) can be obtained with the following 
equation. 

zði; jÞ ¼ max½fði; j; kÞ�ð1 � k � KÞ (4) 

where zði; jÞ is the maximum image.
The time-index image can be calculated with Equation (5) 

zði; jÞ ¼ fði; j; kÞ ) tði; jÞ ¼ k (5) 

where tði; jÞ represents the time-index image. When the maximum image zði; jÞ is equal to 
fði; j; kÞ at the image coordinates ði; jÞ, the value of tði; jÞ at ði; jÞ is equal to k; when the 
same grey value appears at the same coordinates in different images, the smaller frame 
index is taken.

Subsequently, a binary image, which includes the stars and the space targets, is 
generated using a threshold Tz. The threshold Tz can be estimated using the improved 
adaptive method (Xi et al. 2016). 

bz0ði; jÞ ¼ 0 zði; jÞ < Tz
1 zði; jÞ � Tz

�

(6) 

The ‘close’ operation in morphological filtering is applied to eliminate narrow breaks and 
slender gaps in the binary image by using a flat rectangle-shaped structuring element, Φ. 
The binary image can then be given by: 

bzði; jÞ ¼ bz0ði; jÞ � Φ (7) 

where � is the ‘close’ operation in morphological filtering.

3.2. Star and noise removal using the minimum external rectangle method

According to the characteristics of stars and space targets, stars are symmetrically dis
tributed, and space targets are strip-shaped. Therefore, there is a difference in the aspect 
ratio of the minimum external rectangle between the star and the space target; the 
minimum external rectangle is calculated in the time-index image composed of two 
frames in order to increase this difference (see Figure 3). The space targets are roughly 
extracted by the following characteristics. 

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX1 � X2Þ
2
þ ðY1 � Y2Þ

2
q

(8) 

W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX3 � X2Þ
2
þ ðY3 � Y2Þ

2
q

(9) 

R ¼
L

W
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX1 � X2Þ
2
þ ðY1 � Y2Þ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX3 � X2Þ
2
þ ðY3 � Y2Þ

2
q (10) 

where L and W represent the length and width of the minimum external rectangle, 
respectively. (Xn,Yn) are the minimum external rectangle vertex coordinates (n = 1, 2, 
3, 4). R is the aspect ratio.
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Then, the image detected by the minimum external rectangle can be obtained using 
the following formula: 

bzði; jÞ ¼ 0
bzði; jÞ

R < Rth
R � Rth

�

(11) 

where Rth represents the minimum external rectangle aspect ratio threshold. A low 
threshold classifies more connected areas into space targets, which introduces more 
false alarms. A high threshold significantly reduces the number of false alarms, but 
introduces more missing space targets. In order to solve these problems, a two-stage 
detection method is used to improve detection probability. In this section, a low threshold 
is used to extract candidate targets to ensure detection probability. In the second phase, 
the false alarms are further removed with strict dynamic programming sliding window 

Figure 3. Minimal external rectangle diagrams of space targets and stars: (a) in the single image; (b) in 
the time-index image.
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conditions. This method reduces the amount of calculation while ensuring the probability 
of detection.

3.3. Bright star removal

The platform vibration and long exposure time cause the background stars to appear 
streak-like and the horizontal spread radius of some stars is not equal to the vertical 
spread radius ðσx � σyÞ (see Figure 4). In this situation, we can also apply the angle- 
related anisotropic gaussian spread function to construct a streak-like star imaging model.

At this time, the stars cannot be completely removed by the minimum external 
rectangle method. The key step for removing the stars is to estimate the intensity of 
the stars and then subtract these from the image. The median filter is used to estimate the 
intensity. The median filtered image is expressed as follows: 

mði; jÞ ¼ median½fði; j; kÞ�ð1 � k � KÞ (12) 

In this image, the stars and noise still exist, while the space targets are absent. The stars 
are removed by subtracting the median image from the maximum image. 

zði; jÞ ¼ zði; jÞ � mði; jÞ (13) 

However, in different images, the noise intensity fluctuates within a certain range, and the 
effect of these fluctuations is removed by the improved adaptive threshold method (Xi 
et al. 2016). 

bzði; jÞ ¼ 0 zði; jÞ < Tz
1 zði; jÞ � Tz

�

(14) 

After the stars and noise are further removed, the binary image, the maximum image, and 
the time-index image are calculated as: 

Bði; jÞ ¼ bzði; jÞbzði; jÞ (15) 

Figure 4. (a) Imaging model of a star, (b) 3D plot of a star.
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Zði; jÞ ¼ zði; jÞBði; jÞ (16) 

Tði; jÞ ¼ tði; jÞBði; jÞ (17) 

The result is shown in Figure 5, where most of the stars have been removed, leaving only 
candidate space targets and a few false alarms in the image.

4. Space target detection

4.1. Velocity estimation and state transition

Under the condition involving a long exposure time (3 s), there is obvious movement of 
the space target in adjacent frames (see Figure 6). The centroid position of the target in 
the kth frame is ðxðkÞ; yðkÞÞ, the centroid position in the ðkth þ 1Þ frame is 
ðxðk þ 1Þ; yðk þ 1ÞÞ, and the distance between the two centroids is dðk;k þ 1Þ; the 
distance between the two centroids in the x direction is dxðk;k þ 1Þ, the distance between 

Figure 5. (a) Maximum image after minimum external rectangle detection, (b) maximum image after 
further removal of bright stars.
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the two centroids in the y direction is dyðk;k þ 1Þ. When the exposure time is te and the time 
interval between two adjacent frames is ts, the moving speed of the target, which can be 
used as the basis for selecting the transfer region in the stage involving an allowed state 
transition, is as follows: 

vx ¼
dxðk;k þ 1Þ

Δt
¼

xðk þ 1Þ � xðkÞ
te þ ts

(18) 

vy ¼
dyðk;k þ 1Þ

Δt
¼

yðk þ 1Þ � yðkÞ
te þ ts

(19) 

The motion of the target can be represented by the following model: 

xðk þ 1Þ ¼ FxðkÞ (20) 

xðkÞ ¼

xðkÞ
vxðkÞ
yðkÞ
vyðkÞ

2

6
6
4

3

7
7
5; F ¼

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

2

6
6
4

3

7
7
5 (21) 

where T ¼ te þ ts.
As mentioned above, the target motion model we defined is in the successive state 

space. However, the detector we have used to capture the image is discrete, and the 
acquired image is also displayed in a discrete state with the pixel as the basic unit. In 
addition, predicting the target motion in the discrete state space can reduce the require
ment for the target centroid positioning accuracy. Therefore, the state space is quantized. 
The continuous space is divided into Δ � Δ cells, the size of which is equal to the 
measurement resolution unit. A discrete state is redefined as: xðkÞ ¼ ðx; vx; y; vyÞ. The 
relationship between continuous variables and discrete states is shown as: 

Figure 6. A schematic diagram of the motion relationship between space targets and stars.
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xðkÞ 2 ½ðx � 1ÞΔ; xΔÞ
yðkÞ 2 ½ðy � 1ÞΔ; yΔÞ

�

(22) 

where 1 � x; y � N, and for discrete states, the continuous variables can take any value 
within the unit.

The velocity space is also divided into Δv � Δv cells, where TΔv ¼ Δ. In order to 
ensure the detection probability of space targets with nonlinear trajectories, an improved 
velocity discrete state is introduced, which is expressed as follows: 

vxðkÞ 2 ½ðvx � vxxÞΔv; ðvx þ vxxÞΔvÞ
vyðkÞ 2 ½ðvy � vyyÞΔv; ðvy þ vyyÞΔvÞ

�

(23) 

where vxx , vyy are the speed expansion in x and y directions, respectively, representing half 
of the target search range. The value of vxx and vyy are 0:5vxd e and 0:5vy

� �
respectively. 

The outer parentheses indicate rounding up. The speed dependent adaptive allowed 
state transitions of the target in the next frame are: 

xðk þ 1Þ 2 ½ðx � 1 þ vx � vxxÞΔ; ðx þ vx þ vxxÞΔÞ
yðk þ 1Þ 2 ½ðy � 1 þ vy � vyyÞΔ; ðy þ vy þ vyyÞΔÞ

�

(24) 

This method only needs to search for different orbital altitude targets in the allowed state 
transition region of each frame (see Figure 7, vxx = 1,vyy = 1). Therefore, this method can 
effectively detect space targets with different orbital altitudes and nonlinear trajectories, 
and significantly save computational cost.

4.2. DPSWM algorithm for space target detection

The 3/4 logic of the track initiation sliding window method (used for normal track 
initiation) is used to detect the space target; namely, the space target is determined 
when the target appears three times in the candidate trajectory comprising four frames of 
images. The criteria for determining whether an object is a real space target include:

Figure 7. Valid state transitions (vxx= 1,vyy= 1).
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(1) A minimum detection criterion: when the number of target points in the candidate 
trajectory is fewer than the minimum detection number, it cannot be determined 
as a real space target;

(2) Loss criterion: the target points in candidate trajectories cannot be continuously 
lost;

(3) Minimum speed criterion: set the minimum speed threshold, and if the candidate 
target point is lower than that speed, it cannot be identified as a point in the 
trajectory;

(4) Maximum speed criterion: set the maximum speed threshold, and if the candidate 
target point is higher than that speed, it cannot be identified as a point in the 
trajectory.

Of these, the velocity criterion is discussed in section 4.1. Figure 16 lists all forms of real 
space target trajectories under the above judgement conditions.

where * indicates whether the target is detected (0/1), and this trajectory is a real space 
target trajectory.

As can be seen from the table, the detection process can be divided into two stages:

Forward detection stage: initiated with the connected regions composed of time 
indices 1 and 2 in the time-index image T12ði; jÞ as the root nodes to simultaneously 
search for the trajectory points with the time indices 3, 4 in the single time-index 
image;
Reverse detection stage: the real space target determined by the previous step is 
removed and then initiated with the connected regions composed of time indices 3 
and 4 in the time-index image T34ði; jÞ as the root nodes to simultaneously search for the 
trajectory points with the time indices 1, 2 in the single time-index image. If the target is 
not successfully detected in the T12ði; jÞ image of the previous step, this step can correct 
the error in time to avoid missing target detection. The forward and reverse bidirectional 
detection methods ensure the detection probability of space targets with discontinuous 
trajectories.

The detection steps are shown in Figure 8, where the red line represents the real space 
target trajectory. P12; P34 are the connected regions of the T12ði; jÞ,T34ði; jÞimages, respec
tively. b12; b34 indicate that each connected region contains several frames of image data, 
and we only continue to detect the connected region containing two frames of image 
data. P1; P2; P3; P4 respectively represent the allowed state transition area in each frame 
image. b1; b2; b3; b4 denote whether there is a target in the state transition area and, if so, 
the trajectory is a real target trajectory. 1 means existence, 0 means no.

5. Experiments

In this study, the data acquisition method is the sidereal tracking mode, where the 
telescope photographs the same area of the sky; in this case, the star is fixed on the focal 
plane and the space target produces a short line due to the movement. Image processing is 
undertaken in MATLAB R2014a, and the PC specifications include an i5-3210 M CPU 
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(2.50 GHz) with 4 GB of main memory. The image size is 1024 � 1024 pixels. In order to be 
displayed more clearly, only 512 � 512 pixels are clipped for proof.

The intensity and position of background stars are simulated according to the Tycho-2 
catalogue. The space targets with different streak lengths (ranging from 3 to 8) and 
motion angles are added to 1200 background star images. The 1200 images are divided 
into four groups, and the SNRs of the space targets in each group are 7, 5, 3, and 1.5. Our 
algorithm was performed on four sets of images to assess its detection performance. 
Figure 9 shows the simulated space targets with different streak lengths, motion angles, 
and the aspect ratio of the minimum external rectangle. Figure 10 shows the simulated 
space targets with different SNRs.

In order to validate the detection performance of the proposed algorithm, the two 
indicators used to assess detection performance are detection probability (Pd) and false 
alarm rate (FAR). The evaluation of these indicators needs to compare the difference 
between the result of the target detection algorithm and the ‘true value’, so as to calculate 
the corresponding indicators. In the simulated image dataset, the detection results of the 
space targets are compared with the experimental data constructed in the simulation 
process to validate the correctness of the results. In the real image dataset, the results can 
be validated by using the information of star list and space debris catalogue. The 
probability of detection and false alarm rate are calculated from the true target (TT), 
false target (FT), and missing target (MT).The TT is the number of detected true targets, the 
FT is the number of false alarms that are misidentified as targets, and the MT is the 
number of real targets that missing inspection. Based on the above components, the 
detection probability Pd and false alarm rate FAR are defined as: 

Figure 8. Search tree of DPSWM, (a) frame diagram, (b) time-index image.
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Figure 9. Simulated space targets with different streak lengths and motion angles.
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Pd ¼
ðTTÞ

ðTTÞ þ ðMTÞ
(25) 

FAR ¼
ðFTÞ

ðFTÞ þ ðTTÞ þ ðMTÞ
(26) 

5.1. Space target detection using DPSWM

Our DPSWM algorithm was analysed to evaluate its performance in terms of detection and 
false alarm rejection. The SNR of seven simulated space targets is 3, and two of these are 
targets entering the field of view. The preliminary test results of the time-index images 
T12ði; jÞ,T34ði; jÞ are shown in Figure 11. The light blue connected region in the image 
represents the object appearing in the first frame, the green represents the second frame, 

Figure 10. Simulated space targets with different SNR.
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the orange is the third frame, and the red is the fourth frame. Then, DPSWM is used to further 
detect candidate targets. The results are shown in Figure 12, which represents a binary image 
and a time index image, respectively. The green circles in the image are the detected real 
space targets.

For space targets entering the field of view (appearing in the edge area of the image) 
during the detection process, the target may not always be within the field of view during 
the four-frame image capture. As shown in Figure 11, the undecided edge targets in 
Figure 13 appear for the first time in frames 1, 3, 4, and 3, respectively. For such targets, we 
can continue to make judgements in the next test group. As shown in Figure 13, the 
undetermined edge points of the first four frames are detected in 5–8 frames. All seven 
simulated space targets are detected successfully.

The discontinuous and nonlinear situations of the space target trajectories are further 
tested. Figure 14 shows the detection results.

Figure 11. (a) Time-index image after further removal of bright stars (frames 1, 2), (b) enlarged area of 
the detected candidate targets, (c) time-index image after further removal of bright stars (frames 3, 4), 
(d) enlarged area of the detected candidate targets.
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5.2. Real space target detection

The DPSWM method was further performed on real image sets of 500 images to assess its 
performance in terms of detection and false-alarm rejection. The real images used in the 
experiments were captured by the CMOS telescope with 3 s exposure time, and have 
10240 � 10240 imaging pixels, a 10o � 10o field of view, and 12 bits of greyscale. 
These images are captured on the ground in the sidereal tracking mode, where the 
telescope is mounted on a turntable with a velocity to counteract that of the earth’s 
rotation. Space targets appear as streak-like sources. These star images are affected by the 
vibration of the platform, and some stars also appear as streak-like sources.

In order to validate the effectiveness of the proposed method, DPA (Barniv 1985), IMTI 
(Yao et al. 2015), and SWM (Worsham 2010) are used to detect the same real image 
sequences. The statistical results from the different methods are shown in Table 1.

In the DPM method, detection is performed on all possible space target trajectories of 
the frame set, and the candidate trajectories increase rapidly as the number of target 
points increases, resulting in a large computational cost. The detection result of the IMTI 
method is affected by background stars and noise in wide-field surveillance and long 
exposure times. This method suffers from high false alarm rates, and at least 15 test 
images were required for space target detection; therefore, 15 images should be stored 
until the detection process is completed. SWM overcomes the issue of exhaustive search
ing for all possible space target trajectories by using a sliding window. However, the 
judging criterion of the method will introduce a high false alarm rate on the premise of 
ensuring the detection probability.

Figure 12. Detection results. (a) binary image, (b) time-index image, (c) enlarged area of the real space 
targets.
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The DPSWM method overcomes the defects of the above method, including a low 
detection probability and a high false alarm rate due to the interference of stars and noise 
in the case of wide-field surveillance, long exposure time, and a large computational cost. 
Partial test results are shown in Figure 15.

Figure 13. Edge point detection result, (a) (frames 1–4), (b) (frames 5–8).

Figure 14. (a) Space target detection results of the discontinuous and nonlinear trajectories with 8 
frames, (b) enlarged area of the discontinuous trajectory.
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Figure 15. The detection results of the proposed DPSWM in real image sets.
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6. Conclusions

In this paper, a method for space target detection in wide-field surveillance is 
proposed. Under the condition of a wide field of view and long exposure time, the 
number of object points is numerous, and some stars manifest as streak-like sources. 
The proposed minimum external rectangle method can effectively eliminate stars 
and noise. As opposed to applying this method to a single image, the application in 
the time index image can remove more background points by increasing the 
R threshold. After removing background stars and noise, the allowed state transition 
region in each image of the frame set is predicted. The improved velocity discrete 
state can ensure the detection probability of space targets with nonlinear trajec
tories, and the speed dependent adaptive allowed state transition region can effec
tively detect space targets with different orbital altitudes. Subsequently, the DPSWM 
method is performed to detect space targets, and the forward and reverse bidirec
tional detection methods ensure the detection probability of space targets with 
discontinuous trajectories. The experimental results show that the proposed method 
has a high detection accuracy and low computational cost to overcome the obstacles 
of space target detection in wide-field surveillance under long exposure times.
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Figure 16. Scores of the real space target trajectories in the time-index image.

Table 1. Statistical results in terms of real space target detection.
Detection probability False alarm rate Running time

Method (%) (%) (s)

DPA 88.6 25.6 33.72
IMTI 90.2 15.5 2.85
SWM 92.8 12.3 6.93
DPSWM 98.3 5.4 1.36
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