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ABSTRACT Considering that large quantities of soil hyperspectral data include the redundancy and
overlap of spectral information, the technology of selecting feature wavelength can effectively solve these
problems, and improve the accuracy and stability of the soil organic matter (SOM) content retrieval model.
Traditional methods of wavelength selection mainly attempt to establish the empirical relationship between
reflectance and SOM contents, and the performance is directly related to the quality and representativeness
of the ‘‘training data’’. This study first distinguished the sensitive wavelength interval of SOM through the
sensitivity analysis (SA) of the SOM to soil reflectance in radiative transfermodel. Then sensitive wavelength
points of SOMwere ascertained using the successive projection algorithm (SPA): 468, 476, 496, 599, 775 and
900nm. Results show that SOM content can be estimated with high accuracy (root-mean-square error of
prediction (RMSEP) < 0.234%, coeficient of determination (R2) > 82.9%) by adopting the selected six
wavelengths. Especially at 599nm, the accuracy of SOM content estimation is the highest (RMSEP: 0.176%,
R2: 90.4%). Compared with traditional empirical wavelength selection methods, the wavelength selection
based on the SA-SPA with the SOM radiative transfer model improves the generalizability and accuracy of
the result. The research provides theoretical basis and technical support for the remote sensing retrieval of
SOM, the development of rapid spectral instruments, and the bands setting of sensor instrument.

INDEX TERMS Wavelength selection, soil organic matter, SOM radiative transfer model, SA-SPA.

I. INTRODUCTION
Soil organic matter (SOM) is an important part of soil, whose
content is generally regarded as a criterion to assess soil
fertility and an important indicator of soil degradation [1], [2].
Quickly and accurately grasping the spatial change of SOM
content is of great significance for precision agriculture.
Hyperspectral remote sensing technology owing to its charac-
teristics of high spectral resolution, multiple bands and strong
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continuity will gradually replace the traditional monitoring
methods based on chemical analysis [3]–[7]. It can obtain
subtle spectral information of ground objects and provides
a powerful tool for quantitative prediction of SOM content.
However, for practical applications, the spectral informa-
tion overlaps severely. Selecting the feature wavelengths of
SOM is the key to improving the predictive capability of
model [8]–[10].

According to the similarities and differences for the princi-
ples and characteristics of various wavelength selection algo-
rithms, common SOM wavelength selection algorithms are
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roughly divided into five categories: (1) Wavelength selec-
tion algorithms based on partial least squares (PLS) param-
eters, such as uninformative variables elimination (UVE)
and competitive adaptive reweighted sampling (CARS); (2)
Intelligent optimization algorithms, such as genetic algorithm
(GA), particle swarm optimization (PSO) and ant colony
optimization (ACO); (3) Continuous projection strategy, such
as successive projection algorithm (SPA); (4) Model cluster
analysis strategy, such as variable iterative space shrinkage
approach (VISSA); (5) Wavelength interval selection, such
as interval PLS (iPLS), moving windows PLS (MWPLS) and
interval combination optimization (ICO) [11]–[27].

However, these wavelength selection methods mainly try
to establish the empirical relationship between large quanti-
ties of observed reflectance and SOM contents. These sta-
tistical methods entail extensive field observations, and their
performance is directly related to the quality and represen-
tativeness of the ‘‘training data’’. In addition, the wave-
lengths selected using these methods lack a strict physical
foundation [28].

In order to solve these problems, this study firstly built the
SOM radiative transfer model based on the Kubelka-Munk
(KM) theory. Then the sensitivity of the SOM to soil
reflectance in radiative transfer model was analyzed. Accord-
ing to the result of sensitivity analysis (SA), the wavelengths
in the 450-2500 nm spectral range were classified to dis-
tinguish the sensitive wavelength interval of SOM. Finally,
the sensitive wavelength points of SOM were ascertained
using the SPA. The validation set was used to estimate SOM
content at the selected wavelengths, which verifies the effec-
tiveness of the method.

The rest of this paper is organized as follows. Section II
provides the description of the SOM radiative trans-
fer model, the details of experimental datasets and the
method of wavelength selection with SA-SPA. The results
and performance of wavelength selection are discussed in
Section III. Section IV presents the conclusions of this
paper.

II. MATERIALS AND METHODS
A. EXPERIMENTAL DATASETS
The data set used in this study is the same as [29]. Three-
quarter whole dataset was chosen by sample set partitioning
based on joint x-y distance (SPXY) method [30] and used
for the calibration set (n = 82). The remaining was used
for the validation set (n = 26). The specific application
scenes are: (1) Inverting unknown parameters a1 and a2 of
SOM radiative transfer model with the calibration set; (2)
Selecting wavelength using SA-SPA with the calibration set;
(3) Validating the results of wavelength selection using SA-
SPA with the validation set. The summary statistics of SOM
for the whole, calibration and validation sets are respectively
provided in Table 1. The values of the mean, standard devi-
ation (SD) and coefficient of variation (CV) from three sets
are relatively similar. Generally speaking, the characteristic
statistics of both the calibration and the validation sets are

TABLE 1. Statistical description of SOM contents.

similar to the whole set, indicating that they are well divided
to represent the whole set.

B. SOM RADIATIVE TRANSFER MODEL
According to [29], the relationship between transformed
reflectance r and SOM content θ can be expressed as

r(θ ) =
k(θ )
s(θ )
=
r1( 1−θ1−θ1

)+ a1(
θ−θ1
1−θ1

)

( 1−θ1−θ1
)+ a2(

θ−θ1
1−θ1

)
(1)

With:

r1 =
(1− R1)2

2R1
(2)

where k and s are absorption coefficients and scattering coef-
ficients of soil, respectively; R1is the reflectance of the soil
when SOM content is θ1; a1 and a2 are unknown parameters
related to wavelength.

According to the KM theory, the relationship between
infinite reflectance R∞ and SOM content θ is derived as:

R∞ = 1+ r(θ )−
√
r2(θ )+ 2r(θ ) (3)

For dry soil, reflectance, which is related to SOM, mainly
depend on Fresnel reflectance Ri and diffuse scattering Rd .
The relationship can be expressed as:

R(θ ) = Ri + Rd

= Ri +
(1− Ri)2R∞
1− RiR∞

= Ri +
(1− Ri)2

[
1+ r(θ )−

√
r2(θ )+ 2r(θ )

]
1− Ri

[
1+ r(θ )−

√
r2(θ )+ 2r(θ )

] (4)

With: 

Ri =
(
nsoil − nair
nsoil + nair

)2

r(θ ) =
k(θ )
s(θ )
=
r1( 1−θ1−θ1

)+ a1(
θ−θ1
1−θ1

)

( 1−θ1−θ1
)+ a2(

θ−θ1
1−θ1

)

r1 =
(1− R1)2

2R1

(5)

where nsoil is refractive indices of soil (≈1.5) and nair is
refractive indices of air (≈1).

The unknown parameter a1 and a2 need to be acquired
according to the calibration set based on least-squares algo-
rithm. The best criterion for model parameter selection is to
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minimize the residual sum of squares between the simulated
and the measured value. The optimization objective function
is constructed as follows:

min1R(θ ) =
∑

(Rmeasure − R mod el)2 (6)

where, Rmeasure is the measured value for the laboratory,
Rmodel is the theoretical value of the model. All data analyses
were carried out in Matlab R2014b (The Math Works Inc.:
Natick, MA, USA).

C. SENSITIVITY ANALYSIS USING THE SOBOL MRTHOD
SA calculates the fractional contribution of a given input
variable to the variance of an output variable. In this study,
Sobol’s global SA was performed using the Matlab R2014b
(The Math Works Inc.: Natick, MA, USA). Within the wave-
length range of 450-2500 nm, the sensitivity of SOM to
soil reflectance in radiative transfer model was calculated
wavelength by wavelength to determine sensitive wavelength
interval of SOM.

Sobol is a global sensitivity analysis method based on
variance decomposition, which quantitatively evaluates the
influence of each input parameter and the interaction between
the parameters on the output variable by decomposing the
variance of the output variable. If y = f (X1,X2, · · · ,Xm)
represents the model structure, X1,X2, · · · ,Xm represent
the model parameters, and m represents the number of
model parameters, the variance decomposition formula can
be expressed as:

V (y) =
m∑
i=1

Vi +
m∑

i<j<m

Vij +
m∑

i<j<k<m

Vijk · · · + V1,2,··· ,m (7)

where: V (y) is the total variance of the model output y; Vi is
the variance produced by the parameter Xi; Vij is the variance
produced by the interaction of parameters Xi and Xj; Vijk is
the variance produced by the interaction of parameters Xi, Xj
and Xk ; V1,2,...,m is the variance produced by the combined
action of m parameters.

For parameter Xi, the first-order sensitivity index Si can be
used to express the direct contribution rate of parameter Xi to
the total variance of the model simulation results. The total-
order sensitivity index STi represents the common influence
of parameter Xi and all other parameters. The specific formu-
las can be expressed as:

Si =
Vi
V (y)

(8)

STi = 1−
V∼i
V (y)

(9)

where V∼i is the variance produced by the interaction of other
parameters except parameter Xi.

D. SPA
Due to the eficiency consideration that the wavelengths set
by the instrument should be as few as possible, the SPA was
used to select wavelength points in the determined sensitive
wavelength interval of SOM, which can also eliminate the
collinearity between wavelengths effectively.

The SPA is a forward-style method of wavelength selec-
tion [32]. In the process of generating a wavelength com-
bination, the SPA first starts from a wavelength point and
calculates its projection on each remaining wavelength, and
adds the wavelength with the largest projection value to this
combination. Then the projection step to select the next wave-
length is repeated until a certain number of wavelengths are
selected to form a wavelength combination. At the same time,
since the correlation between each newly selectedwavelength
and the previous wavelength is the lowest in each wavelength
combination generated by the SPA, the SPA generally can
effectively eliminate the collinearity between wavelengths.

E. VALIDATION
The root-mean-square error of prediction (RMSEP) and the
coeficient of determination (R2) between the predicted and
measured SOM were selected to evaluate the model perfor-
mance.

RMSEP =

√√√√1
n

n∑
i=1

(yi − y′i)
2 (10)

R2 = 1−

n∑
i=1

(yi − y′i)
2

n∑
i=1

(yi − y)2
(11)

where yi and y
′
i are the observed and predicted value, respec-

tively; y is the mean of the observed data; n is the number of
samples with i = 1, 2, n.

III. RESULTS AND DISCUSSION
A. TESTING OF SOM RADIATIVE TRANSFER MODEL
θ1 is 2.95%. The unknown parameter a1 and a2 were acquired
by the least-squares algorithm combining the calibration set,
wavelength-by-wavelength, in the range of 450-2500 nm.

Reflectance related to SOM content can be estimated with
validation set by using the model mentioned in (4). RMSEPs
between estimated and measured reflectance were computed
wavelength-by-wavelength in the range of 450-2500 nm.
Fig. 1 shows that the accuracy of the model is high, RMSEPs
are generally less than 0.03. Especially in the range of 450-
815nm, RMSEPs are less than 0.023. It provides theoretical
basis for wavelength selection with SA-SPA using the SOM
radiative transfer model.

B. SENSITIVE WAVELENGTH INTERVAL SELECTION
USING SA
In order to determine sensitive wavelength interval of input
parameters, within the wavelength range of 450-2500 nm,
the first-order sensitivity index and total-order sensitivity
index of input parameters to soil reflectance in radiative
transfer model were respectively calculated by (8) and (9)
wavelength by wavelength. The contribution of input param-
eters to soil reflectance in radiative transfer model varies at
different spectral regions. In Fig. 2 and Fig. 3, the contribution
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FIGURE 1. RMSEPs at different wavelength.

of input parameters is marked by a unique color on the basis
of the SA results. Fig. 2 and Fig. 3 show that the change of
total-order sensitivity index with wavelength is consistent
with that of first-order sensitivity index with wavelength.
The parameter SOM has unique sensitive wavelength interval
where SOM’s influence is significantly stronger than that of
the other parameters. The sensitive wavelength interval of
SOM ranges from 450 nm to 1020 nm. It reveals that the
VNIR bands provide the optimal bands in the solar domain
(i.e. wavelength between 350 and 2500 nm) for remote sens-
ing of SOM. It is in accordance with previous findings.
Yuan et al. found that the SOM retrieval model has the highest
accuracy, and the best predictive ability in the range of 552-
950nm [29]. Liu et al. used the typical black earth area in
Heilongjiang Province as the study area, and showed that the
sensitive bands were 445-1380 nm, the significantly corre-
lated spectral range was 545-1250 nm [33]. Luan et al. found
that saline-alkali SOMhad a high correlationwith the spectral
reflectance at 560-750 nm and 760-1000 nm [34]. Ji et al.
found that although the SOM feature bands of different sorts
of soils in different regions are different, most of the feature
bands are concentrated around 600-800 nm, which shows that
the 600-800 nm band is universal for SOM content analysis
of various soil [35].

C. WAVELENGTH SELECTION USING THE SA-SPA
The aim of this study is to utilize as few wavelengths as
possible, while providing accurate retrieval of SOM content.
To select the most eficient wavelengths for the retrieval of
SOM content, the SPA was used to select wavelengths in the
range of 450-1020nm with the calibration set. According to
the results of Table 2, the number of wavelengths has changed
from the original value 2051 to 6, and the root-mean-square
error of cross validation (RMSECV) has been reduced from
0.391 to 0.387. Not only has the number of wavelengths been
reduced, but the accuracy has also been improved.

The selected wavelengths 468, 476 and 496nm correspond
to the specific absorption peak of SOM around 400-500nm.
As to the selected wavelengths of SOM at 599nm and 775nm,

FIGURE 2. First-order sensitivity analysis of the input parameters.

FIGURE 3. Total-order sensitivity analysis of the input parameters.

TABLE 2. The results of wavelength selection.

they match the SOM specific absorption peak around 620-
700nm. The selected wavelengths 900nm corresponds to the
specific absorption peak of soil iron at 900nm [36].

D. VALIDATION USING THE EXPERIMENTIAL
VALIDATION SET
The optimal wavelength combination to detect SOM content
was settled using the calibration set. However, the perfor-
mance of these wavelengths needs further validation using
the validation set. SOM content was respectively estimated
at selected six wavelengths by the SOM content retrieval
model which is the inversion of the SOM radiative transfer
model. The RMSEPs between retrieved and measured SOM
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FIGURE 4. Scatter of measured versus estimated SOM content using the SOM radiative transfer model with the validation
set at inversion six selected wavelength: (a) 468nm, (b) 476nm, (c) 496nm, (d) 599nm, (e) 775nm and (f) 900nm.

content were respectively computed at selected six wave-
lengths. Fig. 4 shows that SOM content can be estimated
with high accuracy (RMSEP < 0.234%, R2 > 82.9%) using
the validation set at the selected six wavelengths. Especially
at 599nm, the accuracy of SOM estimation is the highest
(RMSEP: 0.176%, R2: 90.4%). Besides, The RMSEP using
PLS with the selected six wavelength combination was com-
puted. Compared with the SOM radiative transfer model
inversion, the RMSEP with PLS is bigger, which is 0.219%.

It is worth noting that prediction accuracy of SOM content
with SOM radiative transfer model inversion is calculated at
selected six wavelengths, respectively. However, the predic-
tion accuracy of SOM content with PLS is calculated using
the selected six wavelength combination. Therefore, SOM
radiative transfer model inversion can be well applied to the
prediction of SOM content with higher accuracy and less
wavelengths. Regardless of whether the selected wavelengths
are used to estimate SOM content using the SOM radia-
tive transfer model inversion or statistical method PLS, its
accuracy is high, which verifies the validity of the selected
wavelengths.

E. COMPARISON WITH TRADITIONAL EMPIRICAL
WAVELENGTH SELECTION METHODS
In order to further verify the effectiveness of the SA-SPA
method proposed in this study, it was compared with
ICO-SPA, CARS-SPA and GA-SPA method for selecting

optimal wavelength combination to detect SOM content. The
performances of the wavelengths selected by these four meth-
ods were compared and analyzed using the validation set
(Table 3). The number of wavelengths selected by the four
methods is not much different. The comparison shows that the
performance of wavelengths selected by the SA-SPA method
(RMSRCV<0.234%) is better than ones selected by the other
three methods (RMSRCV values of 0.309%, 0.328% and
0.357%, respectively).

TABLE 3. Comparison results.

Provided that the selection was made based on a physi-
cal model and validated using experimental samples, these
wavelengths are useful for predicting SOM content on a
large scale. Additionally, compared with traditional empiri-
cal wavelength selection methods, the wavelength selection
based on the SOM radiative transfer model improves the
generalizability and accuracy of the result

However, this method has the following limitations:
(1). The experimental samples in this study include

black soil, chernozem soil, and meadow soil. Some other
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wavelength combinations aside from those presented in this
study may be more efiective when detecting other specific
types of soil.

(2). The certain limitation of the SOM radiative transfer
model is that it contains two unknown parameters and thus
requires soil information a priori to be solved (i.e. calibration)
and thus requires soil information a priori to be solved (i.e.
calibration).

IV. CONCLUSION
Six wavelengths were selected in this study through the
SOM radiative transfer model to estimate SOM content. This
method avoids the problem that statistical methods require
a large amount of actual measurement data, and the perfor-
mance is directly related to the quality and representativeness
of the ‘‘training data’’. The main conclusions of this study are
summarized below:

(1). This study firstly built the SOM radiative transfer
model based on the KM theory. Then the sensitivity of the
SOM in radiative transfer model to soil reflectance was
analyzed. According to the result of sensitivity analysis,
the wavelengths in the 450-2500 nm spectral range were
classified. The distinguished sensitive wavelength interval
of SOM is 450 nm to 1020 nm. Compared with tradi-
tional empirical wavelength selection methods, the wave-
length selection based on the SOM radiative transfer model
improves the generalizability and accuracy of the result.

(2). The sensitive wavelength points of SOM were deter-
mined by using SA-SPA: 468, 476, 496, 599, 775 and 900nm.
The validation set was used to estimate SOM content at
the selected wavelengths, which verifies the effectiveness
of the method. Compared with ICO-SPA, CARS-SPA and
GA-SPA method for selecting optimal wavelength combina-
tion to detect SOM content, the performance of wavelengths
selected by the SA-SPA method (RMSRCV<0.234%) is bet-
ter than ones selected by the other three methods (RMSRCV
values of 0.309%, 0.328% and 0.357%, respectively).The
research results provide theoretical basis and technical sup-
port for the remote sensing retrieval of SOM, the development
of rapid spectral measurement instruments, and the setting of
sensor instrument bands.

The radiative transfer model in this study only takes the
influence of SOM on reflectance into account, ignoring soil
moisture, mineral composition, organic matter, nutrients, etc.
Future studies are underway to improve the radiative trans-
fer model by synthetically thinking over the influence of
SOM, soil moisture, etc. on reflectance. The contribution of
different parameters to soil reflectance in radiative transfer
model needs to be made a thorough inquiry in order to obtain
sensitive wavelengths of SOM, soil moisture, etc.
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