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ABSTRACT Recently, the classification of hyperspectral images has made great process. Especially,
the classification methods based on three-dimensional convolutional neural network have remarkable
performance due to the uniqueness of hyperspectral images. However, the hyperspectral classification
still faces great challenges due to a series of problems such as the insufficient extraction of spectral-
spatial features, the lack of labeled samples, the large amount of noise, the tendency of overfitting and so
on. Therefore, SSDANet is proposed to solve the above problems and promote the further development
of hyperspectral classification technology based on deep learning. SSDANet is a spectral-spatial three-
dimensional convolutional neural network with a deep and wide structure that can significantly improve
classification performance. In SSDANet, the spectral-spatial dense connectivity is put forward to protect
the integrity of information. It is made up of the spectral branch and the spatial branch, which can learn
and reuse the spectral-spatial features. Besides, the spectral-spatial attention mechanism is proposed to
adapt the special structure of hyperspectral images. It can excite important spectral-spatial information and
suppress unimportant spectral-spatial information. In addition, a series of optimization methods including
data augmentation, batch normalization, dropout, exponential decay learning rate, and L2 regularization
are adopted to alleviate the problem of overfitting and improve the classification results. To verify the
performance of SSDANet, experiments were implemented on two widely used datasets—Pavia University
and Indian Pines. Under the condition of limited labeled samples, the classification evaluation indexes of
OA, AA, and Kappa on the two datasets all exceeded 99%, reaching state-of-the-art performance.

INDEX TERMS Artificial intelligence, hyperspectral imaging, image processing, pattern recognition,
remote sensing.

I. INTRODUCTION
Images obtained by the hyperspectral remote sensing sen-
sor or imaging spectrometer are called hyperspectral images
(HSIs), which contain hundreds of spectral channels from
visible bands to infrared bands [1]. Compared with the tra-
ditional RGB images, HSIs have richer and more detailed
spectral information, which is helpful for classification and
recognition tasks [2]. Hyperspectral classification aims to
classify each pixel in the image into a specific category [3],
which has been widely used in civil and military applications,
such as food analysis [4], mineral resource exploitation [5],
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agriculture development [6], anomaly detection [7], etc.
However, it still faces many problems. The main challenges
are listed as follows. (1) In the process of supervised learning,
the imbalance between high-dimensional data and limited
training samples can easily lead to the phenomenon that
classification results decline with the increase of dimensions,
which is called the curse of dimensionality [8]. (2) The high
cost of manual labeling of HSIs leads to the shortage of label
samples [9]. (3) The spatial layout of HSIs is complicated.
What is worse, different materials have the same spectral
characteristics, which further increases the difficulty of clas-
sification [10].

With the continuous development of machine learn-
ing technology, advanced methods emerge one after
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another [11], [12] and are widely applied in various fields,
such as medical fitting prediction [13], battery capacity and
aging prediction [14]–[16], natural language processing [17],
image processing [18] and so on. And the classification
methods of HSIs are also gradually developed, which can
be roughly divided into two categories according to whether
the use of high-level features—the traditional classifica-
tion methods and the classification methods based on deep
learning.

At the early stage, the traditional classification methods
are based on spectral information, which generally includes
two main elements: feature engineering and classifiers [19].
The function of feature engineering is to reduce the dimen-
sion of HSIs and obtain discriminative features or bands.
Feature extraction and feature selection are two common
methods in feature engineering [20]. And the purpose of fea-
ture extraction is to transform the hyperspectral data of high
dimension space into low dimension space so that different
categories can be easily distinguished [21]. Typical methods
of feature extraction include independent component anal-
ysis (ICA) [22], linear discriminant analysis (LDA) [23],
principal component analysis (PCA) [24], minimum noise
fraction (MNF) [25] and so on. Whereas the function of
feature selection is to retain the spectral information of the
most representative bands from the raw HSIs and discard
the bands that contribute less to the classification. Common
methods of feature selection include Jeffries-Matusita dis-
tance [26], spectral angle mapper (SAM) [27], Bhattacharyya
distance [28], etc. Features generated by feature engineering
are used as the input of the classifier. Representative classi-
fiers include k-nearest neighbor (KNN) [29], random forest
(RF) [30], support vector machine (SVM) [31], etc. How-
ever, the traditional classification methods based on spectral
information do not make full use of the spatial information of
HSIs. Therefore, the traditional classification methods based
on spectral-spatial information are proposed. Generally, these
methods extract the spatial features by morphological pro-
files [32], super-pixel [33], multi-kernel learning [34], sparse
representation [35] and so on, and then the spatial features are
integrated with spectral features. Nevertheless, the traditional
classification methods of HSIs, whether based on spectral
features or spectral-spatial features, all rely on hand-crafted
features with limited representation ability, which cannot fit
the classification task well. What is worse, the traditional
classification methods rely on the prior information of expe-
rienced experts, which leads to poor generalization ability of
these methods for other scenarios.

Recently, the research of the hyperspectral classification
methods based on deep learning has become a hotspot,
because it can solve the problems existing in the traditional
methods [36]. The deep learning model has a hierarchi-
cal structure, which can learn high-level semantic informa-
tion from the data automatically. It can transform images
into more recognizable features, thus making the classi-
fication task of HSIs effective and robust. Typical deep
learning methods include deep belief network (DBN) [37],

stacked auto-encoder (SAE) [38], convolutional neural net-
work (CNN) [39] and so on, which have been widely used
for classification of HSIs. The classification methods based
on deep learning can also be divided into the classification
methods based on spectral information and the classifica-
tion methods based on spectral-spatial information. And the
classification methods based on deep learning using spectral
information only extract spectral features of HSIs, which gen-
erally include the methods based on DBN [40], the methods
based on SAE [41], [42], and the methods based on 1-D
CNN [43], [44]. These methods perform better than tradi-
tional classificationmethods, but the input samples need to be
flattened into a one-dimension vector, resulting in the spatial
information of HSIs can not be fully extracted. Fortunately,
the classification methods based on deep learning using
spectral-spatial features can yield better results than themeth-
ods using spectral features alone. And they contain two types
of implementation: (1) spectral features and spatial features
are extracted respectively, after that the features are fused
to carry out classification [45], [46]; (2) the spectral-spatial
features are extracted by 3-D CNN directly [2]. Since HSIs
are the form of 3-D cube, 3-D CNN can make full use of
the structural characteristics of HSIs by performing 3-D con-
volution operation on the data, so as to achieve satisfactory
classification results [47].

Nowadays, different 2-D CNN models have been pro-
posed, such as LeNet [48], AlexNet [49], GoogleNet [50],
VGGNet [51], ResNet [52], DenseNet [53], SENet [54],
CliqueNet [55] and so on. On the basis of these models,
various classification methods based on 3-D CNN of HSIs
have also been proposed. Zhong et al. proposed the meth-
ods based on 3-D residual connections for the classifica-
tion of HSIs [56]. Zhang et al. introduced the 3-D densely
connected convolutional network to extract spectral-spatial
feature of HSIs [9]. Wang et al. proposed a deep and fast 3-D
CNN framework based on dense connectivity, and obtained
satisfactory results [57]. Zhang et al. put forward a multi-
scale network that used the 3-D dense connection structure
to aggregate features at different levels, so as to improve
classification performance [36]. Paoletti et al. proposed a
deep and dense 3-D CNN to make full use of the HSIs’
information [58]. Fang et al. introduced a network with 3-
D dense connectivity and spectral-wise attention mechanism
that yielded competitive performance [59].

However, the existing methods based on 3-D dense con-
nectivity for the classification of HSIs are all aimed at using
the dense connectivity to make the model deeper, but ignore
the width of the network, which will lead to the gradual
loss of detailed features as the model deepens. In addition,
the classification methods based on attention mechanism so
far only use spectral features [59] or simply combine spatial
features with spectral features [60], ignoring the special struc-
ture of HSIs. Besides, 3-D CNN is prone to overfitting due
to the numerous parameters, thus reducing the classification
performance of HSIs. In view of these problems, a deep and
wide 3-D CNNmodel—SSDANet is proposed. In SSDANet,
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spectral-spatial dense connectivity is put forward to make
full use of the spectral-spatial features and strengthen the
transmission of information flow, so as to reduce the loss of
information. Moreover, the spectral-spatial attention mecha-
nism which can adapt to the 3-D structure of HSIs is pro-
posed. It can recalibrate the spectral and spatial features of
HSIs, so that important information can be selected and less
important features can be suppressed. In order to alleviate the
problem of overfitting and improve the classification results,
a series of algorithms are used for optimization. To demon-
strate the performance of the proposed method, the SSDANet
was trained on two benchmark datasets of HSIs and satisfac-
tory results were obtained. The SSDANet has five advantages
over other approaches:

1) It is an end-to-end 3-D CNN model that can learn spa-
tial and spectral information at the same time without
any pre-processing or post-processing operations.

2) It increases the width of the model by cascading the
spectral branch with the spatial branch. Compared with
other 3-D CNN methods based on dense connectivity,
it not only deeper, but also wider, so that more dis-
criminative features can be obtained and the integrity
of information can be protected.

3) It uses the spectral-spatial attention mechanism, which
can redistribute the weights of the spectral-spatial fea-
ture maps, so as to capture important information.

4) It uses many algorithms for optimization, includ-
ing data augmentation, dropout, batch normalization,
exponential decay learning rate, and L2 regularization,
so as to make the network more robust and generalized.

5) It has achieved satisfactory classification results on two
widely used datasets, reaching state-of-the-art level.

The remainder of this article is arranged as follows. The
basics of convolutional neural networks for hyperspectral
classification is introduced in Section II. And the details of the
proposed method are described in Section III. In Section IV,
the datasets, experiment setup, and experiment results are
described. Furthermore, the analysis and discussion are pre-
sented in Section V. In Section VI, conclusions are presented.

II. BASICS OF CONVOLUTIONAL NEURAL NETWORKS
FOR HYPERSPECTRAL CLASSIFICATION
There are three types of convolutional neural networks for
the classification of HSI—1-D CNN, 2-D CNN, and 3-D
CNN. The traditional CNN is 2-D CNN that processes RGB
images with two-dimensional structure. Generally, a 2-D
CNN mainly includes the convolutional layer, the pooling
layer, and the fully connected layer. Since other articles have
introduced the specific structure of 2-D CNN [61], it will
not be covered here. Nevertheless, as the most important
difference among 1-D CNN, 2-D CNN, and 3-D CNN, the
convolutional layer is described in detail.

The convolutional layer of 1-D CNN uses one-dimensional
convolutional kernels to operate on the one-dimensional
input. The calculation equation of vxl,j which represents the

neuron at position x on the jth feature map in the lth layer is
as follows:

vxl,j = f

∑
m

Hl−1∑
h=0

khl,j,mv
(x+h)
(l−1),m + bl,j

, (1)

where,m refers to the index of the feature map in the (l − 1)th
layer. And Hl represents the length of the one-dimensional
convolutional kernel. In addition, the weight of the jth con-
volutional kernel at position h on the mth feature map in the
lth layer is represented by khl,j,m. And the value of neuron at
the position (x + h) on the mth feature map in the (l − 1)th
layer is represented by v(x+h)(l−1),m. Moreover, bl,j refers to the
bias on the jth convolutional kernel in the lth layer. And f (·)
represents the activation function, which is universal in 1-D
CNN, 2-D CNN, and 3-D CNN.

The convolutional layer of 2-D CNN uses the two-
dimensional convolutional kernels to operate on the
two-dimensional input. The value of the neuron vx,yl,j at posi-
tion (x, y) on the jth feature map in the lth layer can be
calculated by:

vx,yl,j = f

∑
m

Hl−1∑
h=0

Wl−1∑
w=0

kh,wl,j,mv
(x+h),(y+w)
(l−1),m + bl,j

, (2)

where,m refers to the index of the feature map in the (l − 1)th
layer. Furthermore, the height and the width of the convo-
lutional kernel are represented by Hl and Wl respectively.
Besides, the weight of the jth convolutional kernel at position
(h,w) on the mth feature map in the lth layer is represented
by kh,wl,j,m. Additionally, the value of neuron at the position

(x + h, y+ w) on the mth feature map in the (l − 1)th layer
is represented by v(x+h),(y+w)(l−1),m . And bl,j is the bias.

Similarly, the convolutional layer of 3-D CNN uses the
three-dimensional convolutional kernels to operate on the
three-dimensional input. The calculation equation of vx,y,zl,j
which represents the neuron at position (x, y, z) of the jth
feature map in the lth layer can be expressed by:

vx,y,zl,j = f

∑
m

Hl−1∑
h=0

Wl−1∑
w=0

Rl−1∑
r=0

kh,w,rl,j,m v(x+h),(y+w),(z+r)(l−1),m + bl,j

,
(3)

where, the index of the feature map in the (l − 1)th layer is
represented by m. Besides, the height, the width, and spectral
dimension of the convolutional kernel are represented by Hl ,
Wl , and Rl respectively. Additionally, k

h,w,r
l,j,m represents the

weight of the jth convolutional kernel at position (h,w, r) on
themth feature map in the lth layer. Furthermore, the value of
neuron at the position (x + h, y+ w, z+ r) on themth feature
map in the (l − 1)th layer is represented by v(x+h),(y+w),(z+r)(l−1),m .
And bl,j is the bias.
It can be seen from the different expressions of the convo-

lution layer in 1-D CNN, 2-D CNN, and 3-D CNN that the
dimensional type of CNN is closely related to the form of
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FIGURE 1. The framework of the spectral-spatial dense connectivity.

FIGURE 2. The schematic diagram of the spectral dense connectivity block.

input data. Therefore, 3-D CNN is more consistent with the
3-D structure of HSIs than 1-D CNN and 2-D CNN.

III. PROPOSED METHOD
SSDANet for hyperspectral classification is introduced in this
section. SSDANet consists of three important components:
spectral-spatial dense connectivity that can learn spectral
and spatial features simultaneously, spectral-spatial atten-
tion mechanism that can squeeze and excite the spectral-
spatial features, and optimization methods that can improve
the classification performance. These three parts are elab-
orated in detail. What is more, the whole framework of
SSDANet is summarized in a graphical flowchart for further
understanding.

A. SPECTRAL-SPATIAL DENSE CONNECTIVITY
The spectral-spatial dense connectivity is as shown in Fig. 1.
It is made up of two branches—the spectral branch and the
spatial branch. In the spectral branch, the spectral features
with redundant information are obtained by using the spectral
dense connectivity block, and then the dimension reduction
block is used to reduce the computation. Similar to the spec-
tral branch, the spatial branch contains the spatial dense con-
nectivity block and the dimension reduction block to acquire
spatial information. In the end, the spectral-spatial informa-
tion is obtained by combining the features extracted from the
two branches. The spectral-spatial dense connectivity can not
only make the network wider than other methods, but also can
extract discriminant spectral-spatial features. Details of the
spectral dense connectivity block, spatial dense connectivity
block, and dimension reduction block are elaborated below.

1) SPECTRAL DENSE CONNECTIVITY BLOCK
The dense connectivity [53] used for the classification of
traditional RGB images can enable the reuse of features,

strengthen the transmission of information flow, and alleviate
the problem of gradient disappearance. Based on the dense
connectivity, the spectral dense connectivity block is pro-
posed. Similar to the dense connectivity, the input of the
current layer in the spectral dense connectivity block is the
concatenation of all the previous layers’ outputs; themain dif-
ference is the traditional dense connectivity adopts 2-D CNN
to extract features, whereas the spectral dense connectivity
block is more suitable for the structural characteristics of
HSIs by using 3-DCNN to extract spectral features. As shown
in Fig. 2, the input of the spectral dense connectivity block x10
is k0 feature maps with the size of p × p × r . Where, the
superscript 1 of x10 means that the feature maps belong to the
spectral dense connectivity block, and the subscript 0 repre-
sents the position of the featuremaps. Assuming that the spec-
tral dense connectivity block contains l(l∈N ∗) layers, and
each layer implements the nonlinear transformation H1

l (·).
Where, the superscript 1 of H1

l (·) means that the nonlinear
transformation belongs to the spectral dense connectivity
block, and the subscript l refers to the index of the layer. More
specifically,H1

l (·) is the composite function of batch normal-
ization (BN) [62], ReLU, 3-D convolution, and dropout [49].
In the operation of 3-D convolution, k convolutional kernels
with the size of 1×1×a are used. Where, {a | a> 1,a ∈ N ∗}.
Moreover, the convolutional operation adopts the ‘‘SAME’’
mode, so the size of the feature maps remains unchanged
during the forward propagation. The output of the spectral
dense connectivity block x1l can be calculated by:

x1l = H1
l ([x

1
0 , x

1
1 , · · · , x

1
l−1]), (4)

where,
[
x10 , x

1
1 , · · · , x

1
l−1

]
represents the concatenation of the

feature maps. And the output number of feature maps kl can
be expressed as:

kl = k × (l − 1)+ k0, (5)
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FIGURE 3. The schematic diagram of the spatial dense connectivity block.

2) SPATIAL DENSE CONNECTIVITY BLOCK
The basic principle of the spatial dense connectivity block is
similar to that of the spectral dense connectivity block, except
that the kernel size used for 3-D convolution is different.
As shown in Fig. 3, the input of the spatial dense connectivity
block is also k0 feature maps with the size of p × p × r ,
just like the spectral dense connectivity block. If the number
of nonlinear transformation layers in the spatial dense block
is l, and the nonlinear transformation is represented byH2

l (·).
Where, the superscript 2 of H2

l (·) means that it belongs to
the spatial dense connectivity block, and the subscript l is
the index of the layer. And the nonlinear transformation in
the spatial dense connectivity block is also composed of BN,
ReLU, 3-D convolution, and dropout. The 3-D convolution
of the spatial dense connectivity block uses k convolutional
kernels with the size of a × a × 1, which is the main differ-
ence from the spectral dense connectivity block. The output
equation of the spatial dense connectivity block x2l can be
expressed by:

x2l = H2
l ([x

2
0 , x

2
1 , · · · , x

2
l−1]), (6)

And the output number of feature maps in the spatial dense
connectivity block is the same as that of spectral dense con-
nectivity block.

3) DIMENSION REDUCTION BLOCK
Since the features extracted by the spectral dense connec-
tivity block and the spatial dense connectivity block contain
redundant information, the dimension reduction block is used
to reduce the computation, accelerate the training process,
and reduce the overfitting problem. Fig. 4 is the schematic
diagram of the dimension reduction block. The input of the
dimension reduction block is the output of the spectral con-
nectivity block or the spatial connectivity block—kl feature
maps with the size of p × p × r . The dimension reduction
block is composed of BN, ReLU, 3-D convolution, dropout,
and 3-D average pooling. Among them, BN, ReLU, and
dropout are adopted to enhance the nonlinear discrimination
ability, improve the training speed, and avoid overfitting.
Particularly, the 3-D convolution and the 3-D average pooling
are indispensable parts of dimension reduction block. There
are m convolutional kernels with the size of 1× 1× 1 in

FIGURE 4. The schematic diagram of the dimension reduction block.

the 3-D convolution. Where, m < kl . Through the 3-D
convolution, the number of feature maps reduces from kl to
m. Additionally, the 3-D average pooling using the filter of
b×b×bwith the stride of (c, c, c) is adopted to reduce the size
of the feature maps. Where, {b|b ≤ p≤r}. After operation of
average pooling,m featuremapswith the size of

⌊
p−b
c + 1

⌋
×⌊

p−b
c + 1

⌋
×
⌊ r−b

c + 1
⌋
are obtained. Where, b·c represents

the operation of rounding down.

B. SPECTRAL-SPATIAL ATTENTION MECHANISM
Different from the attention mechanism [54] used for the
processing of traditional RGB images, the spectral-spatial
attention mechanism can learn the importance of each
channel from HSIs automatically, so as to promote use-
ful spectral-spatial features and suppress useless spectral-
spatial information. The spectral-spatial attention mecha-
nism is composed of two important elements: spectral-spatial
squeeze and spectral-spatial excitation. To illustrate the
details of the proposed method, Fig. 5 shows the schematic
diagram of the spectral-spatial attention mechanism. The
input of the spectral-spatial attention mechanism X is a set
of C feature maps with the size of P × Q × L. Where, X =
[x1, x2, · · · , xC ]. First, the input data are squeezed to embed
the global information of HSIs. Different from the traditional
attention mechanism which uses 2-D average pooling to
squeeze each channel, the proposed spectral-spatial attention

FIGURE 5. The schematic diagram of the spectral-spatial attention
mechanism.
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mechanism uses 3-D average pooling to squeeze the global
spectral-spatial features into channel-wise statistics Z with
the size of 1 × 1 × 1 × C . Where, Z = [z1, z2, · · · , zC ].
And zC squeezed by xC can be calculated by:

zC = Fsssq (xC ) =
1

P× Q× L

P∑
i=1

Q∑
j=1

L∑
k=1

xC (i, j, k), (7)

where, Fsssq (·) represents the operation of squeeze. Then,
the channel statistics Z is mapped into a set of channel
weights S through the operation of spectral-spatial excita-
tion. The main purpose of the spectral-spatial excitation is
to recalibrate the information aggregated from the operation
of spectral-spatial squeeze adaptively. It adopts a simple
self-gating mechanism by using two fully connected layers
with different activation functions to calculate the weights of
each channel, so as to fully obtain channel-wise dependencies
of HSIs.

Where, S = [s1, s2, · · · ,sC ], which can be expressed by:

S = Fssex (Z ,W ) = σ (W2δ (W1Z )), (8)

where, δ(·) represents the activation function—ReLU, σ (·)
represents the activation function—sigmoid. And Fssex(·)
represents the operation of spectral-spatial excitation. W1 ∈
C
r ×C andW2 ∈

C×C
r represent the weight matrices of the two

fully connected layer respectively. Where, r is the reduction
ratio. Finally, the set of channel weights S is multiplied
by the input X to obtain the final output X̃ . Where, X̃ =
[x̃1, x̃2, · · · ,x̃C ], and it can be expressed as follows:

X̃ = Fscale (S,X) = [s1x1, s2x2, · · · , sCxC ], (9)

where, Fscale (·) represents the channel-wise multiplication.

C. OPTIMIZATION METHODS
In the field of the hyperspectral classification, the large
amount of noise in the HSIs, the limited number of labeled
samples, the complex structure of the model, and the numer-
ous parameters of 3-D CNN all lead to the phenomenon of
overfitting. To prevent overfitting and improve the accuracy,
a series of optimization methods including data augmenta-
tion, batch normalization, dropout, exponential decay learn-
ing rate, and L2 regularization are adopted.

1) DATA AUGMENTATION
In view of the small number of labeled samples in HSIs,
the strategy of data augmentation is proposed to improve
the robustness and alleviate the overfitting of the constructed
model, which is shown in Fig. 6. In this paper, the data cube
with the size of nH × nW × nB is taken as a sample. Where,
nH , nW and nB represent the height, width, and the spectral
dimension of the data cube respectively. In the strategy of data
augmentation, the original samples are expanded to 5 times
by means of flipping along the up-down direction, flipping
along the left-right direction, rotating at a random angle, and
adding random Gaussian noise in the training process.

FIGURE 6. The strategy of data augmentation. Where, represents
the operation of flipping along the up-down direction; represents the
operation of flipping along the left-right direction; represents the
operation of rotating at a random angle; represents the operation of
adding random Gaussian noise.

2) BATCH NORMALIZATION
To alleviate the problem of overfitting and accelerate the
convergence of the network, the optimization method of BN
is used in the paper. Suppose the input of BN is X =

[x1, x2, · · · ,xn]. Where, xn represents one of the samples, and
n represents the batch size. The mean µB and variance σ 2

B of
the input data can be calculated by (10) and (11), respectively:

µB =
1
n

n∑
i=1

xi, (10)

σ 2
B =

1
n

n∑
i=1

(xi − µB)2, (11)

Next, each element of the input is normalized, as show in (12).
Where, ε represents a constant.

x̂i =
xi − µB√
σ 2
B + ε

, (12)

Finally, the final output yi is obtained through scaling and
shifting, as shown in the following equation:

yi = γ x̂ i + β, (13)

3) DROPOUT
Dropout is adopted to alleviate the problem of overfitting.
The basic principle of dropout is that the weights of some
neurons in the hidden layer stop updating according to a
certain probability in the training process, so as to ease the
complex co-adaptation relationship between neurons. And
Fig. 7 is used to further illustrate the difference between the
networks with and without dropout.

FIGURE 7. The neural networks with and without dropout. (a) The neural
network without dropout; (b) The neural network with dropout.
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FIGURE 8. The framework of SSDANet for hyperspectral image classification on Pavia University. Where, the size of the 3-D convolutional kernel is
represented by red numbers, and the size of the feature maps is represented by black numbers.

4) EXPONENTIAL DECAY LEARNING RATE
The setting of learning rate is very important, which deter-
mines whether the model converges to the global optimal
value and affects the running speed. If the learning rate is
too large, the gradient of the model will oscillate back and
forth on both sides of the global optimal solution and cannot
converge. And if the learning rate is too small, the con-
vergence speed of the algorithm will be very slow and the
training timewill increase, resulting in the waste of resources.
To solve these problems, the exponential decay learning
rate is used. The core idea of exponential decay learning
rate is to obtain the sub-optimal solution quickly by using
a large learning rate at the beginning, and then gradually
reduce the learning rate as the iteration continues, so as to
make the gradient converge to the optimal value. The equa-
tion of exponential decay learning rate ηd is calculated as
follows:

ηd = η × dr
gs
ds , (14)

where, η represents the initial learning rate, dr represents the
decay rate, gs represents the global step and ds is the decay
step.

5) L2 REGULARIZATION
The basic idea of L2 regularization which can alleviate the
problem of overfitting is to add an L2 norm penalty to the
loss function as a constraint. The loss function J with L2 reg-
ularization is calculated as follows:

J = J0 +
λ

2n

∑
w

w2, (15)

where, J0 represents the original loss function, λ
2n

∑
w
w2 is

the L2 norm penalty, λ is the hyperparameter that controls
the ratio of the L2 norm penalty, n is the size of the training
samples and w represents the weights of the model.

D. FRAMEWORK OF SSDANET FOR HYPERSPECTRAL
CLASSIFICATION
SSDANet has universality. For different datasets, what needs
to be changed is the input data, the number of batch size,
and the number of output categories. The model based
on Pavia University is taken an example to illustrate the
design of SSDANet, as shown in Fig. 8. SSDANet is
mainly composed of the initial layer, three modules of
spectral-spatial dense connectivity which are called SSDC1,
SSDC2, and SSDC3 respectively for short, three mod-
ules of spectral-spatial attention mechanism which are
called SSAM1, SSAM2, and SSAM3 respectively for short,
the information aggregation layer, and the output layer.
Details of SSDANet are described below.

It is known to us that the size of Pavia University dataset
is 610× 340× 103. And the input of the model is the data
cube with the size of 15× 15× 103 selected from the orig-
inal dataset. First of all, the input data are amplified by the
strategy of data augmentation, and the number of training
samples obtained is 5 times that of the input samples. After
that, the initial layer is used to capture the general features
of the training samples. The initial layer is composed of
3-D convolution with the kernel size of 3× 3× 3× 4, BN,
ReLU, and dropout, after which 4 feature maps with the
size of 15× 15× 103 can be obtained. Then the SSDC1 is
adopted to extract the relatively fine features. As illustrated
before, the spectral-spatial dense connectivity mainly con-
sists of spectral dense connectivity block, spatial dense con-
nectivity block, and dimension reduction block. In SSDC1,
the 3-D convolution with the kernel size of 1× 1× 3× 6 is
adopted in the spectral dense connectivity block to extract
spectral features, whereas the 3-D convolutionwith the size of
3× 3× 1× 6 is used in the spatial dense connectivity block
to extract spatial features. Through the spectral dense con-
nectivity block and spatial dense connectivity block, feature
maps with the size of 15× 15× 103× 22 can be obtained
respectively. In the dimension reduction block of the SSDC1,
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the 3-D convolution with the kernel size of 1× 1× 1× 3
and the 3-D average pooling using the filter of 2× 2× 2
with the stride of (2, 2, 2) are adopted. After the operation
of dimension reduction, the feature maps with the size of
7× 7× 51× 3 can be obtained. Since spectral features and
spatial features need to be concatenated in SSDC1, the feature
maps with the size of 7× 7× 51× 6 can be obtained as
input of SSAM1. In the spectral-spatial attention mechanism,
the reduction ratio of the fully connected layer is set as 4 in
the paper. Next, the feature maps with size of 7× 7× 51× 6
obtained by the SSAM1 are used as input of SSDC2. Dif-
ferent from the SSDC1, the 3-D convolutional kernel sizes
of spectral dense connectivity block, spatial dense connec-
tivity block, and dimension reduction block in SSDC2 are
1× 1× 3× 12, 3× 3× 1× 12, and 1× 1× 1× 6, respec-
tively. And the feature maps with the size of 3× 3× 25× 12
can be obtained through SSDC2, which are used as the input
of SSAM2. The size of the output feature maps of SSAM2 is
still 3× 3× 25× 12. Then, the feature maps with the size
of 1× 1× 12× 18 can be obtained by the SSDC3. The 3-D
convolutional kernel sizes of the spectral dense connectivity
block, spatial dense connectivity block, and dimension reduc-
tion block in the SSDC3 are 1× 1× 3× 18, 3× 3× 1× 18,
and 1× 1× 1× 9, respectively. And then, the SSAM3 is
used to recalibrate the spectral-spatial features. After that,
the information aggregation layer which consists of 3-D
convolution, BN, ReLU, Dropout, and the flatten operation
is used to aggregate global features into a one-dimensional
matrix with the dimension of 2048. Finally, the probabilities
of different categories are produced by the output layer. The
output layer is mainly composed of the fully connected oper-
ation and is optimized by L2 regularization. The final output
vector ŷ = [ŷ1, ŷ2, · · · ,ŷL] is obtained after the softmax
function. Where, L is the number of categories of the selected
dataset.

SSDANet is a deep and wide model with end-to-end
structure, which can effectively extract discriminant features
from HSIs automatically. In SSDANet, the spectral-spatial
dense connectivity is put forward, which can not only extract
spectral-spatial features, but also enhance the reuse of fea-
tures, so as to alleviate the problems of gradient vanishing
and protect the integrity of information effectively. Equally
important, the spectral-spatial attention mechanism is put
forward to learn the importance of each feature channel
automatically, so that important spectral-spatial features can
be excited and unimportant spectral-spatial features can be
suppressed. Additionally, a series of optimization methods
including data augmentation, batch normalization, dropout,
exponential decay learning rate, and L2 regularization are
adopted, which can not only alleviate the overfitting problem,
but also can enhance robustness of the proposed model.

IV. EXPERIMENTS AND RESULTS
The datasets adopted, the experimental setup and the experi-
mental results are introduced in this section.

A. DATASETS
The datasets of Pavia University and Indian Pines are adopted
for the experiments.

The Pavia University dataset was acquired in 2001. It con-
tains the scenes of Pavia in northern Italy with 9 ground-truth
classes. The uncorrected dataset of Pavia University is made
up of 610× 340 pixels and 115 bands. The geometric reso-
lution is 1.3 m and the wavelength is from 0.43 to 0.86 µm.
After removing 12 noise bands, the corrected dataset contains
103 bands.

The Indian Pines dataset was obtained in June 1992. It con-
tains the scenes in Northwestern Indiana with 16 ground-
truth classes. The uncorrected Indian Pines is made up of
145× 145 pixels and 224 bands. The spatial resolution is
20 m and the wavelength is from 0.4 to 2.5 µm. After remov-
ing 24 noise bands, the corrected dataset contains 200 bands.

B. EXPERIMENT SETUP
In this paper, 20% samples of each category were randomly
selected as the training set and the remaining 80% as the test
set. The batch size of Indian Pines dataset was 32 and that of
Pavia University dataset was 10. Besides, the Adam optimizer
was adopted to make SSDANet converge quickly. Moreover,
the optimization method of exponential decay learning rate
was used to improve the performance of SSDANet. Where,
the initial learning rate was 0.001, the decay rate was 0.9, and
the decay step was 20000. Furthermore, the training iteration
was 100000. And the Dropout rate was 0.5.

The experimental hardware platform was a server with
Xeon Gold 6139 CPU, Tesla V100 GPU, 16G graphic mem-
ory and 64G random access memory. The experimental
software platform was based on the Ubuntu18.04 operating
system with CUDA10.0.13, Tensorflow1.13.1, Keras2.3.1,
and Python3.6.

The classification evaluation indexes adopted in this paper
are overall accuracy (OA), average accuracy (AA), and kappa
coefficient (K). Where, OA represents the ratio between
the number of correctly classified samples and the num-
ber of total samples. AA represents the mean value of
each category’s classification accuracy. And Kappa coeffi-
cient measures the consistency between the results and the
ground-truth.

C. EXPERIMENT RESULTS
In this section, the proposed method is compared with other
methods. The comparison methods include Naive Bayes,
Decision Tree, KNN, SVM, 1-D CNN [43], 2-D CNN [63],
3-D CNN [64], HybridSN [65], and the proposed method—
SSDANet. Where, Naive Bayes, Decision Tree, KNN, and
SVM were implemented by using scikit learn.1 1-D CNN,
2-D CNN, 3-D CNN and SSDANet were implement via
Tensorflow. And HybridSN—a network that combines 2-D
CNN and 3-D CNN was realized through Keras. For the sake
of fair comparison, 20% samples were used for training in

1http://scikit-learn.org
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TABLE 1. Results of different classification methods on the Pavia University Dataset.

TABLE 2. Results (%) of different classification methods on the Indian Pines Dataset.

all methods. The comparison methods can be classified by
two ways. On the one hand, Naive Bayes, Decision Tree,
KNN, and SVM belong to traditional classification meth-
ods; whereas 1-D CNN, 2-D CNN, 3-D CNN, HybridSN,
and SSDANet are all the classification methods based on
deep learning. On the other hand, Naive Bayes, Decision
Tree, KNN, SVM, and 1-D CNN are all the classification
methods based on spectral information; 2-D CNN is the
classification method based on spatial information; whereas
3-D CNN, HybridSN, and SSDANet are the classification
methods based on spectral-spatial information. Table 1 and
Table 2 show the results of different classification methods
on the Pavia university dataset and the Indian Pines dataset
respectively.

The following conclusions can be got from Tables 1 and
Table 2:

1) The classification methods based on deep learning
are generally superior to the traditional classification
methods. The traditional classification methods extract

features manually. Whereas the classification methods
based on deep learning can automatically mine features
from the data through the hierarchical structure, so they
are more powerful than the traditional methods in fea-
ture extraction.

2) The classification methods based on spectral-spatial
information have better performance than the meth-
ods based on spectral information and the methods
based on spatial information. This is because the fea-
tures extracted by the classification methods based on
spectral-spatial information include not only spectral
information but also spatial information, which can
realize the effective use of features.

3) The classification performance of SSDANet can reach
the level of state-of-the-art, which is because SSDANet
has excellent structure and can extract more discrimi-
nant information from HSIs compared with others.

4) In order to fully learn the features from the input data,
the running time of classification methods based on
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FIGURE 9. Classification maps on the Pavia University dataset. (a) Ground truth; (b) Naive Bayes; (c) Decision Tree; (d) KNN; (e) SVM; (f) 1-D CNN;
(g) 2-D CNN; (h) 3-D CNN (i) HybridSN; (j) SSDANet.

FIGURE 10. Classification maps on the Indian Pines dataset. (a) Ground truth; (b) Naive Bayes; (c) Decision Tree; (d) KNN; (e) SVM; (f) 1-D CNN; (g) 2-D
CNN; (h) 3-D CNN (i) HybridSN; (j) SSDANet.

deep learning is generally longer than that of traditional
methods. Although the classification methods based
on 3-D CNN have higher classification performance
compared with other classification methods based on
deep learning, there are numerous parameters, so the
computational effort is relatively large and the running
time is relatively long.

Classification maps of different methods on the Pavia Uni-
versity dataset and the Indian Pines dataset are presented
to further validate the performance of SSDANet, as shown
in Fig. 9 and Fig. 10.

It can be seen that the classificationmaps of SSDANet have
less noise and the boundaries of objects are clearly defined.
Compared with other methods, the classification maps of

SSDANet on the two datasets are closest to the ground
truth maps. The above analysis can prove the superiority of
SSDANet.

V. ANALYSIS AND DISCUSSION
In this part, the analysis and comparison of ablation studies
are used to illustrate the importance of each component in
SSDANet. In addition, in order to explain the characteristics
of SSDANet, the spatial size of input cube and the ratio of
training samples are analyzed.

A. ANALISIS AND COMPARISON OF ABLATION STUDIES
Ablation experiments were carried out to prove the effec-
tiveness of SSDANet. The OA, AA, and Kappa of

127176 VOLUME 8, 2020



X. Zhang et al.: SSDANet: Spectral-Spatial Three-Dimensional CNN for HSI Classification

FIGURE 11. Ablation studies on Pavia University.

FIGURE 12. Ablation studies on Indian Pines.

benchmark model—SSDANet were compared with those
of eight ablation models—the model without spectral
branch (SaDANet), the model without spatial branch
(SeDANet), the model without spectral-spatial attention
mechanism (SSDNet), the model without data augmen-
tation (SSDANet_WDA), the model without batch nor-
malization (SSDANet_WBN), the model without dropout
(SSDANet_WD), themodel without exponential decay learn-
ing rate (SSDANet_WDL), and the model without L2 reg-
ularization (SSDANet_WL) on the Pavia University dataset
and the Indian Pines dataset. The other settings of SSDANet
and eight ablation models are the same, except for the unused
modules. Fig. 11 and Fig. 12 are the comparison results. The
performance of SSDANet on the two datasets is higher than
that of other ablation models, thus proving the importance of
each component in the proposed method.

B. ANALYSIS OF THE SPATIAL SIZE OF THE INPUT CUBE
In the spectral-spatial classification methods of HSIs, it is
generally believed that the target pixel and its neighbor pixels

FIGURE 13. The influence of different spatial sizes of the input cube on
Pavia University.

FIGURE 14. The influence of different spatial sizes of the input cube on
Indian Pines.

belong to the same category. So the input of these methods
is usually presented in the form of 3-D cube to reduce the
intraclass variance, thus improving the classification per-
formance. And the spatial size of the input cube has great
influence on the classification performance. If the spatial size
of the input cube is too small, then the receptive field for
feature extraction will not be sufficient, resulting in the loss
of information and the reduction of the classification ability.
And if the spatial size of the input cube is too large, additional
noise will be introduced, resulting in the degradation of the
model. Therefore, the classification performance is analyzed
to find the optimal spatial size of the input cube. Fig. 13 and
Fig. 14 show the influence when the spatial size of the input
cube is 9 × 9, 11 × 11, 13 × 13, and 15 × 15 on the Pavia
University dataset and Indian Pines dataset. And when the
spatial size of the input cube is 15×15, the evaluation indexes
reach the optimal values on the two datasets. Therefore, the
spatial size of 15× 15 is regarded as the most suitable spatial
size of the SSDANet’s input cube under the condition that the
hardware platform allows.

C. ANALYSIS OF TRAINING SAMPLE RATIOS
In the Pavia University dataset and the Indian Pines dataset,
1%, 5%, 10%, 15%, and 20% samples were randomly
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FIGURE 15. The influence of the training sample ratios on Pavia
University.

FIGURE 16. The influence of the training sample ratios on Indian Pines.

selected as the training set to explore the impact of different
training sample ratios on the performance of SSDANet. The
results are shown in Fig. 15 and Fig. 16. When the training
sample ratio is small, the problem of overfitting is likely to
occur, resulting in poor performance of the model. And as
the training sample ratio increases, the learning ability of the
model also improves. There are sufficent samples in the Pavia
University dataset, so even though the training sample ratio
is small, the performance of SSDANet on this dataset is still
very high. Whereas the total sample number in the Indian
Pines dataset is relatively small, so the training sample ratio
has a great influence on the classification results of SSDANet.
In other words, the proportion of training samples needs to be
relatively large for the model to achieve high performance on
the Indian Pines dataset. To balance the performance of the
two datasets, 20% training samples are used as the training
set.

VI. CONCLUSIONS
A deep and wide network with end-to-end structure for the
classification of HSIs—SSDANet has been proposed in the
paper. In SSDANet, the spectral-spatial dense connectivity

has been put forward, which can learn spectral and spatial
features simultaneously and can protect the integrity of infor-
mation effectively. Equally important, spectral-spatial atten-
tion mechanism has been introduced to excite the important
spectral-spatial information and suppress the less important
spectral-spatial information by the means of squeeze and
excitation. In addition, a series of optimization methods have
been used to prevent overfitting and improve accuracy of the
model. The experiment showed that OA, AA, and Kappa on
the datasets of Pavia University and Indian Pines all exceeded
99%, reaching the level of state-of-the-art.

Although the classification methods based on 3-D CNN
can adapt to the characteristics of HSIs and improve the clas-
sification ability, the computational effort is huge. therefore,
in the follow-up study, we will explore how to improve the
performance of deep learning-based hyperspectral classifica-
tion methods with less computational effort.
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