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Featured Application: The design of this article can be applied to Travelling Salesman Problem
and related problems.

Abstract: In order to solve the problem of poor local optimization of the Slime Mold Algorithm (SMA)
in the Travelling Salesman Problem (TSP), a Two-way Parallel Slime Mold Algorithm by Flow and
Distance (TPSMA) is proposed in this paper. Firstly, the flow between each path point is calculated
by the “critical pipeline and critical culture” model of SMA; then, according to the two indexes of
flow and distance, the set of path points to be selected is obtained; finally, the optimization principle
with a flow index is improved with two indexes of flow and distance and added random strategy.
Hence, a two-way parallel optimization method is realized and the local optimal problem is solved
effectively. Through the simulation of Traveling Salesman Problem Library (TSPLIB) on ulysses16,
city31, eil51, gr96, and bier127, the results of TPSMA were improved by 24.56, 36.10, 41.88, 49.83,
and 52.93%, respectively, compared to SMA. Furthermore, the number of path points is more and the
optimization ability of TPSMA is better. At the same time, TPSMA is closer to the current optimal
result than other algorithms by multiple sets of tests, and its time complexity is obviously better than
others. Therefore, the superiority of TPSMA is adequately proven.

Keywords: Slime Mold Algorithm; two-way parallel optimization; flow and distance; Travelling
Salesman Problem

1. Introduction

The Travelling Salesman Problem (TSP) [1,2] is a classical problem in Non-Deterministic Polynomial
problems, and has important practical significance in road network planning, workshop dispatch,
and so on. With the development of the heuristic bionic algorithms and their good effect on solving
problems, TSP has been solved by various intelligent algorithms such as Genetic Algorithm (GA) [3,4],
Particle Swarm Optimization (PSO) [5,6], Ant Colony Optimization (ACO) [7,8], the classic heuristic
Lin-Kernighan [9,10] and Lin-Kernighan-Helsgaun Solver (LKH) [11,12], etc. PSO is simple, but its
effect is not good. The effect of GA is general and the algorithm is complex. ACO has a good effect,
but its convergence speed is slow. For Lin-Kernighan, its complexity increases exponentially with
the increase in the number of path points, so it takes too long to obtain results. LKH is an improved
algorithm on the basis of Lin-Kernighan. Although the optimization method is the best so far in TSP,
the time complexity is still too large to optimize quickly.
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The microorganism called slime mold [13] has an evolutionary history of 100 million years.
It can eventually find a high-quality foraging path by avoiding external obstacles in a network
structure. The unique and efficient foraging process provides a new inspiration for path optimization.
Therefore, scientists learned from the intelligent life and obtained a new algorithm called Slime Mold
Algorithm (SMA) [14]. With the unique searching ability, slime molds can efficiently find a high-quality
way to the food in maze experiments. As shown in Figure 1, based on the slime mold’s foraging
behavior, the scientists thought of the food sources as the cities of a country. It was found that the
foraging path network of slime molds is highly similar to the actual road network designed in the
country [15–18]. Thus, foraging behavior of slime mold has great significance to be explored for path
optimization [19–23].
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cellular model. In China, Southwest University has studied the Slime Mold Algorithm combined with 
the pheromones of the Ant Colony Optimization to solve the classic TSP and multi-object TSP [31–
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Figure 1. Foraging network of slime mold and road network.

In 2000, Japanese scientist Nakagaki [14,24–26] discovered that the slime mold can walk through
the maze. The researchers placed the slime molds in a maze and dropped food at the entrance and exit
of the maze in a petri dish. After a period of time, slime molds formed a feeding route. It was obtained
as the solution to solve a complex maze problem. In 2007, Tero [27,28] came up with the model of
“pipeline culture,” which mainly used Poisson Theorem and Kirchhoff’s Laws to realize the pipeline
mechanism of flow and conductivity. This model can be equivalent to the foraging behavior of slime
molds. Afterwards, Gunji et al. [29,30] applied the model to the description of networks in a cellular
model. In China, Southwest University has studied the Slime Mold Algorithm combined with the
pheromones of the Ant Colony Optimization to solve the classic TSP and multi-object TSP [31–34].
Compared with other algorithms, SMA has high-efficiency optimization ability, especially in solving
the complex path problem, which includes a large number of points and complex distribution [35–37].
The way of SMA has made a new method to solve TSP. At the same time, the convergence of SMA
is fast, due to fewer iterations. However, SMA has been researched more recently than the others,
and there is still a lot of room to investigate and improve [1,2,27,28,33,34]. In summary, the bottlenecks
besides its advantages in TSP are as follows:

• Due to the high similarity of some flow values, SMA cannot make a suitable choice. If points are
selected only by flow, the ability will have a great limitation of global optimization.

• SMA has no randomness and the selected points and the points to be selected have strong
correlations. Therefore, SMA has low flexibility and weak robustness.

The Two-way Parallel Slime Mold Algorithm (TPSMA) by flow and distance for TSP is proposed
in this paper. TPSMA involves two indicators of flow and distance for path selection and adds random
factors. TPSMA will improve the quality of SMA for solving TSP and achieve the following advantages:

• The selection rule combines two indicators of flow and distance, which makes SMA not only rely
on the flow. It can better improve global optimization ability and prevent the algorithm from
falling into local optimum.

• The proposed TPSMA adds random factors to increase the diversity of path choices and improve
the robustness of the algorithm.
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The structure of the rest of the article is: the second part describes the basic principle of SMA;
the third part describes the design of TPSMA, including a specific, improved strategy; the fourth part,
simulation and analysis; the fifth part, conclusions.

2. Slime Mold Algorithm

According to the foraging behavior of slime mold, the basic idea of SMA is: the slime molds
expand to every direction and stretch themselves to cover the surroundings. Then, the slime mold will
shrink back to the direction without food or far away from food, and they will continue to expand
in the direction of food. That is, if they feel that the food is abundant, they will continue to expand;
if they feel that the food is scarce, they will shrink and return. After a period of time, the slime molds
will form a path, like a pipeline, and find the shortest route.

The “pipeline culture” model can be abstracted by slime mold foraging. The basic principle of
SMA is [20–22,31–34]: firstly, pipeline paths are built in all directions and form a network between the
food sources by imitating foraging behavior of slime mold; then, based on the length of each path,
the width of pipeline, and the obstacles on path, foraging paths can be obtained; thirdly, under the effect
of iteration, the stable distribution of flow will be formed through a period of dynamic transformation;
finally, a path is generated from the start position to the end that has the food. The schematic diagram
of SMA is shown in Figure 2. According to the slime mold algorithm in solving TSP, we obtain the
“pipeline culture” model [2,31–37], and the specific algorithm is as follows:
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(1) Variables initialize.
(2) Calculate the distance between each path point by distance formula. The distance between

each path point is calculated by:

Li j =
((

xi − x j
)2
−

(
yi − y j

)2
)1/2

(1)

where xi, x j represent the abscissa of i and j, and yi, y j represent the ordinate of i and j. Li j is defined as
the distance between i and j, also called the pipeline length of i to j.

(3) Each path point can be regarded as a node in the pipeline network, and we will select two path
points as the entrance point and the exit point, respectively. Then, the pressure value of each path
point is calculated according to Kirchhoff’s Laws. The formula is expressed as:

∑
i

Di j

Li j

(
Pi − P j

)
=


−I0 , f or j = 1

I0 , f or j = 2
0 , otherwise

(2)

where Di j represents the conductivity of pipeline between i and j. Pi and P j are the pressure of point i
and j. The solution of conductivity needs to set a point pressure as the reference, and then calculate the
rest of pressure of each point. For example, setting p2 = 0 as the reference point of pressure.
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(4) Qi j is defined as the flow value between i and j. Qi j needs to combine the relationship among
the difference of pressure

(
Pi − P j

)
, conductivity Di j, and distance Li j. The relation’s formula that

calculates the flow of each path pipeline is:

Qi j =
Di j

Li j

(
Pi − P j

)
(3)

(5) Di j is the conductivity between i and j. The pipeline conductivity is required to be updated
constantly. The calculation’s formula is as follows:

dDi j

dt
=

Qi j

1 + Qi j
−Di j (4)

The iterative formula after deformation is:

Di j(n + 1) =


∣∣∣Qi j(n)

∣∣∣
1 +

∣∣∣Qi j(n)
∣∣∣ −Di j(n)

 ∗ ∆t + Di j(n) (5)

(6) According to above process of (3) to (5), we complete the next cycle repeatedly until getting
to the iteration termination condition. The stable value Di j and Qi j will be obtained by carrying out
iteration, and the iterative condition of termination is defined as:∣∣∣Di j(n + 1) −Di j(n)

∣∣∣ ≤ δ (6)

(7) According to the final flow values, the next selected point is determined, and the path will be
obtained by selecting the point of largest flow, from the starting point, one by one. After completing
the selection of one point, the selected point Pnext will become the current point i in the next point
selection process. The point i is recorded into Lbest by Equation (8), and the path result Lbest is finally
obtained by SMA. The concrete formula is shown as:

Qinext = max{|Qi1|, |Qi2|, . . . . . . , |Qim|} (7)

Lbest = {i1, i2, . . . . . . , in} (8)

where Qinext represents the pipeline flow with the largest value from the current point i to the other
points. At the same time, it is the flow of next path point selected. Lbest is the path result by SMA.

3. Two-Way Parallel Slime Mold Algorithm by Flow and Distance

Due to the short development time, the research depth of SMA is insufficient and many details
of the model have to be explored. As far as the “pipeline cultivation” model of SMA, the path point
selection is only based on the flow value, and there is only one path to be obtained, so it makes the
optimization results limited. Moreover, SMA cannot jump out of the local optimum, especially in the
complex situation of points. Therefore, TPSMA is designed by using two-way parallel optimization on
flow and distance in this paper. As shown in Figure 3, it uses two reference indicators of flow and
distance to search for next point, instead of the original principle, which is selecting the next point only
by flow. At the same time, a random factor is added when points are selected by the flow and distance,
to increase the diversity of result.
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Figure 3. Schematic diagram of algorithm principle by TPSMA.

The schematic diagram of TPSMA is illustrated in Figure 3. Firstly, the flow value between points
is obtained by using the “pipeline culture” model of SMA. Secondly, the path point can be selected
by the flow and distance, according to the newly designed rule. The distance difference needs to be
calculated between the path with the largest flow and the path with the second largest flow. If the
distance difference is large, and the distance with the largest flow is shorter, the point with the largest
flow will be selected as the next point. Otherwise, we need to form a point set that includes the
shortest path point, the shorter path point, and the path point with the larger flow. Then, a random
factor is added to achieve the selection of the next point when we select the points in point set.
Finally, the optimized result of TPSMA will be obtained by iterating.

According to the principle of TPSMA on flow and distance, the algorithm is applied to the solution
of TSP. As illustrated in Figure 4, the specific steps are as follows:

(1) Variables initialize.
(2) According to the Formulae (1)–(3), the distance Li j and the flow Qi j are calculated.
(3) According to (2), we are going to complete the updating of conductivity and flow by Formula (5)

and (3). Then, the final flow values are obtained by iterating until the condition (6) of termination
is satisfied.

(4) According to the two indexes of flow and distance, the point is selected in a two-way parallel
method, and the specific contents are as follows:

(i) We select the Qibest of the largest flow value and the Qibetter of the second largest flow value
from the points to be selected and define the point of PQibest and PQibetter. At the same time, the shortest
distance Libest and the second shortest distance Libetter are respectively found out and defined the point
of PLibest and PLibetter. As follows, PQibetter, PLibest and PLibetter are taken and formed a set PQL. PQibest is
defined as the other choice of next point. The formula of point set is:

PQL =
{
PQibetter, PLibest, PLibetter

}
(9)

And the optional point is:
PQibest =

{
PQibest

}
(10)

(ii) eLQ is defined as the difference between LQibest and LQibetter. If the distance of the path with
the largest flow is too long or similar to others, the point in PQL will be selected as the next point by
random factors. Otherwise, PQibest, which is obtained by the maximum flow, is going to be chosen as
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the next point. The improved rule, which is a two-way parallel selective method of flow and distance,
is formulated by Pnext, as expressed in (11) and (12):

eLQ = LQibest − LQibetter (11)

Pnext =

 Rand
(
PQL

)
, eLQ > ε

PQibest , eLQ ≤ ε
(12)

where LQibest is the distance of the path with the maximum flow, LQibetter is the distance of the path
with the second largest flow, Pnext represents the next path point to be selected, Rand

(
PQL

)
represents a

random value in PQL, which is the set of selected points, and ε is the determining parameter of distance
difference. By adjusting the value of ε, which is usually a negative, an appropriate cut-off point will
be obtained.
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(5) According to (4), a circulation will be completed when all the points are selected and the
optimization result has been obtained. Then, the iterations are carried out until getting the termination
condition. Length, which is the set including all the paths, is obtained. Finally, the formula that can get
the optimal path Lbest in Length is obtained by:

Lbest = min
{
Length

}
(13)

According to the above-mentioned steps, TPSMA is summarized as Table 1:

Table 1. The steps of TPSMA.

A Two-Way Parallel Slime Mold Algorithm by Distance and Flow

input: TSP path points
output: TSP shortest path
(a) Initialization process
Step 1 Initialize variables and parameters
(b) Calculate the distance and flow
Step 2 Get the distance Li j according to Formula (1)
Step 3 Get the flow Qi j by the Formulas (2) and (3) of Kirchhoff’s Laws
Step 4 Update the conductivity by Formula (5)
Step 5 Return to Step 3 to cycle until iterative condition is terminated and

obtain the stable flow value Qi j
(c) The point selection by a two-way parallel method
Step 6 Select the points PLibest, PLibetter, PQibest and LQibetter, and gain
two sets of points according to the Formula (9) and (10)
Step 7 Obtain the value eLQ by subtracting LQibest from LQibetter.
Then, complete the selection of point in turn by using the two-way

parallel Formula (11) and (12)
Step 8 Return to Step 6 to finish the iterations until the iterative condition

is satisfied, then get all the paths Length
(d) Obtain the result
Step 9 Obtain and output the optimal path Lbest by the Formula (13)

4. Simulation and Analysis of Results

Traveling Salesman Problem Library (TSPLIB) is a library of sample instances for the TSP from
various sources. Each set is a two-dimensional array containing horizontal and vertical coordinates
of some cities, which is used as a test of intelligent algorithms. By using TSPLIB data to test and
simulate in MATLAB, the experimental results were compared and analyzed to verify the effectiveness
of TPSMA.

4.1. Result of Simulation

We selected four datasets of TSP in TSPLIB; ulysses16, city31, eil51, gr96, and bier127. Of these,
city31 is the data set of longitude and latitude coordinates of the locations of 31 cities in China.
Multiple sets of data are selected to ensure the reliability of the conclusions. At the same time,
the number of the four groups of datasets is 16, 31, 51, 96, and 127, separately and increasing in
order. It increases the difficulty of optimization and fully verifies the performance of the algorithm.
Figures 5–9 are the simulation results obtained about five groups of TSP data by SMA and TPSMA.
It can be seen from the figures that the results under the five groups of data are obviously improved
by TPSMA.
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4.2. Analysis of Selection Processing

Taking ulysses16 data as an example, the optimization ability of TPSMA is verified by analyzing
the optimization process. Figure 5 and Table 2 are simulations and partially obtained paths under
ulysses16 data. In the Tables, red represents the current point and optimal result, green represents the
selected point by SMA and TPSMA, and blue represents the remaining points in the set of candidate
points by TPSMA. Figure 10 shows the flow and distance values from path point 12 to the remaining
path points, and their ranking of each point.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 20 
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Table 2. Partial path optimization results under ulysses16 data.

No. Path Optimization Results (Points Order) Path Length

1 13 14 4 6 9 12 11 8 5 2 7 10 15 16 3 1 77.8372
2 13 14 4 9 6 12 8 11 5 2 10 15 7 1 16 3 88.8287
3 13 14 4 9 6 12 15 16 1 2 7 10 11 8 5 3 94.3883
4 13 14 4 6 9 12 16 15 7 10 11 8 5 2 3 1 88.2858
5 14 9 10 6 7 3 11 1 2 12 15 8 5 6 4 13 103.174

When the current point is 12, it can be found in Figure 10 that the points of the largest flow,
the second largest flow, the shortest distance, and the second shortest distance in the remaining
candidate points are 15, 16, 8, and 11, respectively. In Table 2, point 15 with the maximum flow is
selected by SMA, and the path 5 is the optimization result of SMA with a path length of 103.174.
There are four candidate points, 15, 16, 8, and 11, which are obtained by TPSMA. Moreover, the path
1 to path 4 in Table 2 can be realized by adding random factors, and path 1 is the optimal result of
TPAMA with a path length of 77.8372.

When the current point is point 3, it can be obtained in Figure 11 that the candidate points are
1, 2, and 7. Path 1 to path 5 in Table 3 can be obtained by random factors, and path 1 is the final
result of TPSMA in this paper. Point 1 is selected after point 3 and the path length is 77.8372 in path 1.
Furthermore, Table 3 shows that the next point of point 3 in path 2 is point 1 and the next choice of
point 12 is point 11. The choices of two points is the same as the result of TPSMA in path 2. In contrast,
only the next point of point 3 is the same as path 1 in path 3 and the next point of point 3 and point 12
in path 4 and path 5 is different from path 1. What is more, the results show that the path lengths of
path 1, path 2, and path 3 are better than path 4 and path 5. From Table 3, it can be analyzed that the
more points that selected by distance and flow, the better the result will be obtained. The above results
show that TPSMA of two parameters with flow and distance is superior to SMA.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 20 
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4.3. Analysis of Diversity 

Under the data of ulysses16, as shown in Figure 12, SMA only gets path 1. However, the 
optimization process of TPSMA obtains the path 1 and path 2, which is the same as the length result 
of SMA. At the same time, in Figure 12, TPSMA gets two groups of paths 5 to 6 and paths 7 to 9. The 
path lengths of each group are the same but the paths have different orders of points. Similarly, 
TPSMA will produce a variety of cases due to the addition of random factors. Therefore, the diversity 
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Table 3. Partial path optimization results under ulysses16 data.

No. Path Optimization Results (Points Order) Path Length

1 16 3 1 13 14 4 6 9 12 11 8 5 2 7 10 15 77.8372
2 16 3 1 2 14 13 4 9 6 12 11 8 15 10 5 7 80.9361
3 16 3 1 2 4 1 6 9 14 12 15 5 8 11 10 7 86.9835
4 16 3 2 1 4 13 6 9 14 12 15 11 5 7 8 10 98.9656
5 16 3 7 1 11 5 8 10 2 12 15 4 9 6 14 13 103.619
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4.3. Analysis of Diversity

Under the data of ulysses16, as shown in Figure 12, SMA only gets path 1.
However, the optimization process of TPSMA obtains the path 1 and path 2, which is the same
as the length result of SMA. At the same time, in Figure 12, TPSMA gets two groups of paths 5 to 6
and paths 7 to 9. The path lengths of each group are the same but the paths have different orders
of points. Similarly, TPSMA will produce a variety of cases due to the addition of random factors.
Therefore, the diversity and comprehensiveness of the optimization results are increased.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 20 
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4.4. Analysis of Optimization Ability in Different Numbers of Points

Based on four sets of data from ulysses16, city31, eil51, gr96, and bier127, the simulation diagrams
are shown in Figures 5–9, and the results of data are shown in Table 4. Based on the analysis of the
data, it can be obtained that:

Table 4. Experimental data’s results of ulysses16, city31, eil51, gr96 and bier127.

TSP Data Results of SMA Results of TPSMA Improved Percentages

ulysses16 103.1746 77.8372 24.56%
city31 27,073 17,300 36.10%
eil51 798.9 464.3 41.88%
gr96 1178 591 49.83%

bier127 274,870 129,390 52.93%

Firstly, under the four sets of data, compared with SMA, the optimization ability of TPSMA is
improved by 24.56, 36.10, 41.88, 49.83, and 52.93%, respectively. Therefore, the result of TPSMA is
obviously better than SMA in Figure 13a.
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Secondly, as per the experimental results also shown in Figure 13b, the improved percentages
of TPSMA are gradually increased with the increasing number of points. It can be seen that TPSMA
designed in this paper is more powerful in solving TSP with large points and complex distribution.
Thus, the experimental results fully verify the rationality and superiority of TPSMA.

4.5. Comparision with Other Algorithms

Based on some sets that have large points in TSPLIB, we can obtain the following by experiment.
Table 5 is the results of each heuristic and bionic algorithm under different data sets. From the
experimental results in Figure 14, the TPSMA results are obviously better than GA and PSO, and similar
to ACO. Since the initial pheromone distribution of ACO is unpredictable, the reasonable distribution
of pheromones needs to be gradually formed by iteration. Therefore, the convergence speed is very
slow. Although TPSMA optimization results were slightly worse than ACO, TPSMA optimization
speed was significantly better than ACO. Compared with the current best optimization result, which is
from LKH, the result of TPSMA is not as good as LKH; however, it is closer to the optimal result than
other algorithms. Moreover, LKH is in virtue of the 5 − opt principle which is based on the λ − opt
algorithm. The more task points there are, the more iteration time it will cost, and the convergence
performance will be poor.

Table 5. Comparisons of optimization results and algorithm features.

Name PSO GA ACO LKH TPSMA

Results of path length

eil51 1257 519 453 426 464
eil76 2040 727 583 538 620

lin105 96,429 30,167 15,303 14,379 16,424
bier127 542,558 196,276 128,147 118,282 129,390

kroA200 290,368 87,786 33,471 29,368 34,972
gil262 23,780 7769 2779 2378 2881

Algorithm Time Complexity N3 N3 N4 N5 N3

Theoretical difficulty Complexity Simple Complexity Complexity Simple
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We can get the degree of difficulty about algorithm principle and the algorithm time complexity
in Table 5. It can be seen that the TPSMA algorithm is simple in principle and easy to analyze. At the
same time, the algorithm time complexity of TPSMA (N3) is less 1/N times than that of ACO (N4),
and less 1/N2 times than that of LKH (N5). TPSMA has fast convergence speed and short optimization
time due to low algorithm time complexity, especially in large data points.

According to the above analysis, it can be concluded from Figure 15 that TPSMA has good
searching ability by a unique way, and fast optimization speed by low time complexity. At the
same time, TPSMA is simple in theory and easy to research, therefore it is better to study than
the others. Furthermore, the research time of TPSMA is short and the algorithm is not mature
enough—there are many performances and potential to be developed due to its unique optimization
method and effectiveness.
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5. Summary 

In this paper, the two-way parallel selection principle of distance and flow is adopted by 
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5. Summary

In this paper, the two-way parallel selection principle of distance and flow is adopted by TPSMA,
and random factor is added to improve optimization ability and diversity. Through the experimental
results of TSPLIB data, the path length that is obtained by TPSMA is obviously reduced. What is more,
the optimization ability is gradually enhanced with the increase in the number of path points. At the
same time, TPSMA can get all the paths that meet the requirements to realize the diversity of path
results. The above results prove the feasibility and superiority of TPSMA in solving TSP.

The proposed method will show partial reversal paths and diagonal paths in the searching process,
which could have an impact on the search results. Follow-up research can start with the direction of
flow, to research and improve the algorithm performance.
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