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Abstract
Objectives: Traditional cancer therapy and regular immunotherapy are ineffective 
for treating triple-negative breast cancer (TNBC) patients. Recently, chimeric anti-
gen receptor-engineered natural killer cells (CAR NK) have been applied to target 
several hormone receptors on different cancer cells to improve the efficacy of im-
munotherapy. Furthermore, epidermal growth factor receptor (EGFR) is a potential 
therapeutic target for TNBC. Here, we demonstrated that EGFR-specific CAR NK 
cells (EGFR-CAR NK cells) could be potentially used to treat patients with TNBC ex-
hibiting enhanced EGFR expression.
Materials and methods: We investigated the cytotoxic effects of EGFR-CAR NK cells 
against TNBC cells in vitro and in vivo. The two types of EGFR-CAR NK cells were gen-
erated by transducing lentiviral vectors containing DNA sequences encoding the single-
chain variable fragment (scFv) regions of the two anti-EGFR antibodies. The cytotoxic 
and anti-tumor effects of the two cell types were examined by performing cytokine 
release and cytotoxicity assays in vitro, and tumor growth assays in breast cancer cell 
line-derived xenograft (CLDX) and patient-derived xenograft (PDX) mouse models.
Results: Both EGFR-CAR NK cell types were activated by TNBC cells exhibiting up-
regulated EGFR expression and specifically triggered the lysis of the TNBC cells in vitro. 
Furthermore, the two EGFR-CAR NK cell types inhibited CLDX and PDX tumors in mice.
Conclusions: This study suggested that treatment with EGFR-CAR NK cells could be 
a promising strategy for TNBC patients.
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1  | INTRODUC TION

The prevalence of triple-negative breast cancer (TNBC) is approxi-
mately 15%-20% among all patients diagnosed with the condition.1 
TNBC tumors do not express estrogen receptor (ER), progester-
one receptor (PR), and human epidermal growth factor receptor 
2 (Her2). Hence, patients with TNBC cannot undergo regular im-
munotherapy or hormone therapy that targets these receptors. 
Patients with this form of breast cancer undergoing chemotherapy 
or radiotherapy experience several side effects.2-4 Furthermore, 
the recurrence rates of TNBC among patients who have under-
gone these therapies are higher than those among patients with 
other forms of breast cancer.1 Therefore, there is a need to de-
velop a specific and effective therapeutic strategy to improve the 
outcomes of TNBC.

Studies that analyzed the epidermal growth factor receptor 
(EGFR)-associated gene expression profile revealed that 45%-
70% of patients with TNBC exhibited EGFR overexpression, 
which was associated with poor prognosis.5,6 Additionally, EGFR 
plays an important role in TNBC progression and EGFR mutation 
rarely occurs in patients with TNBC.7-16 Furthermore, several an-
ti-EGFR monoclonal antibodies (mAbs) and small-molecule tyro-
sine kinase inhibitors (TKIs) have been tested in clinical trials for 
the treatment of TNBC. However, the short-term activity of these 
molecules limits their therapeutic efficacy.5,17 Therefore, there 
is a need to develop an optimized EGFR-targeted treatment for 
patients with TNBC.

Chimeric antigen receptor (CAR)-engineered natural killer (NK) 
(CAR NK) cell therapy is one of the most promising immunothera-
pies for cancer.18,19 Recently, third-generation CARs were designed, 
which contain an extracellular binding domain, a hinge region, a 
transmembrane domain, and an intracellular domain. The extra-
cellular binding domain includes a single-chain variable fragment 
(scFv) derived from a tumor antigen-reactive antibody. The intra-
cellular domain includes both the signaling domain (CD3ζ), which 
mediates NK cell activation, and the co-stimulatory domains (CD28 
and 4-1BB), which enhance the NK cell functions, such as prolifer-
ation, resistance to apoptosis, cytokine secretion, and persistence. 
Furthermore, CAR NK cell technology has been applied in several 
clinical or preclinical treatments for various tumors,20,21 such as 
breast cancer,22 colorectal cancer,23 and glioblastoma.24

Chimeric antigen receptor-engineered NK cell therapy has more ad-
vantages than the CAR-engineered T-cell (CAR T-cell) therapy. Patients 
undergoing CAR NK cell treatment are unlikely to suffer from graft-
versus-host disease (GVHD), which may occur in patients undergoing 
CAR T-cell therapy.25,26 The detrimental effects of CAR NK cells are 
much lower than those of CAR T cells, since activation of NK cells does 
not result in cytokine release syndrome as may be observed by the ac-
tivation of T cells. Additionally, unlike CAR T cells, CAR NK cells can be 
generated from various sources, such as peripheral blood mononuclear 
cells (PBMCs), induced pluripotent stem cells, umbilical cord blood cells, 
human embryonic stem cells, and NK-92 cell lines.18,27-29

In the present study, EGFR-specific CAR NK cells (EGFR-CAR 
NK cells) were generated by fusing the scFv of an anti-EGFR anti-
body to the artificially combined receptor molecules, in order to 
examine their anti-tumor effects on TNBC cells. The anti-EGFR 
scFv region recognized the wild-type EGFR on TNBC cells. After 
recognition, the activated NK cells exerted cytotoxic effects on 
the TNBC cells exhibiting upregulated EGFR expression. Further, 
activation of the EGFR-CAR NK cells significantly inhibited the 
progression of breast cancer in vitro and in vivo. The results of 
this study suggested that EGFR-CAR NK cell immunotherapy could 
be the optimal treatment strategy for patients with TNBC in the 
future.

2  | MATERIAL S AND METHODS

2.1 | Cell lines and culture

Human breast cancer cell lines (MDA-MB-231, MDA-MB-468, 
HS578T, and MCF7) were purchased from the American Type 
Culture Collection (ATCC). The cell lines were used for the experi-
ments within 6 months. All the cell lines were cultured in Dulbecco's 
modified Eagle's medium (DMEM) (Gibco) supplemented with 10% 
heat-inactivated fetal bovine serum (Gibco) and 1% penicillin-strep-
tomycin solution (Gibco) in a humidified incubator at 5% CO2 and 
37°C.

2.2 | Generation of EGFR-CAR NK cells

The lentiviral vector containing third-generation CAR (Con-CAR) 
was purchased from iCARTab BioMed. The two DNA fragments of 
the anti-EGFR scFv were cloned from the monoclonal hybridoma, 
which was previously established in the laboratory (Patent number: 
20191158758.7).

The fused anti-EGFR-specific scFv (1 or 2) was cloned into the 
third-generation CAR (Lenti-EF1a-scFv-3rd-CAR) with CD8 hinge, 
CD28 transmembrane domain, and intracellular signaling domains of 
4-1BB and CD3ζ. Con-CAR was used as the control.

Peripheral blood mononuclear cells were isolated from the whole 
blood of healthy donors by Ficoll density gradient centrifugation. NK 
cells were obtained by stimulating the PBMCs in the NK cell-specific 
medium (Dakewe) with 5% human serum (Sigma) for 14 days. The 
cells were incubated under saturated humidity conditions at 5% CO2 
and 37°C. The 293T/17 cells were co-transfected with CAR lentiviral 
plasmids along with pMD2.G and psPAX2 using the Lipofectamine 
2000 reagent (Invitrogen). The lentiviral supernatant was collected 
after 2 days. Subsequently, the NK cells were transduced with len-
tiviral vectors carrying the DNA sequence that encoded the EGFR-
specific third-generation CARs. The transfected cells were cultured 
under NK cell-specific conditions for 3 days to obtain the EGFR-CAR 
NK cells.
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2.3 | Real-time polymerase chain reaction (PCR)

Total RNA was extracted using the RNeasy kit (OMEGA). The ex-
tracted RNA was subjected to reverse transcription using the 
PrimeScript RT reagent kit (Takara), following the manufacturer's 
instructions. The cDNA was subjected to real-time PCR using SYBR 
Premix Ex Taq (Takara). The primer sequences used for real-time 
PCR analysis are listed in Table 1.

2.4 | Small interfering RNA (siRNA)

The EGFR-targeting and negative control siRNAs were purchased 
from GenePharma (Suzhou). The siRNA sequences are listed in 
Table 2. The siRNA (50 mmol/L) was transfected into the cells using 
Lipofectamine RNAi MAX (Invitrogen).

2.5 | Western blotting

The anti-CD3ζ, anti-EGFR, and anti-β-actin antibodies were pur-
chased from Abcam, Cell Signal Technology, and Sigma, respec-
tively. The anti-rabbit and anti-mouse secondary antibodies were 
purchased from Santa Cruz Biotechnology. The Western blotting 
analysis was performed according to the standard procedure.30,31

2.6 | Flow cytometry

The breast cancer cells and EGFR-CAR NK cells were quantitated or 
isolated by flow cytometry using several fluorescence-conjugated an-
tibodies, following the manufacturer's instructions. The following rea-
gents were used for this analysis: anti-human CD3-PE-Cy7, anti-human 
CD56-PE, anti-human CD69-APC-Cy7, mouse control PE, mouse con-
trol APC-Cy7, mouse control PE-Cy7, and Human TruStain FcX™ block-
ing solution purchased from BioLegend; anti-EGFR antibody purchased 
from Cell Signal Technology; and goat anti-rabbit IgG purchased from 
Abcam. The flow cytometric analyses were performed in a BD™ flow 
cytometer. The data were analyzed using FlowJo v10 software.

2.7 | In vitro cytokine release assay

The human breast cancer cells (1  ×  104; HS578T, MDA-MB-468, 
MDA-MB-231, and MCF7) were co-cultured with a suitable density 
of CAR NK cells in each well of the 96-well flat-bottom plates for 

24 hours. The supernatant of the co-culture was used to detect the 
levels of interferon (IFN)-γ, granzyme B, and perforin (Dakewe) by 
enzyme-linked immunosorbent assay (ELISA) (Dakewe).

2.8 | Cytotoxicity assay

The human breast cancer cells (1  ×  104; HS578T, MDA-MB-468, 
MDA-MB-231, and MCF7) were co-cultured with the optimized num-
ber of CAR NK cells in each well of the 96-well flat-bottom plates. 
The media containing dying and dead cells were collected for further 
analysis. The LDH cytotoxicity assay kit (Beyotime) and YOYO™-3 
Iodide (ThermoFisher) were used to measure the cytotoxic activity of 
the CAR NK cells, following the manufacturer's instructions. The cyto-
toxic activities were analyzed using an enzyme-labeled instrument and 
a live cell imaging system.

2.9 | Cell line-derived xenograft (CLDX) 
mouse model

Female nude mice were purchased from Beijing Biocytogen Co.,Ltd 
and maintained under pathogen-free conditions. The TNBC cells 
(5 × 106 cells) were injected into the mammary fat pad of the female 
mice. NK cells (1 × 107) were injected into the TNBC tumors on days 
14, 21, 28, and 35. A Vernier caliper was used to measure the width 
and length of the tumors every week. The volume was calculated using 
the following formula: (1/2) × (l) × (w)2 [l, length; w, width].

2.10 | Patient-derived xenograft (PDX) 
mouse model

The medical ethics committee of the Suzhou Institute of Biomedical 
Engineering and Technology (A-06) approved this method. The patients 
provided their signed authorization to use the human triple-negative 
breast tumor tissues. The cells from these tissues were engrafted into 
the mammary fat pad of each mouse as described previously. NK cells 
(1 × 107) were injected into the PDX tumors (at least >4 mm3) in mice at 
weeks 1, 2, and 3. The tumor size was measured as described previously.32

2.11 | Immunohistochemical assay

Primary breast tumors and PDX tumors were fixed with 4% para-
formaldehyde, embedded in paraffin blocks, and micro-dissected 

Gene Primer forward Primer reverse

EGFR AGTATTGATCGGGAGAGCC CCAGGATAAATTGAATGGCAC

CD3ζ GCCAGAACCAGCTCTATA CCTCCGCCATCTTATCTT

β-actin AACCCTAAGGCCAACCGTGA GTCTCCGGAGTCCATCACAA

TA B L E  1  Primer sequences for real-
time PCR
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into several thin sections. The sections were subjected to depar-
affinization and antigen retrieval using citric acid buffer (pH 3.5) 
for 15 minutes. The specimens were incubated with 1% hydrogen 
peroxidase for 10 minutes. Subsequently, the specimens were incu-
bated overnight with the horseradish peroxidase (HRP)-conjugated 
antibodies against ER, PR, HER2, or EGFR (Cell Signaling Technology) 
at 4°C. The staining was performed using the HRP-IHC kit, following 
the manufacturer's instructions.

3  | RESULTS

3.1 | Generation and characterization of EGFR-CAR 
NK cells

The third-generation EGFR-CAR (Lenti-EF1a-scFv-3rd-CAR) was 
constructed by fusing the anti-EGFR-specific scFv (1 or 2) with the 
CD8 hinge, CD28 transmembrane domain, and intracellular signal-
ing domains of 4-1BB and CD3ζ (Figure  1A,B). The constructed 
lentiviral vectors carrying the CARs were verified by NcoI/KpnI 
restriction digestion and gel electrophoresis (Figure 1C). Human 
primary NK cells were activated/isolated from the PBMCs cul-
tured with (day14) or without (day0) NK cell-specific medium. 
NK cells were characterized by flow cytometric analysis using the 
anti-CD3, anti-CD56, and anti-CD69 antibodies. The percentage 
of the potential NK cells (CD3-CD56+) isolated from the day 14 
PBMC cultures was higher than the day 0 PBMCs (Figure 2A-D). 

The potential NK cell population was further transduced with 
the lentiviral vectors that carried either of the two EGFR-specific 
CARs (EGFR-CAR-1 and EGFR-CAR-2) or a third-generation CAR 
as the control CAR (Con-CAR). The generation of EGFR-CAR or 
Con-CAR NK cells was verified by real-time PCR and Western 
blotting analyses using the primer of CD3ζ or anti-CD3ζ antibody. 
The expression of CARs was analyzed in the transduced NK cells 
(Figure 2E,F). The non-transduced or transduced NK cells treated 
with the EGFR- or IgG-FITC were subjected to flow cytometry, to 
further characterize whether the EGFR-CAR NK cells were able 
to recognize EGFR in vitro (Figure 2G). Approximately, 75% of the 
EGFR-CAR-1 or EGFR-CAR-2 NK cells were labeled with EGFR-
FITC (Figure 2G). Additionally, the transduction of CARs did not 
reduce the rate of proliferation of the NK cells (Figure S1). Thus, 
the generated EGFR-CAR NK cells could specifically recognize 
EGFR in vitro.

3.2 | EGFR-CAR NK cells exert cytotoxic activity 
against TNBC cells by inducing cell lysis in vitro

The Western blotting analysis revealed that the protein expression 
levels of EGFR in the TNBC cell lines (HS578T, MDA-MB-468, and 
MDA-MB-231 cells) were higher than that in the non-TNBC cell line 
(MCF7 cells) (Figure S2A). Additionally, the correlation between 
EGFR expression levels on the cell membranes and total EGFR levels 
in the four cell lines was examined by flow cytometric analysis using 

Gene Sense Antisense

Negative control UUCUUCGAACGUGUCACGUTT ACGUGACACGUUCGGAGAATT

si-EGFR GAAUUAAGAGAAGCAACAUTT AUGUUGCUUCUCUUAAUUCCU

TA B L E  2  The sequence of short 
interfering RNA (siRNA)

F I G U R E  1  Construction of the 
chimeric antigen receptor (CAR) and 
gel electrophoresis of the plasmid and 
restriction enzyme-treated DNA products. 
(A) Structure diagram of recombinant 
lentiviral vector containing the sequences 
encoding third-generation CAR (Lenti-
EF1a-scFv-3rd-CAR). (B) Schematic 
illustration of the lentiviral vector 
containing third-generation CAR (Con-
CAR), epidermal growth factor receptor 
(EGFR)-specific CAR-1-engineered (EGFR-
CAR-1), and EGFR-CAR-2 constructs. (C) 
M: 1 kb DNA marker; Lane 1, untreated 
Con-CAR plasmid; Lane 2, NcoI-treated 
Con-CAR DNA products; Lane 3, 
untreated EGFR-CAR-1 plasmid; Lane 
4, two KpnI-treated EGFR-CAR-1 DNA 
products; Lane 5, untreated EGFR-CAR-2 
plasmid; Lane 6, NcoI-treated EGFR-
CAR-2 DNA products
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the anti-EGFR antibody (Figure S2B-E). The three TNBC cell lines 
and the MCF7 cell line were used to investigate the anti-tumor activ-
ity of the EGFR-CAR NK cells in this study.

Cytokine release assays were performed to quantify the rel-
ative amounts of IFN-γ, granzyme B, and perforin in the co-cul-
tured systems between NK cells (transduced or non-transduced) 

F I G U R E  2  Generation, isolation, and characterization of epidermal growth factor receptor (EGFR)-specific chimeric antigen receptor 
(CAR)-engineered natural killer (NK) cells (EGFR-CAR NK cells). (A) Flow cytometric analysis of phenotypic and subset composition of 
peripheral blood mononuclear cells (PBMCs) labeled with anti-CD3-PE-Cy7, anti-CD56-PE. (B-C) Flow cytometric analysis of phenotypic 
and subset composition of NK cells labeled with anti-CD3-PE-Cy7, anti-CD56-PE, and anti-CD69-APC-Cy7. (D) The percentage of CD3-/
CD56 + cells in day 0 PBMCs and day14 PBMC culture. (E) Real-time PCR and (F) Western blotting analyses of the expression of exogenous 
CD3ζ in the non-transduced NK cells, Con-CAR NK cells, EGFR-CAR-1 NK cells, and EGFR-CAR-2 NK cells. β-actin was used as an 
endogenous control. (G) The transduced NK cells stained with IgG-FITC and EGFR-FITC antibodies were detected by flow cytometry
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and breast cancer cells (TNBC and non-TNBC cells). The assays 
were performed to determine whether the EGFR-CAR NK cells 
expressing either of the two EGFR-CARs could be specifically acti-
vated by interacting with the TNBC cells (HS578T, MDA-MB-468, 
MDA-MB-231) exhibiting enhanced EGFR expression in vitro. The 
EGFR-CAR NK cells co-cultured with the TNBC cells exhibiting 
enhanced EGFR expression secreted significantly higher levels 
of IFN-γ, granzyme B, and perforin than those co-cultured with 
MCF7 (Figure 3A-C and Table 3). Additionally, both the non-trans-
duced and Con-CAR NK cells co-cultured with either TNBC or 
non-TNBC cells only secreted basal levels of IFN-γ, granzyme 
B, and perforin (Figure  3A-C and Table  3). Cytokine release as-
says were performed to quantify the cytokines secreted by the 
NK cells co-cultured with the EGFR-knockdown TNBC by siRNA 
in order to confirm the possible correlation between TNBC cells 
exhibiting enhanced EGFR expression and the activation of the 

EGFR-CAR NK cells in vitro (Figure S3). Consistently, the lower 
EGFR expression of the TNBC cells led to lower cytokine secre-
tion by the EGFR-CAR NK cells (Figure 3A-C and Table 3). These 
data suggested that activation of the EGFR-CAR NK cells was 
likely induced by TNBC cells exhibiting upregulated EGFR expres-
sion in vitro.

Cytotoxicity assay was performed to quantify the specific lysis 
percentage by measuring lactate dehydrogenase (LDH) activity in 
the co-cultured systems with the ratio between the effector (NK 
cells) and target cells (breast cancer cells) (E/T ratio). This assay was 
performed to investigate the ability of the activated EGFR-CAR NK 
cells to specifically trigger TNBC cell death. As expected, higher 
E/T ratio between the EGFR-CAR NK cells and the high-EGFR-ex-
pressing TNBC cells significantly elevated the percentage of the 
specific lysis in the co-cultured systems (Figure 3D-G and Table 3). 
Conversely, higher E/T ratio between the EGFR-CAR NK cells and 

F I G U R E  3  Cytokine release and 
cytotoxicity assay. Cytokine release of 
the effector non-transduced natural 
killer (NK) cells, third-generation chimeric 
antigen receptor (CAR)-engineered 
NK cells (Con-CAR NK cell), epidermal 
growth factor (EGFR)-specific CAR-1-
engineered NK cells (EGFR-CAR-1 NK 
cells), and EGFR-CAR-2 NK cells induced 
by the target cells. The effector cells 
were co-cultured with the target cells 
(HS578T, MDA-MB-468, MDA-MB-231, 
and MCF7). The levels of (A) interferon 
(IFN)-γ, (B) granzyme B and (C) perforin 
were analyzed in the supernatants of the 
co-culture of the effector cells with the 
target cell at an E/T ratio of 10:1 for 24 h. 
Cytotoxicity of each group was measured 
by a standard lactate dehydrogenase 
(LDH) release assay. The effector cells 
were co-cultured with the target cells (D) 
HS578T, (E) MDA-MB-468, (F) MDA-
MB-231, and (G) MCF7 at an E/T ratio of 
5:1, 10:1, 20:1 for 24 h. For each test, four 
duplicates were performed. The error bars 
represent the mean ± standard error of 
mean (SEM) of four biological replicates 
(n = 4). t test; ***P < .001
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the low-EGFR-expressing MCF7 cells did not increase the percent-
age of the specific lysis in the co-cultured systems (Figure  3D-G 
and Table 3). In addition, higher E/T ratio between the EGFR-CAR 
NK cells and EGFR-knockdown TNBC cells did not increase in a 
manner similar to that between EGFR-CAR NK cells and TNBC cells 
(Figure 3D-G and Table 3). Furthermore, the results of the cell lysis 
assays (YOYO™-3 Iodide staining) confirmed that the EGFR-CAR 
NK cells triggered significantly greater lysis of TNBC cells exhibiting 
upregulated EGFR expression than the Con-CAR NK or non-trans-
duced NK cells(Figure S4).

These data suggested that the activated EGFR-CAR NK cells 
likely triggered cell lysis or death of the TNBC cells exhibiting upreg-
ulated EGFR expression in vitro.

3.3 | Anti-TNBC activity of the EGFR-CAR NK cells 
in mouse models

Tumor growth assays were performed by inoculating the TNBC 
cell lines into the breast fat pad of the female nude mice that were 

TA B L E  3  Cytokine release and cytotoxicity assay data

IFN-γ
Non-transduced 
T Cell Con-CAR-T Cell EGFR-CAR-1 T Cell EGFR-CAR-2 T Cell

EGFR-CAR-1 T 
Cell + si-EGFR

EGFR-CAR-2 T 
Cell + si-EGFR

HS578T 488.12 ± 6.11 504.37 ± 2.95 3512.91 ± 66.11 3505.57 ± 105.7 1397.71 ± 77.65 1394.44 ± 61.91

MDA-MB-468 500.92 ± 6.27 502.36 ± 8.8 3829.35 ± 50.5 3873.12 ± 104.57 1515.99 ± 48.86 1456.33 ± 125.99

MDA-MB-231 496.95 ± 14.21 504.05 ± 12.31 3249.29 ± 92.03 3358.86 ± 100.09 1470.19 ± 118.44 1473.4 ± 60.12

MCF7 489.09 ± 15.08 495.61 ± 8.97 1220.01 ± 14.11 1274.07 ± 40.34

Granzyme B
Non-transduced 
T Cell Con-CAR-T Cell EGFR-CAR-1 T Cell

EGFR-CAR-2 T 
Cell

EGFR-CAR-1 T 
Cell + si-EGFR

EGFR-CAR-2 T 
Cell + si-EGFR

HS578T 2197.84 ± 40.37 2127.45 ± 100.69 6954.42 ± 61.32 6989.99 ± 115.86 3327.61 ± 59.6 3253.02 ± 41.83

MDA-MB-468 2197.38 ± 14.91 2169.75 ± 84.99 7359.36 ± 99.05 7452.03 ± 134.51 3530.96 ± 58.36 3392.68 ± 57

MDA-MB-231 2148.65 ± 86.49 2163.38 ± 42.97 6675.19 ± 107.28 6669.94 ± 71.3 3342.84 ± 52.79 3406.86 ± 40.66

MCF7 2158.03 ± 143.06 2140.04 ± 83.53 3410.83 ± 113.56 3199 ± 86.61

Perforin
Non-transduced 
T Cell Con-CAR-T Cell

EGFR-CAR-1 T 
Cell

EGFR-CAR-2 T 
Cell

EGFR-CAR-1 T 
Cell + si-EGFR

EGFR-CAR-2 T 
Cell + si-EGFR

HS578T 1843.39 ± 31.02 1814.83 ± 50.21 7814.99 ± 81.96 7763.89 ± 250.35 3279.44 ± 18.37 3139.85 ± 51.5

MDA-MB-468 1834.99 ± 56.09 1856.42 ± 17.83 8391.36 ± 361 8087.56 ± 369.65 3482.25 ± 107.29 3478.75 ± 219.77

MDA-MB-231 1827.81 ± 51.7 1833.28 ± 54.35 7421.69 ± 147.89 7378.05 ± 169.2 3140.26 ± 47.38 3100.24 ± 27.19

MCF7 1859.73 ± 18.94 1861.13 ± 13.5 3669.41 ± 247.94 3486.72 ± 186.45

E:T (HS578T)
Non-transduced 
T Cell Con-CAR-T Cell

EGFR-CAR-1 T 
Cell

EGFR-CAR-2 T 
Cell

EGFR-CAR-1 T 
Cell + si-EGFR

EGFR-CAR-2 T 
Cell + si-EGFR

5:1 8.79 ± 0.63 8.54 ± 0.47 40.97 ± 0.36 41.92 ± 1.29 22.92 ± 1.45 21.58 ± 0.55

10:1 15.93 ± 2.28 15.4 ± 0.28 45.13 ± 1.72 44.37 ± 0.84 26.91 ± 0.74 26.32 ± 1.04

20:1 20.15 ± 1.2 20.63 ± 0.68 54.53 ± 1.24 53.79 ± 1.12 29.3 ± 0.87 27.99 ± 0.65

E:T 
(MDA-MB-468)

Non-transduced 
T Cell Con-CAR-T Cell EGFR-CAR-1 T Cell

EGFR-CAR-2 T 
Cell

EGFR-CAR-1 T 
Cell + si-EGFR

EGFR-CAR-2 T 
Cell + si-EGFR

5:1 8.66 ± 0.29 8.79 ± 0.52 44.23 ± 1.29 44.78 ± 1.04 23.47 ± 1.05 23.12 ± 0.53

10:1 15.8 ± 1.55 14.51 ± 0.34 62.46 ± 0.68 65.61 ± 1.23 27.13 ± 0.72 26.96 ± 1.73

20:1 19.11 ± 0.47 19.57 ± 0.66 68.58 ± 2.07 68.63 ± 0.72 30.71 ± 0.54 30.72 ± 0.53

E:T 
(MDA-MB-231)

Non-transduced 
T Cell Con-CAR-T Cell EGFR-CAR-1 T Cell

EGFR-CAR-2 T 
Cell

EGFR-CAR-1 T 
Cell + si-EGFR

EGFR-CAR-2 T 
Cell + si-EGFR

5:1 8.49 ± 0.2 8.74 ± 1.07 42.53 ± 1.6 42.54 ± 0.63 23.68 ± 0.7 23.79 ± 1.03

10:1 15.76 ± 0.98 15.17 ± 0.78 54.24 ± 1.1 52.56 ± 1.57 27.32 ± 1 25.91 ± 0.83

20:1 18.77 ± 0.81 19.95 ± 0.73 62.72 ± 2.06 63.14 ± 1.6 29.01 ± 1.16 28.51 ± 1.23

E:T(MCF7) Non-transduced T Cell Con-CAR-T Cell EGFR-CAR-1 T Cell EGFR-CAR-2 T Cell

5:1 8.37 ± 0.22 8.46 ± 0.28 16.77 ± 0.35 16.6 ± 0.14

10:1 15.27 ± 0.47 14.94 ± 1.38 25.42 ± 1.31 22.47 ± 1.21

20:1 20.21 ± 0.25 19.76 ± 0.35 29.2 ± 3.01 29.09 ± 1.03
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injected with EGFR-CAR NK cells or Con-CAR NK cells on days 14, 
21, 28, and 35 to assess the possible role of EGFR-CAR NK cells in 
inhibition of CLDX TNBC tumor growth. The average weight and vol-
ume (size) of the xenograft TNBC tumors in the female nude mice 
treated with EGFR-CAR-1 or EGFR-CAR-2 NK cells were lower than 
those treated with the Con-CAR NK cells (Figure 4A-L). The MCF7 
tumor growth could not be suppressed by the EGFR-CAR NK cells 

(Figure  4M-P). The average lifespan of TNBC tumor-bearing mice 
treated with EGFR-CAR NK cells or si-EGFR was longer than that of 
the mice treated with Con-CAR NK cells (Figure S5). Cells derived 
from TNBC patients were used to perform tumor growth assays to 
further investigate the role of EGFR-CAR NK cells in the inhibition 
of PDX tumor growth. Consistently, the average sizes of the PDX 
tumors exhibiting upregulated EGFR expression in the female nude 

F I G U R E  4  Epidermal growth factor (EGFR)-specific chimeric antigen receptor (CAR)-engineered natural killer (NK) cells (EGFR-CAR NK 
cells) inhibited EGFR-expressing triple-negative breast cancer (TNBC) tumor growth in a xenograft mouse model. Compared to Con-CAR 
NK cells, EGFR-CAR-1 NK cells and EGFR-CAR-2 NK cells decreased the tumor weight and tumor volume of (A, B, C) HS578, (E, F, G) MDA-
MB-468, and (I, J, K) MDA-MB-231. However, treatment with EGFR-CAR-1 and EGFR-CAR-2 NK cells did not affect the tumor volume of (M, 
N, O) MCF7 and the body weight of the mice (D, H, L, P). The error bars represent the mean ± standard error of mean (SEM) (n = 5). t test; 
*P < .05; **P < .01; ***P < .001
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mice treated with EGFR-CAR-1 or EGFR-CAR-2 NK cells were also 
smaller than those treated with the Con-CAR-NK cells (Figure  5). 
Additionally, immunohistochemical analyses revealed that the pro-
tein (EGFR, ER, PR, and HER2) expression patterns of the PDX tu-
mors in mice were similar to those of the original TNBC tissues from 
the patients (Figure  5A,B). Immunofluorescence imaging analysis 
revealed that CAR NK cells (CD56+) were present in the tumor core 

region after being injected into the tumor for 7 days (Figure S6). The 
body weights of the mice were not affected by treatment with EGFR-
CAR-1, EGFR-CAR-2, or Con-CAR NK cells in both xenograft mod-
els, suggesting that the tumor sizes were not affected by the health 
condition of the mice (Figure 4D,H,L,P and Figure 5F). These data 
indicated that the EGFR-CAR NK cells likely inhibited the growth of 
TNBC tumors exhibiting upregulated EGFR expression in mice.

F I G U R E  5  Epidermal growth factor receptor (EGFR)-specific chimeric antigen receptor (CAR)-engineered natural killer (NK) cells 
(EGFR-CAR NK cells) inhibited the tumor growth of triple-negative breast cancer (TNBC) exhibiting enhanced EGFR expression in the 
patient-derived xenotransplant (PDX) mouse model. Immunohistochemical assay assessed estrogen receptor (ER), progesterone receptor 
(PR), human epidermal growth factor receptor 2 (HER2), and EGFR expression in (A) the clinical breast cancer sample and (B) breast tumors 
of NSG mice. Compared to Con-CAR NK cells, the EGFR-CAR-1 NK cells and EGFR-CAR-2 NK cells decreased the (C, D) tumor weight and 
(E) tumor volume but did not affect the (F) body weight of mice. The error bars represent the mean ± standard error of mean (SEM) (n = 4). 
t test; **P < .05 and ***P < .01
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4  | DISCUSSION

Chimeric antigen receptor-engineere NK cells recognize their corre-
sponding antigens via an antigen-binding domain. CAR NK cells spe-
cifically recognize and kill tumor cells via antigen-antibody binding. 
In this study, the EGFR-CAR NK cells were generated by transducing 
a lentiviral vector containing the sequences encoding EGFR-CARs 
(Figure 1). Western blotting and flow cytometry analyses indicated 
that the EGFR-CAR NK cells could specifically recognize EGFR in 
vitro (Figures 2 and 3 and Figure S4). The activated EGFR-CAR NK 
cells induced cell lysis or death of the TNBC cells exhibiting upregu-
lated EGFR expression in vitro (Figure 3 and Figure S4). Furthermore, 
the EGFR-CAR NK cells exerted a significant anti-tumor effect on 
TNBC exhibiting upregulated EGFR expression in the two TNBC 
xenograft models (Figures 4 and 5). In addition, the tumor-bearing 
mice treated with the EGFR-CAR NK cells lived longer than the mice 
treated with Con-CAR NK cells (Figure S5). Thus, our research indi-
cated that EGFR-CAR NK cells could be used for the development of 
a promising therapeutic strategy against TNBC exhibiting enhanced 
EGFR expression.

Epidermal growth factor receptor plays an important role in 
mediating cell proliferation, apoptosis, angiogenesis, and other 
cancer progression-related functions.33-37 EGFR levels remain 
relatively high on the membranes of TNBC cells.6 Several EGFR-
specific mAbs and small-molecule TKIs have been used in cancer 
therapy.38-43 However, many patients with TNBC participating in 
trials responded poorly to these molecules. Additionally, the can-
cer cells in some patients with TNBC developed drug resistance 
during the trials. The development of immunotherapy has rendered 
CAR NK cell technology one of the most promising therapeutic 
strategies for solid cancers. The CAR NK cell technology has many 
advantages compared to the CAR T-cell technology in targeted im-
munotherapy.44 For example, CAR NK cells do not cause GVHD. 
Furthermore, this immunotherapy does not cause cytokine release 
syndrome. Additionally, CAR NK cells can be generated from var-
ious sources.25-28 In this study, EGFR-CAR NK cells recognized 
EGFR more efficiently than the Con-CAR NK cells (Figure 2G), and 
EGFR-CAR NK cells were activated and secreted more IFN-γ, gran-
zyme B, and perforin when co-cultured with TNBC cells exhibiting 
upregulated EGFR expression in vitro (Figure 3A-C). Additionally, 
the activated EGFR-CAR NK cells induced cytotoxic activity in 
TNBC cells exhibiting upregulated EGFR expression more dramat-
ically than MCF7 cells in vitro, according to the data from both the 
LDH release and YOYO-3 labeling assays (Figure 3 and Figure S4). 
These results suggested that cell lysis triggered by the EGFR-CAR 
NK cells might be dependent on the amount of EGFR in breast can-
cer cells.

First-generation antigen-specific CAR NK cell immunotherapy 
was reported to be less effective against solid cancers than blood 
cancers.45 However, the third-generation CAR NK cells that could 
mediate more intracellular signaling pathways demonstrated better 
anti-tumor activity.46 The findings of this study revealed that EGFR-
CAR NK cells significantly inhibited TNBC exhibiting upregulated 

EGFR expression in the CLDX (Figure  4 and Figure S5) and PDX 
mouse (Figure 5) models.

The present study demonstrated that the activated EGFR-CAR NK 
cells upregulated cytokine secretion, promoted cytotoxicity against 
the TNBC cells exhibiting upregulated EGFR expression in vitro, and 
inhibited tumor growth in mice without affecting mice bodyweight. 
However, EGFR is also expressed in several normal tissues.47,48 Some 
EGFR-specific immunotherapeutic trials involving cetuximab and 
nimotuzumab also reported side effects in patients.49,50 Therefore, 
EGFR-specific immunotherapy should be administered locally into 
the tumor rather than as systemic/intravenous injections. Moreover, 
the efficacy of EGFR-CAR NK immunotherapy can be increased by 
simultaneously triggering TNBC cell apoptosis.51 Furthermore, CAR 
NK technology combined with mAbs or small-molecule TKIs can im-
prove the outcomes of breast cancer. This study provides a promising 
immunotherapeutic strategy for the treatment of patients with high-
EGFR- expressing TNBC.

5  | CONCLUSION

In this study, we confirmed that EGFR-CAR NK cells could effec-
tively recognize TNBC cells exhibiting upregulated EGFR expres-
sion. Additionally, the two distinct EGFR-CAR NK cells inhibited the 
growth of the TNBC tumor both in vitro and in vivo. Thus, EGFR-
CAR NK cells could be potentially applied in the treatment of pa-
tients with TNBC.
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