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Abstract
Position controllers are used for free motion, whereas force controllers are used for constrained motion of robotic

manipulators. The hybrid controller switches between position and force control modes depending on whether the

manipulator is in contact with the environment. To improve production efficiency, the velocity of contact between the

manipulator and environment is not set to zero. However, the high impact force due to the nonzero contact velocity might

damage the environment surface or manipulators. In this article, we propose a virtual semi-active damping learning method

to suppress force overshoot without decreasing the contact velocity. Virtual semi-active damping is adjusted according

to the manipulator position in force control. The limited-memory BFGS method is used to obtain the ideal impedance

model for the unknown environment. By minimizing the defined cost function, we get the desired interaction performance.

The correctness and effectiveness of the proposed method are verified by conducting simulations and experiments.
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1. Introduction

Robots are required to interact within different environ-
ments as they are being more widely deployed in social
applications, such as elderly care, medical rehabilitation,
and human–robot cooperation. In these applications, al-
though the environment is usually unknown, the re-
sponsiveness of the process is required to complete contact
with the environment and achieve the desired contact
performance.

In some situations, only one degree of freedom (DOF)
of the manipulator end effector is affected in contact with
the environment. For this contact DOF, a hybrid control
strategy is used to perform the task of switching motion and
force tracking. One way to avoid bouncing and damaging
the environment surface is to command the robot to slow
down as it approaches a surface (Carloni et al., 2007;
Markus et al., 2016), resulting in the velocity tending to zero
as contact occurs. Another way is to redesign a compliant
wrist (Heck et al., 2016; Mohammad et al., 2018). However,
these strategies either suffer from the drawback of a slow
response and long transient time, which negatively affect
the production efficiency, or require a special terminal
structure of the manipulator, which is not universally

applicable. Although nonlinear damping control schemes
can be used in robotic force control to reduce the force
overshoot (Lai et al., 2012; Lai, 2014), the accuracy of
position tracking is rarely considered for force control
methods especially in free motion. A motion and force
hybrid controller is adopted in this article. Furthermore,
virtual semi-active damping is added to the controller to
ensure a smooth transition from trajectory tracking to force
tracking without compromising on velocity.

An impedance model is usually used to describe the
interaction model, and the robustness and feasibility of
impedance control are also guaranteed (Li et al., 2018;
Nozaki et al., 2018; Sharifi et al., 2018). For impedance
control, obtaining optimal environmental parameters is
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a challenge but important in ensuring high contact per-
formance. To compensate for environment uncertainties, an
adaptive control algorithm is applied to tune the impedance
parameters (Arefinia et al., 2020; Li et al., 2017). Iterative
learning impedance methods are also adopted to obtain
the desired impedance model with better performance
(Fernando et al., 2019; Li et al., 2018). Impedance pa-
rameters are modulated by learning neural networks, al-
though this requires expensive data preprocessing to train
samples (He and Dong, 2017). Reinforcement learning
methods, such as the PI2 (policy improvement with path
integrals) algorithm (Buchli et al., 2011) and iterative lin-
ear–quadratic–Gaussian (Luo et al., 2019), make it possible
to execute various contact tasks in varying environments, by
applying impedance control to robots. The limited-memory
BFGS (L-BFGS) method, used in this article, is a quasi-
Newton method that overcomes the disadvantages of
Hessian matrix irreversibility in the Newton method and the
difficulty of selecting the step size in the gradient descent
method (Berahas and Tak, 2020; Philipp et al., 2016).

In contrast with controllers described in the articles
mentioned above, the virtual semi-active damping con-
troller not only guarantees the accuracy of switching motion
and force tracking but also improves the productivity of
processes without redesigning the end effector of the ma-
nipulator and minimizing the contact velocity. Moreover,
different from the above learning methods, the proposed
L-BFGS impedance learning method is based on a clear
environmental dynamic model and has a simpler frame-
work, allowing practical implementation. Regardless of the
control strategy or the acquisition of environmental pa-
rameters, this article adopts a simpler and easier solution
that is more implementable in actual production and life.

Conceptually, the semi-active damping method requires
additional elements in mechanical design but has consid-
erably higher bandwidth and spends less energy than active
damping (Matteo et al., 2010). Virtual semi-active damping
without mechanical elements is different from actual
physical damping. It adjusts the damping according to the
deviation between the actual position and desired position
in constrained motion. In contact, the desired contact force
corresponds to the virtual desired position owing to the
effects of environmental impedance parameters. We
therefore acquire the environmental impedance parameters
and adjust the virtual damping synchronously by using
a learning method based on L-BFGS. The damping is at
maximum, when the position control is changed to force
control, that is, when the manipulator just touches the
environment surface. Moreover, it is possible to suppress
bounce and prevent damage to the environment surface by
modulating the semi-active damping properly.

The remainder of this article is organized as follows. In
Section 2, we describe the system modeling and controller
design, offering a model of contact between the manipulator
and environment and designing a switching motion-force

controller. In Section 3, we present the method of virtual
semi-active damping control introducing variable damping
to the force controller to suppress chattering and force
overshoot. We discuss details of the proposed impedance
learning based on L-BFGS in Section 4. In Sections 5,
simulation and experiments are conducted to verify the
correctness and feasibility of the proposed method. We
present conclusions in Section 6.

2. System modeling and controller design

In most cases, when the manipulator interacts with the en-
vironment, just one DOF of the end effector of the manip-
ulator is affected. Considering the simplified interaction
model as shown in Figure 1, the dynamics equation is ex-
pressed as

M €xþ b _xþ Fe ¼ Fc (1)

where x is the manipulator position, M is the mass of the
manipulator, and b is viscous friction acting in the joint (To
dissipate energy, viscous friction b is generally set to zero.).

The surface of the environment is at the position of x = 0,
when the equivalent spring is at rest. Therefore, once the
manipulator makes contact with the environment, the po-
sition of the manipulator is x > 0. The Kelvin–Voigt linear
contact model is used to characterize the relationship be-
tween the penetration and reaction force (Diolaiti et al.,
2005)

fe ¼
�

0 if x ≤ 0
kexþ be _x if x> 0

(2)

where ke and be are, respectively, the stiffness and damping
of the environment.

The aim of the present work is to control the manipulator
such that it follows a desired trajectory xdðtÞ in free motion
and to regulate a desired force profile FdðtÞ in the contact
phase. The simplest strategy that accomplishes the de-
scribed task is to switch between a position controller and

Figure 1. 1-degree-of-freedom model.
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force controller. The switch of controller is realized by
detecting whether the manipulator is in contact with the
environment, that is, the controller is a position controller
when x < 0 and a force controller otherwise. The two
controllers are a resolved acceleration controller and pro-
portional force controller (Heck et al., 2016)

Fc ¼
�
M €xdðtÞ þ kp1Δxþ kdΔ _x; "x < 0
FdðtÞ þ kp2ΔF � bf _x; "x ≥ 0

(3)

where kp1 and kp2 are the proportional gains of the motion
controller and force controller. kd is the derivative gain of
the motion controller, bf is the damping gain, dissipating
energy during the contact phase, and Δx and ΔF are, re-
spectively, the position error and force error. The contact
force Fe, position x, and velocity _x can be measured by
sensors.

This closed-loop switching system cannot prevent the
bounce of the manipulator in contact with a rigid envi-
ronment, unless a high damping controller is used during
contact. To this end, we propose a virtual semi-active
damping control method in the next section. In the force
control phase, the damping term of the controller is replaced
by virtual semi-active damping, which not only restrains the
bounce but also saves energy.

3. Virtual semi-active damping control
method

3.1. Motivation and design

In the contact phase, the contact force F satisfies the re-
lationship described in (2) as x > 0. Corresponding to the
desired contact force Fd, the virtual desired position xfd
should satisfy the relation

kexfd þ be _xfd ¼ Fd (4)

We here only consider the simple case of a manipulator
tracking a constant force. The velocity of the manipulator is
_xfd ¼ 0 in the steady state for a constant desired force;
otherwise, the system oscillates. Equation (4) is thus re-
written as

kexfd ¼ Fd (5)

Therefore, we assume that there is also a desired xfd,
corresponding to the desired contact force Fd in the contact
phase, where xfd = Fd/ke. The manipulator is stationary at
position xfd in the steady state as shown in Figure 2.

We consider a semi-active damper based on the position
error (Stegall et al., 2017) as shown in Figure 3. The
damping prevents the manipulator from moving away from
the desired position, which means that a stronger damping
force acts further from the desired position. We therefore
define semi-active damping as

bsem ¼ be þ bv (6)

where bv is the virtual damping that we modulate actively,
bv is expressed as

bv ¼
�
min½λjx� xdj; bv;max� x ≥ 0

0 x< 0
(7)

λ > 0 is the gain coefficient of damping and position
error, whereas bv, max is the saturation point for the damping
coefficient. The model of contact between the manipulator
and environment is rewritten as

M €xþ b _xþ kxþ be _xþ bv _x ¼ Fc (8)

bv is introduced actively according to the position error. We
can take it as the active control input, realizing semi-active
damping by the switching controller

Fc ¼
�

M €xd þ kp1Δxþ kdΔ _x "x<0
FdðtÞþ kp2ΔF� �bf þ λ

��x� xfd
��� _x "x≥0 (9)

Figure 2. Steady state in contact.

Figure 3. Contact model with virtual semi-active damping.
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For this improved switching controller, the semi-active
damping comprises bf and bv, where bf is the fixed damping
gain, whereas bv ¼ λjx� xfd j is the active damping gain
simulated by position feedback. Without considering that
the contact phase x is much larger than xfd, the damping is
a maximum when x = 0, that is, when the robot has just
touched the environment. Large damping could suppress
force overshoot. We could change the value of λ within an
allowable range according to actual needs to adjust the peak
value and rate of change of damping to better suppress the
overshoot.

3.2. Stability analysis

Two Lyapunov functions, corresponding to the position
controller and force controller, are defined to analyze
system stability. In the position control phase

Vp ¼ 1

2
MΔ _x2 þ 1

2
kp1Δx

2 (10)

which is strictly positive in free motion with x < 0. In the
force control case, the candidate Lyapunov function can be
chosen as

Vf ¼ 1

2
M _x2 þMΔx _xþ 1

2

�
kp2 þ 1

�
Δx2

þ 1

2

�
bf þ λ

��x� xfd
���Δx2 þ kp2ΔFΔxþ 1

2
kp2ΔF

2

¼ 1

4
M _x2 þ 1

4
Mð _xþ 2ΔxÞ2 þ 1

2

�
Δx

ΔF

�

�
" �

kp2 þ 1
�þ bf þ λ

��x� xfd
��� 2M kp2

kp2 kp2

#�
Δx

ΔF

�

(11)

where positive controller gains are chosen to satisfy

1þ bf þ λ
��x� xfd

��� 2M > 0 (12)

so that Vf is strictly positive in constrained motion with
x ≥ 0.

In the case of position control, the time derivative of
(10) is

_Vp ¼ �kdΔ _x2 (13)

which is negative semi-definite with x < 0. It is obvious that
the system is in a unique asymptotically stable equilibrium
if the motion is free without contact and switching.

The derivative of (11) is

_V f ¼
�
M � �bf þ λ

��x� xfd
���� _x2 � Δx2 (14)

which is negative definite if M � ðbf þ λjx� xfdjÞ ≤ 0.
Hence, if the manipulator does not lose contact with the
environment, then the system is in an asymptotically stable
equilibrium with x > 0. Both position control and force

control are stable in the absence of mode switching.
However, mode switching due to bouncing is inevitable in
such physical systems, and we thus need to consider the
overall stability of this hybrid system.

Switching between the two controllers occurs in the state
space (Zoe, and Iliadis, 2005)

Sp;f ¼ Skðk¼2iþ1Þði ¼ 0; 1; 2…Þ
¼ �ðx; _xÞ 2ℜ2 : x ¼ 0 and _x ≥ 0

	 (15)

and

Sf ;p ¼ Skðk¼2iÞði ¼ 1; 2; 3…Þ
¼ �ðx; _xÞ 2ℜ2 : x ¼ 0 and _x ≤ 0

	 (16)

where k is the number of switches, Sp,f means switching
from the position controller to force controller, and Sf,p
means switching from the force controller to position
controller.

To conclude the closed-loop stability of system (9) with
switching sequences S, necessary and sufficient conditions
must be imposed on stability analysis (Branicky, 1998;
Pettersson and Lennartson, 1996), as given in Theorem 1.

Theorem 1. For the hybrid system (9), if there exist con-
tinuous scalar functions with continuous partial derivatives
Vk, then there are class K functions α > 0 and β > 0 such that

1. αðkxkÞ ≤VkðxÞ ≤ βðkxkÞ
2. _Vk ≤ 0
3. VpðxÞ ≤Vf ðxÞ at Sf,p
4. Vkðxðtkþ1ÞÞ ≤VkðxðtkÞÞ

where (3) indicates that the equilibrium point x = 0 of (9) is
stable in the sense of Lyapunov, (4) concerns the value of
Vk, which is less at switching points (at Sf,p or Sp,f) than the
last time a switch was made to the same control mode, and
tk is the switching time. Items (3) and (4) are given in
Appendix 1 and are obviously true for the hybrid system (9).
Items (1) and (2) are, respectively, proven in position
control and force control modes. Therefore, irrespective
of whether there are an infinite number of switches or
a finite number of switches, the Lyapunov functions of
the system are strictly decreasing each time they are
switched in, and the hybrid system is therefore asymp-
totically stable.

4. Impedance learning

4.1. Impedance learning based on the BFGS
method.

Only when the manipulator makes contact with the envi-
ronment will the environment impedance work. The main
control target during contact is the contact force. Therefore,
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to develop impedance learning, we define a cost function
with which to measure contact performance

J ¼ �F � ~kx� ~b _x
�2

(17)

where ~k and ~b are, respectively, the estimated values of
environmental stiffness and impedance, F, whereas x and _x
represent the force, position, and velocity measured by sen-
sors. We need to solve min Jð~k; ~bÞ to achieve better contact
performance. Unconstrained optimization variable metric al-
gorithms are adopted for such iterative problems. Letting x ¼
½ x _x � and z ¼ 
 ~k ~b

�T
, the cost function is rewriten as

J ¼ ðF � xzÞ2 (18)

The position and velocity of the manipulator are
bounded, and we thus assume that J is strongly convex in
the iteration interval. Adopting the Taylor expansion of the
function at zk+1 and ignoring quadratic and higher terms,
we get

JðzÞ ¼ Jðzkþ1Þ þ =Jðzkþ1ÞTðz� zkþ1Þ
þ 1

2
ðz� zkþ1ÞT=2Jðzkþ1Þðz� zkþ1Þ

(19)

where

=Jðzkþ1Þ ¼

2
664
∂J
∂k

∂J
∂b

3
775 ¼

��2xkþ1ðf � kxkþ1 � b _xkþ1Þ
�2 _xkþ1ðf � kxkþ1 � b _xkþ1Þ

�

(20)

and

=2Jðzkþ1Þ ¼

2
6664

∂2J
∂k2

∂2J
∂k∂b

∂2J
∂k∂b

∂2J
∂b2

3
7775

¼
" �2x2kþ1 �2xkþ1 _xkþ1

�2xkþ1 _xkþ1 �2 _x2kþ1

# (21)

Letting z = zk+1, we get the gradient for (19)

=Jðzkþ1Þ �=JðzkÞ ¼ =2Jðzkþ1Þðzkþ1 � zkÞ (22)

when =J(zk) = 0

zkþ1 ¼ zk þ
�
=2Jðzkþ1Þ

��1
=Jðzkþ1Þ (23)

where =2J(zk+1) is the Hessian matrix H. H is iteratively
updated based on the data measured by sensors. However,
the speed must equal to zero during the motion, resulting in
H being irreversible, and preventing us from adopting the
Newton method. We introduce the BFGS algorithm, which
is a typical implementation of the quasi-Newton method.

We abbreviate (20) as

yk ¼ Hkþ1sk (24)

where yk = =J(zk+1)� =J(zk) and sk= zk+1� zk. In this case,
sk can also be expressed as sk ¼ H�1

kþ1yk . We construct an
approximation matrix for the matrix H

Bk ≈Hk (25)

where Bk is updated according to

Bkþ1 ¼ Bk þ ΔBk (26)

The initial value of the matrix B0 is the identity matrix I.
The problem that we need to solve is to modify the con-
struction of the matrix ΔBk in each iteration. The calculation
formula is

ΔBk ¼ yky
T
k

yTk sk
� BksksTkBk

sTkBksk
(27)

The next iteration zk+1 is

zkþ1 ¼ zk þ γkdk (28)

where dk ¼ �B�1
k =JðzkÞ is the search direction and γk >

0 is the step length. Applying the Sherman–Morrison
equation, we get the relationship between B�1

kþ1 and B�1
k as

B�1
kþ1 ¼

�
I� skyTk

yTk sk



B�1

k

�
I� yks

T
k

yTk sk



þ sksTk
yTk sk

¼ B�1
k þ

 
1

sTk yk
þ yTkB

�1
k yk

ðsTk ykÞ2
!
sks

T
k

� 1

sTk yk

�
B�1

k yks
T
k þ sky

T
kB

�1
k

�
(29)

In the implementations of the BFGS algorithm, γk > 0
satisfies the Wolfe conditions (Neculai, 2018)

Jðzk þ γkdkÞ ≤ f ðzkÞ þ δ1γkd
T
k=JðzkÞ (30)

dT
k=Jðzk þ γkdkÞ ≥ δ2dT

k=JðzkÞ (31)

where δ1 and δ2 are constants such that 0 < δ1 ≤ δ2 < 1.When
the objective function JðzÞ is convex and if the Wolfe
conditions of an inexact linear search are satisfied, then this
algorithm is globally convergent. The pseudo-code of our
algorithm is presented as Algorithm 1.

Algorithm 1. L-BFGS method

Input:
Initial iterate z0 2 R2, initial step length γ0, constants δ1
and δ2, and sufficiently small value ε

Output: zk
1. while =JðzÞ> ε do

Wang et al. 5



2. Compute dk ¼ �B�1
k =JðzkÞ

3. Find γk satisfying the Wolfe line search conditions
(30) and (31)

4. Compute zk+1 = zk + γkdk
5. Compute B�1

kþ1 according to (29)
6. k = k + 1
7. end while

4.2. Convergence analysis

To prove the global convergence of the L-BFGS algorithm,
we consider the following proposition. This proposition is
an important tool for analyzing the L-BFGS method.

Proposition 1. The selected cost function, JðzÞ, satisfies the
following.

1. The objective function JðzÞ is twice continuously
differentiable (Abdi and Shakeri, 2019).

2. The level set V ¼ fz2R2 : JðzÞ ≤ Jðz0Þg is convex.
3. There exist positive constants M1 and M2 such that

(Raghu et al., 2018)

M1I ≤=J
2ðzÞ ≤M2I

By Proposition 1(3) and yk = Hk+1sk (Liao, 1997)

M1kskk2 ≤ yTk sk ≤M2kskk2 (32)

and

M1 ≤
kykk2
yTk sk

¼ sTkH
2
kþ1sk

sTkHksk
≤M2 (33)

From (33) and (34), we estimate the trace of the Hessian
approximation

trðBKþ1Þ ¼ trðBKÞ � kBkskk2
sTkBksk

þ yky
T
k

yTk sk
≤ trðBKÞ þ yky

T
k

yTk sk
≤ trðBkÞ þM2 ≤ trðB0Þ þ kM2 ≤M3

(34)

M3 is a positive constant. Then, to bound the de-
terminant, we can write

detðBKþ1Þ ¼ detðBKÞdet
 
I� sksTkBk

sTkBksk
þ ðBkÞ�1yky

T
k

yTk sk

!

¼ detðBKÞ yTk sk
sTkBksk

¼ detðBKÞ yTk sk
kskk2

kskk2
sTkBksk

≥ detðBKÞ M1

trðBKÞ ≥ detðBKÞM1

M3

(35)

From (35) and (36), we conclude that there is a constant
δ > 0 such that

cos θk ≡
skBksTk

ksTk kkBkskk ≥ δ (36)

Theorem 2. Let z0 and B0 be the initial iterations, such that
JðzÞ satisfies Proposition 1 and fkBkkg is bounded. Al-
gorithm 1 then generates a sequence fzkg that converges to
z∗. Furthermore, there is a constant r 0 ≤ r < 1 such that (30)

Jk � J∗ ≤ r
kðJ0 � J∗Þ

According to the line search conditions, (30) and (31),
and as Proposition 1 implied, we have (Liu and Nocedal,
1989)

Jðzkþ1Þ � Jðz∗Þ ≤
�
1� α cos2θk

�ðJðzkÞ � Jðz∗ÞÞ (37)

where α is a constant α > 0. Moreover, we have

1

2
M1kzk � z∗k2 ≤ Jk � J∗ (38)

which combined with Theorem 2, indicates the sequence
fzkg is also R-linearly convergent.

5. Simulations and experiments

5.1. Simulations

In this section, we illustrate the function of the proposed
virtual semi-active damping control algorithm through
simulations. We consider a one-DOF manipulator withM =
1 kg interacting with an environment with ke = 104 N/m and
b = 20 Ns/m. The initial position of the manipulator is�1m.
The desired trajectory of the manipulator is xd = t2 � 1 in
free motion, and the desired force is 10N in the contact
phase where x ≥ 0.

We first design the controller as (3) without active
damping. For the controller parameters, we choose M = 1,
kp1 = 5000, kd = 100, kp2 = 100, and bf = 1, satisfying (12)
and (43). In this way, the manipulator tracks xd in free
motion, but owing to the nonzero velocity of contact with
the stiff environment, there is a large peak force at the
moment of contact (see the second plot in Figure 4). The
stronger force causes backward motion and the manipulator
then breaks contact from the environment at about 1.03 s
(see the first plot in Figure 4). Although the manipulator
recovers and maintains contact after 1.1 s, it continues to
oscillate slightly at xfd. Even if we do not account for the
fact that strong peak forces can damage the manipulator or
the surface of the environment, oscillation adversely affects
force tracking.
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We then redesign the controller (3) on the basis of
Figure 4. The problem is the lack of damping in the contact
phase. Therefore, we increase damping in the force con-
troller and set bf = 900 without changing other parameters.
With bf = 900, the manipulator does not bounce against the
environment (see the first plot in Figure 5) and the peak
force decreases appreciably (see the second plot in
Figure 5). However, we find that the force and trajectory
converge to desired values in 1.2 s as shown in Figure 5.
This not only results in greater energy consumption but is
also unacceptable for high-precision tasks.

We finally design the virtual semi-active damping
controller by setting bf = 1 and picking an appropriate λ
according to (9). In addition, the choice of λ should satisfy
conditions for system stability

λ
��x� xfd

�� ≥M� bf

λxfd ≥ kp1 �
�
kp2 þ 1þ bf þ 2kp2ke þ kp2k

2
e

�
It is obvious that the right-hand side of the inequality is

not more than zero, whereas xfd and jx� xfdj are greater than
or equal to zero. The system is stable so as long as λ > 0.
Meanwhile λ should be set to a larger value to inhibit bounce
and to accelerate convergence. By adjusting the value of λ,
we ensure that the peak force does not exceed 40N (i.e., the
peak force in Figure 5). Furthermore, the trajectory and
force converge quickly to the desired position xfd and the
desired force Fd. In practice, the environment impedance
parameters are always unknown such that xfd cannot be
obtained either. It is necessary to introduce the impedance
learning algorithm to realize the design of a virtual semi-
active damping controller.

To verify the validity of the impedance learning algo-
rithm based on the BFGSmethod, we apply the algorithm to
the virtual semi-active damping controller. Here, the desired
position xfd is not directly obtainable because of the un-
known environment impedance parameters, and it needs to
be updated with the impedance parameter. In the impedance
learning algorithm, we set z0 ¼ ½ 1000 0 �T , δ1 = 0.1, δ2 =
0.5, and ε = 10�3. The environment impedance parameters,
including k and b, are updated iteratively and they converge
to fixed values, k = 10,000 N/m and b = 20 Ns/m, at 1.03s
(see Figure 6). We find that they are the same as the en-
vironment parameters that we set. At the same time, the
desired position xfd converges to 0.001 at 1.03 s (see
Figure 7) when calculating xfd = Fd/k. Through the im-
pedance learning algorithm, environment impedance pa-
rameters can be quickly and accurately estimated; thus, xfd is
quickly obtained. Moreover, the motion and force tracking
results are almost the same as those of the virtual semi-
active damping controller with the known environment (see
Figure 8). Therefore, the learning algorithm not only allows

Figure 5. Simulation results of controller (3) with bf = 900.Figure 4. Simulation results of controller (3) with bf = 1.

Figure 6. Update of stiffness k and damping bwith the impedance

learning algorithm.
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us to obtain an accurate impedance model but also guar-
antees the performance of virtual semi-damping control.

A comparison of the above three simulation results re-
veals that the force overshoot in Figure 4 is much greater
than those in the other two simulations when contact is
made with the environment at the same speed; however, the
response speed in Figure 5 is much higher than that in
Figure 8. In short, in the case of obtaining environmental
parameters adopting the L-BFGS impedance learning
method, the virtual semi-active damping algorithm pro-
posed in this article ensures a fast response of the system
and suppresses the force overshoot without reducing the
contact speed.

5.2. Experiments

In this section, the virtual semi-active damping learning
control is further validated using a UR10 that makes contact

with environments having different impedance parameters.
A force sensor is installed at the end of the UR10 to measure
contact forces with the environment. The type of the force
sensor is an OptoForce HEX-70-XE-200N having a force
acquisition period of 0.01 s. The control period cannot be
shorter than the force acquisition period, and we adopt
a control period of 0.0 1s. In our experiments, the UR10
robot is required to move at a speed of 0.03 m/s and switch
to the force control mode after contact with the environ-
ment. The desired forces are set differently in environments
having different impedance parameters to clarify the ex-
perimental results.

In the first experiment, the UR10 robot is required to
make contact with a balloon (see Figure 9), where the
desired contact force is set to Fd = 10N and the position of
the environment surface is set to x = 0. For the UR10 robot,
we adopt the speed control mode based on the “speedl”
instruction. In this mode, the acceleration is calculated as
€x ¼ ðFc � FeÞ=M and the velocity is obtained in the control
period. To suppress higher acceleration in the contact phase,
we select the value ofM to be greater than the actual mass of
the force sensor, that is, we assume that the robot end is
equipped with a larger mass of the end effector. In this way,
we chooseM = 10, kp1 = 1000, kd = 10, and kp2 = 10. As for
bf and λ, the controller is (3) if we set λ = 0 and (9) otherwise.
We carry out the experiments by selecting different values
of bf and λ. The experimental results are shown in Figure 10.
Note that the position and interaction forces when λ = 0 and
bf = 50 in Figure 10 have not converged at the observation
time; therefore, in practical application, we need to select
a larger intrinsic damping gain to accelerate the conver-
gence as the results when bf = 500. It is also found that the

Figure 8. Simulation results of controller (9).

Figure 7. Modification of desired position xfd with impedance

parameter update.

Figure 9. Experimental setup of contact with a balloon.
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force converges to the expected value earlier when λ =
20,000 and bf = 50 through the comparison of convergence
points, and we consider that the virtual semi-damped
controller has faster convergence than the large damped
controller in practical applications, which are consistent
with the results of simulation. xfd is calculated as xfd = Fd/ke,
and the environment parameter ke is obtained adopting the
impedance learning algorithm based on the L-BFGS
method. For the impedance learning algorithm, the input
parameters are set as z0 ¼ ½ 50 0 �T , δ1 = 0.1, δ2 = 0.5, and
ε = 0.1. Because the environment damping be is not used in
the present controller design, we focus only on the envi-
ronment stiffness ke and the desired position xfd in the
contact phase (see Figure 11). We find that xfd, corre-
sponding to the real environment stiffness, is obtained
before the convergence point by comparing with the second
plot in Figure 10.

In the second experiment, the UR10 robot is required to
make contact with an aluminum plate (see Figure 12), where
the desired contact force is set to Fd = 50N. In this ex-
periment, except for bf and λ, the selected control param-
eters are consistent with parameters in the first experiment;
however, bf needs to be selected as a larger value to ensure
and accelerate the system convergence. The experimental
results for different values of bf and λ are shown in
Figure 13. The force overshoots are the same for λ = 0, bf =
1800 and λ = 500,000, bf = 400, but the virtual semi-active
controller has faster convergence although the difference is
obvious (see Figure 13). Even if the robot is in contact with
such a high stiffness environment, the learning algorithm
designed in this article ensures that the environment stiff-
ness can be obtained accurately before the force control
convergence (see Figure 14). Without changing other

parameters of the learning algorithm, we set ε = 1 to increase
tolerance for error because it is difficult for ΔJðzÞ to
converge to a small value in the learning algorithm.

It is not difficult to find that in the experiment of the
robot in contact with two different environments, we take
different values for λ and bf to correspond to the three
situations of the simulation described above. The exper-
imental results show that without reducing the contact

Figure 11. Impedance learning results and xfd profiles with en-

vironment stiffness in the first experiment.

Figure 12. Experimental setup of contact with an aluminum

plate.

Figure 10. Experiment results of contact with a balloon.
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speed, both the large damping controller and the virtual
semi-active damping controller proposed in this article
suppress force overshoot. Meanwhile, the virtual semi-
active damping controller has faster convergence, which is
conducive to saving energy, and this advantage is more
apparent for contact with a low stiffness environment as in
the first experiment. By applying the impedance learning
algorithm, the parameters of the environmental impedance
are obtained before the force control converges when the

robot is in contact with different environments. In this way,
it is feasible to apply the environment parameters obtained
in designing the controller.

6. Conclusion

We investigated the motion and force hybrid tracking task
of a manipulator making contact with unknown environ-
ments, considering only a single direction of the contact
interaction. The proposed virtual semi-active damping
based on the position provides an effective means for the
damping of the bouncing and force overshoot, which may
occur at the moment that the manipulator is in contact with
the environment at a nonzero velocity. The environment
impedance parameters are needed to obtain the relation
between the virtual damping and position. The L-BFGS
impedance learning method was therefore developed to
estimate stiffness and damping. A simulation and contact
experiment involving a UR10 robot in different environ-
ments demonstrated that the proposed method is feasible
and effective.
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Appendix 1

The proofs of statements (1) and (2) are straightforward
from Section 3.

In proving statement (3), we let switching times Sk = Sf, p,
when the arm moves from the contact phase to free motion
at t = tk(k = 2i). In this case, we have _x> 0, Δx = �xd and
ΔF = �Fd. After first contact occurs, the control objective
of the whole system is to keep the interaction between
the robot arm and environment with the desired force fd.
Therefore, the desired position can be regarded as xfd = Fd/ke
and the velocity is zero. We then can express VpðxðtkÞÞ and
Vf ðxðtkÞÞ as

VpðxðtkÞÞ ¼ 1

2
MΔ _x2 þ 1

2
kp1Δx

2 ¼ 1

2
M _x2 þ 1

2
kp1x

2
d (39)
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and

Vf ðxðtkÞÞ¼ 1

2
M _x2þMΔx _xþ1

2

�
kp2þ1

�
Δx2

þ1

2

�
bf þ λ

��x� xfd
���Δx2þ kp2ΔFΔxþ1

2
kp2ΔF

2

¼ 1

2
M _x2�Mxfd _xþ1

2

�
kp2þ1

�
x2fd

þ1

2

�
bf þ λxfd

�
x2fd þ kp2kex

2
fd þ

1

2
kp2k

2
e x

2
fd

(40)

Therefore

VpðxðtkÞÞ�Vf ðxðtkÞÞ

¼ 1
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fd þMxfd _x�

�
1

2

�
kp2þ1

�
x2fd þ

1

2

�
bf þ λxfd

�
x2fd




�
�
kp2kex

2
fd þ

1

2
kp2k

2
e x

2
fd




≤
1

2
kp1x

2
fd �

�
1

2

�
kp2þ1

�
x2fd þ

1

2

�
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when

kp1 ≤
�
kp2 þ 1

�þ �bf þ λxfd
�þ 2kp2ke þ kp2k

2
e (42)

In proving statement (4), because VpðxðtÞÞ and Vf ðxðtÞÞ
are nonincreasing functions, we have

Vp

�
x
�
tkðk¼2iÞ

��
≥Vp

�
x
�
tkðk¼2iþ1Þ

��
(43)

and

Vf

�
x
�
tkðk¼2iþ1Þ

��
≥Vf

�
x
�
tkðk¼2iþ2Þ

��
(44)

which imply

1

2
M _x
�
tkðk¼2iÞ

�2
≥
1

2
M _x
�
tkðk¼2iþ1Þ

�2
(45)

and

1

2
M _x
�
tkðk¼2iþ1Þ

�2
≥
1

2
M _x
�
tkðk¼2iþ2Þ

�2
(46)

such that

�� _x�tkðk¼2iÞ
��� ≥ �� _x�tkðk¼2iþ1Þ

��� ≥ �� _x�tkðk¼2iþ2Þ
��� (47)

It is inferred from (25) that the velocity of the system is
decreasing at consequent times that the controller switches
to the position control mode and it is thus obvious that

Vp

�
tkðk¼2iÞ

�
≥Vp

�
tkðk¼2iþ2Þ

�
(48)

Furthermore, we easily deduce that

Vp

�
tkðk¼2iþ1Þ

�
≥Vp

�
tkðk¼2iþ3Þ

�
(49)

It is easily proved by contradiction that there is a finite
number of Lyapunov function switches according to The-
orem 1(4). The energy function Vk= 2i also drops appre-
ciably when the manipulator breaks from the surface of the
environment. Therefore, the last switch brings the system to
the contact phase. The force controller with the Lyapunov
function is strictly decreasing in restricted motion, and the
whole system is thus asymptotically stable.
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