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Abstract Temporal action proposal generation aims to output
the starting and ending times of each potential action for long
videos and often suffers from high computation cost. To addr-
ess the issue, we propose a new temporal convolution network
called Multipath Temporal ConvNet (MTCN). In our work, one
novel high performance ring parallel architecture based is
further introduced into temporal action proposal generation in
order to respond to the requirements of large memory occupa-
tion and a large number of videos. Remarkably, the total data
transmission is reduced by adding a connection between multiple-
computing load in the newly developed architecture. Compared
to the traditional Parameter Server architecture, our parallel
architecture has higher efficiency on temporal action detection
tasks with multiple GPUs. We conduct experiments on
ActivityNet-1.3and THUMOS 14, where ourmethod outperforms-
other state-of-art temporal action detection methods with high
recall and high temporal precision. In addition, a time metric is
further proposed here to evaluate the speed performancein the
distributed training process.

Keywords temporal convolution, temporal action proposal
generation, deep learning

1 Introduction

With the rapid development of the Internet and camera, the
number of videos is increasing at a very high speed. There are
millions of video submissions on video-sharing websites like
YouTube every day. Besides, the video surveillance system
plays an important role in maintaining security [1—3]. These
video files contain a lot of information for humans, such as
time duration and action classify [4,5]. Making full use of
videos is an indispensable step for building a smart city. It is
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vital for the development of the information age to extract
information from a large number of videos automatically.
Action is the most important information for videos because
the essence of the video is recording varieties of motion. So a
significant branch of video task is action recognition, which
aims to recognize the class of action from a trimmed video.
But the task is limited because its research object is videos that
have been manually trimmed and only contain single action.
The majority of videos in the real world are untrimmed videos
and contains multiple action instances in a single video. The
problem requires another challenging task: temporal action
detection, which aims to recognize the temporal boundaries
and classes of action instances from untrimmed videos.

Temporal action detection usually includes two steps:
proposal and classification. The proposal stage focuses on
detecting action boundaries and generating action instances
with untrimmed video. Classification aims to recognize the
class of action instances produced in the previous step. For the
task of temporal action detection, classification has achieved
high accuracy. And the precision of proposals is the main
factor limiting temporal action detection [6,7].

High-quality proposals should meet two requirements [8]:
(1) high recall; (2) high overlap with ground truth. A good
algorithm for generating proposals should not only generate
excellent proposals, but its speed should be as fast as possible.
Because videos occupy a large amount of memory, we must
improve the speed of the method so for being applied to
practice.

Most proposal generation algorithms generate generation by
using sliding windows [9—12]. But the pre-defined durations
and intervals of sliding windows cannot generate proposals
with flexible length, which greatly reduced the precision of
proposals. Boundary Sensitive Network (BSN) [8] used a
temporal network with three convolution layers to deal with
video feature sequences and could generate proposals with
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flexible duration. But BSN cannot extract enough information
from videos due to its simple network architecture.

To address these problems and improve the quality of
producing proposals, we designed a temporal convolution
network architecture, which adopted two-channel convolution
for extracting both temporal and spatial information from the
video feature sequence. While we made the network architecture-
more complicated, a new parallel computing frameworkwas
used to accelerate our algorithm with higher efficiencycom-
pared to the popular Parameter-Server Framework [13].

In summary, the main contribution of our work is three-fold:

(1) We proposed Multipath Temporal Network (MTN) that
could extract effective information from video feature
sequence.

(2) We adopted a new parallel computing framework to
speed up our temporal convolution network with high efficiency.

(3) A metric is put forward to evaluate the time consumption
in the distributed deep learning field.

2 Related work

Temporal action detection aims to detect action instances from
the untrimmed video. The task could be divided into two
steps: proposal and classification. Though some methods do
the two steps at the same time, the majority of methods take
the task as a serial process and finish proposals and
classification separately.

Temporal action proposal generation Proposal generation
is the distinct characteristic of Temporal action recognition.
Proposal generation aims to detect the start and end boundary
of action instances in the untrimmed video. Earlier methods
used sliding windows to generate proposals [14—16]. Then
some algorithms [9—11,17] began to pre-define temporal
duration and intervals of proposals and evaluated them with
multiple methods like recurrent neural network (RNN) and
dictionary learning. Another popular method for proposal
generation is TAG [18], which utilized the watershed algor-
ithm to do the project. Though TAG can generate proposals
with flexible boundaries and durations, it is lack of evaluation
of these proposals. BSN [8] has a good performance of
generating proposals, which is benefit from its temporal
convolution network. But the weak extraction capacity to
video feature sequences because of the single temporal convo-
lution network and slow speed make it difficult to be applied
to practice.

Action recognition Action recognition has been widely
used in the real life [19—22]. Before the wide range applied of
deep learning in computer vision, improved Dense Trajectory
(iDT) [23] has a very good performance in action recognition.
It adopted manual image features such as Histogram of
Oriented Optical Flow (HOF), Histogram of Oriented Gra-
dient (HOG), and Motion Boundary Histograms (MBH), and
used Fisher Vector to encode these features. Then an SVM
classifier was designed to classify the features encoded. With
the rapid development of deep learning, convolution neural
network (CNN) brought great effects to computer vision and
showed strong strength in action recognition. Two-stream
network [24] has two parts and extracts appearance features
from RGB frame with using spacial CNN and extracts motion

features from optical flow field with using temporal ConvNet.
TSN [25] improved two-stream network by using multiple
networks to capture short-term temporal information. C3D
network [26] is different from two-stream network. It is 3-
dimensional and extracts features from raw videos directly.
There are also lots of 3D convolution structure be proposed
for extracting more information from videos.

Distributed deep learning Because deep learning has a
wide range of application, acceleration is significant to let it
more widely to be used. Distributed deep learning, which is
based on parallel computing, belongs to high performance
computing and accelerate CNN by using more machines like
GPUs.

MapReduce[27] was proposed by Google and dissemble
compute into map and reduce, which divided compute into
tow steps of Map and Reduce. But it has a strict requirement
of consistency. To address the problem, Graphlab[28] used an
abstract way like the image to communicate, which also lead
to low scalability. Jeff Dean proposed Parameter-Server
Framework (PS) [13], which uses a parameter server to store
the newest weight parameters of CNN. When the number of
GPUs increases, the efficiency of PS will have a great decline
because of the big communication.

Video task is closed to real life and Allied in practice is its
final goal. So besides accuracy, the speed of methods is also
an important indicator. Based on these, our method is superior
to others in two aspects: (1) Our improved temporal convo-
lution has a more reasonable architecture for video files and
could extract more useful information from video feature
sequence; (2) We combine our proposal generation method
with a new framework of parallel computing for efficient
acceleration.

3 Proposal generation

Based on SENet (Squeeze-and-Excitation Network) [29] and
exploring the meaning of video feature sequence, we proposed
Multipath Temporal Network (MTN).

3.1 Video feature sequence

For lots of tasks in video analysis, they do not handle video
directly but deal with video feature sequence. Video feature
sequences are usually encoded by neural networks with a
special structure. In this paper, we used two-stream network
[30] as an encoder to transfer video into a set of vectors.

In detail, the architecture of two-stream network is shown as
Fig. 1(a). The network contains two parts: the spacial network
extracts information from RGB images and the temporal
network is used to draw importance from optical flow images.

We selected 1 RGB image and two optical images from
every 16 frames and put them into the two-stream network.
The outputs of spacial network and temporal network are both
200-dimensional vector. Through concatenating them, we can
get a 400-dimensional vector for the 16 frames finally. For a
video with n frames, two-stream network produced n/16 400-
dimensional vectors, which are video feature sequences.

We denote an untrimmed video with N frames as X =

{xn}nNzl. For X, then two-stream network produced N/16 400-
N/16

dimensional vectors represented as V = 1777 i
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Fig.1 The framework of our approach. (a) Two-stream network is used to encode visual features in snippet-level; (b) The architecture of
Multipath Temporal Network:SE-ConvNet extract temporal information from video feature sequence; Multipath DenseNet uses multiple dense
layers to explore the meaning of single feature vector; (c) Boundary-Sensitive Network is used for generating proposals by probabilities sequence

To normalize our inputs, interpolation is applied to convert
the number of vectors, N/16, to 100 in our experience. So far,
a untrimmed video was transformed into V = {v,,} 1112?, and V is
the input of our temporal convolution network.

3.2 Temporal convolution network

To generate flexible proposals, a temporal convolution net-
work is usually used to detect possibility with each v, in V,
like Fig. 2. For a V = {vn}rllg(i, temporal convolution network
generates 3 possibility sequence Py ={p;}!%, P, ={p3}l%,
P, ={ p;}}lg‘{. Dy, Do, pe present the possibility of action start,
actionness and end in the duration of v, respectively.

The traditional temporal convolution network uses a 3 one-
dimensional convolution network to extract information from
video feature vectors. A video feature sequence can be seen as
a vector which length is 100 and the channel is 400. A
temporal convolution layer can be denoted as Conv(ng,ng,
act), where n¢,ny,act denote the number of filters, kernel size,

Start

and activation function, respectively. So traditional temporal co-
nvolution network could be defined as Conv(512,3,ReLU) —
Conv(512,3,ReLU) — Conv(3,1, S igmoid).

The network can acquire temporal information from feature
sequences, but its simple network is not enough power to
extract lots of complicated information in the video. It just
focuses on the temporal information of video feature sequ-
ences but overlooks the meaning of the single feature vector in
video feature sequences.

Inspired by the ability to extract information from multiple-
channel feature maps of SENet and excellent dimensional
representation of dense connect layer, we proposed one
Multipath Temporal Network (MTN), which could better
extract information from video feature sequence. Figure 1(b)
shows the structure of MTN. There are two networks of
Multipath DenseNet and SE-ConvNet in multipath temporal
network. Multipath DenseNet with three dense connect layers
is used to detect the deep meaning of the single feature vector

End
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Fig. 2 Temporal convolution network generate probabilities sequences
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one by one.

In the original convolution process, lots of feature maps are
produced by using a large number of convolution kernels.
Besides, because of one-dimension, only a few information is
contained in a single feature map, which increases the reliance
of network on raw input data. In the convolution layer, all
feature maps in the same layer have the same weights for the
next layer. However, some feature maps contain more
effective information compared with others in the same
convolution layer. If we could pay more attention to these
effective feature maps, and ignore useless feature maps
properly, our temporal convolution network will have a better
effect and its robustness will be more strong.

We improved the ConvNet by using the squeeze-excitation
block. In squeeze, global pooling is applied to compress
feature maps on the spatial dimension. Each feature map will
be transformed into a single number and the number of
channels is constant. Then we put the output of squeeze into
dense connected neural network and generate weights for all
the feature maps, which is called excitation. The shape of
output and input in the excitation stage are consistent. Multiply-
weights for these feature maps so we get the final result of
ConvNet. We apply the squeeze-excitation block after every
convolution layer in our temporal convolution architecture to
enhance the ability to extract information.

While squeeze-excitation blocks are used to enhance our
one-dimension convolution layer, we only extract temporal
information between video feature sequences. For a single
video feature vector, we need to know what meaning it
represents. In order to achieve this goal, we added multiple
dense layers named Multipath DenseNet. By using it, we can
extract information from video feature sequences on the
spatial dimension. For our Multiple DenseNet, the number of
units in the input layer is 400, corresponding to the dimension
of feature vectors. The number of units in the hidden layer is
512 with ReLU as the activation function. The number of unit
in output layer is 3 with softmax activation function for
outputting the probability of action start, end, and actionness.
The dense layer could be presented as Dense(units,Act),
where units and Act are the number of units and activation
function of dense connected layer. So the Multipath DenseNet
can be defined as Dense(512,ReLU) — Dense(512,ReLU) —
Dense(3,S oftmax).

We can see that our improvement for temporal convolution
network is not in depth but width. SE-ConvNet and Multipath
DenseNet deal with video feature sequences separately and get
their own probabilities sequence. Then through adding them
according to a weight parameter W, we can get the final
probabilities sequences Ps, Pg, P4.

3.3 Training of temporal convolution network

Because the output of temporal convolution network is three
probabilities sequences, the overall loss function consists of
three parts, which is as below:

Loss = A+ Laction + Lstart + Lena, (1)

where A is a weight and set to 2 in our network.
To compute Loss, we need to convert the ground truth to the

label for training our network. The duration between v, and
vp+1 18 denoted as I, which is equal to //100, where [ is the
length of video. The moment of v, is #,, so we define the
region of v, is r, = [t, —1,,/2,t, +1,,/2]. And now we get the
set of region R={rn},’:':1. Besides, There is only a instant
moment for the start and end of a action, for example, 7, and
t., we also need to transfer them into regions ry = [ty —1,,/
2,ty+1,/2] and r, = [t, -1, /2,1, +1,/2]. For each region r,, it
consists of three parts: start, actionness and end. Then we can
get the label g, = (g),84,85) for each v,, where g and g, are
the proportion of rgand r,inr, and g, = 1 — g3 — g¢.
We adopt cross entropy to compute our loss function:

I
1, _
LZE;(“ bi-log(p)+a~-(1=b)-log(1-p).  (2)

where b; = sign(g; — 0;,p) is a two-values function and 6y,p is
set to 0.5 in our network. [* =Y g; and [~ =1, —I*. we also

. l I
introduced o = = and o~ = —:V to balance the error caused

by the imbalance between the number of positive and negative
samples.

4 Parallel computing acceleration

4.1 Classes of parallel computing

For training of the neural network, GPU is a much faster
platform than CPU because of its architectural advantage on
matrix computation. So we used GPU as the computing
platform for our temporal network. Further, we applied
parallel computing based on GPU to accelerate our network
for more powerful capabilities of processing video. The hard
architecture of GPU is shown as Fig. 3. Stream Processor (SP)
is the basic computing unit of GPU and Stream Multipro-
cessor (SM) is composed of a certain number of SM, register,
share memory, and L1/L2 cache. From the picture, we can see
that one SM contains multiple SP but only one instruction
unit. So for single SM, it only supports single instruction
multiple data (SIMD) but not multiple instruction multiple
data (MIMD). When GPUs are used to train CNN models,
parameters of models are stored at device memory, which
decided that the form of parallel computing of GPU in deep
learning field is SIMD. After determining SIMD, the parallel
architecture of GPU can be divided into two classes of model
parallelism and data parallelism.

GPU device 0
SM 1

SM n

Host

Fig.3 Hard architecture of GPU
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4.2 Model parallelism

Model parallelism means different machines (GPU or CPU) in
a distributed system are responsible for different parts of a
network model. For example, different layers in a neural
network model or different parameters in the same layer are
assigned to different machines. The structure of model paralle-
lism is shown as Fig. 4. In general, the reason for applying
model parallelism is oversized for the neural network.

4.3 Data parallelism

Data parallelism means the input data are divided into several
parts and delivered to different machines. There is a complete
model in each machine and these machines run the same
program to deal with allocated data. Training CNN is a serial
process, i.e., only after computing the gradients for current
data and upgrading parameter weights, the next data can be
put into the machine. The key to model parallelism is that all
GPUs have the same CNN model, which we called them
model replicas. But the data for each GPU is different. We
integrate different weight gradients Vw calculated by all of
GPUs and upgrade parameters of the model.

With its simple and understandable structure, Parameter
Server (PS) becomes the main data parallelism framework and
got support from some mainstream deep learning framework
like TensorFlow [31]. The architecture of PS is shown as Fig. 5,
where Aw is the weight gradients computed by model replicas
like GPUs and w’ is the newest weight parameters. PS stores
the parameters of the model. Model replicas compute different
parameter weights and then upgrade the parameters in the
parameter server.

4.4 Ring parallel architecture

From Fig. 5 we can see that the communications volumes
increase linearly with the increasing number of GPUs. We
suppose the size of CNN model is M and N GPUs are used in

( Output )

S O Device\1

f
( Input data )

Fig.4 Model parallelism
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Fig. 5 Parameter server framework

our distributed system, so the communications volume is
N - M. If the number of GPUs achieved a high level, the large
communications volume will greatly limit the training speed
of CNN model.

To address the problem of large communication volume in
distributed deep learning system, we proposed one new ring
parallel architecture. By building communication between
GPUs with Message Passing Interface (MPI), our ring parallel
architecturecan reduce the pressure of communication. The
ring parallel architecture is shown as Fig. 6. We changed the
parallel topology to ring and averaged the communications
volumes. The ring architecture upgrades weights through two
steps including scatter and gather.

4.4.1 Scatter
We divide weights in every GPU into N parts, where N is the
number of GPU utilized in the architecture. After all of GPUs
got different weight gradients by computing different input
data, like there are different colors in Fig. 6 and a row of
colored blocks denotes a part. The nth GPU passes its own
(n—1)%Nth block of weight gradients to its right neighbor and
receives (n—i—1)%Nth block of weight gradients from its left
neighbor, where i is the round of scatter. Figure 7 shows the
detail after one round of scatter.

After N—1 rounds of scatter, nth GPU has collected
(n+1)%Nth block of weight gradients from all GPUs, which
is shown as Fig. 8. After scatter, each GPU has a block of

Fig. 6 Ring parallel architecture. Multiple colors denote the weight gradient
computed by each GPU is different
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Fig.7 Scatter. In the scatter step, the GPU passes a row of weight gradient
(all of the colors in this row) to the same position in its next GPU

Fig. 8 Distribution of weight gradients after scatter. There is a row in every
GPU that has collected weight gradients from all of GPUs (all of the colors)

gradients which is from all GPUs.

4.4.2 Gather

Like scatter, GPUs also pass a block of weight gradients to the
next GPU in the process of gather. Through N — 1 rounds of
gather, the (n+ 1)%Nth block of weight gradients in the nth
GPU is passed to all of other GPUs. In the ith round of gather,
the nth GPU passes its own (n—i—1)%Nth blocks of weight
gradients to its right neighbor and receives the (n —i—2)%Nth
blocks of weight gradients from its left neighbor. Different
from scatter, GPUs don’t need to add but replace its own
block by the block received. After gather, we can see that all
of GPUs have obtained all weight gradients computed by
every GPU, which is shown as Fig. 9.

4.5 Training time metrics
To explore the relationship between the number of GPUs and
training time and evaluate parallel architecture, we defined
training time metrics 7'(n), where n is the number of GPU
used.

Training time in distributed deep learning system could
consist of three parts: (1) #; for forward propagation and

Fig. 9 Distribution of weight gradients after gather. All of the weight
gradients are merged in each GPU

backward propagation of single GPU; (2) #, for communi-
cation of weight gradients between GPUs or between GPU
and CPU; (3) #3 for preparation before training process and
finishing work after training.

For Parameter Server framework, #; is inversely proportional
to the number n of GPUs used. 7, is proportional to the
number n of GPUs and 3 has nothing to do with n. So the
training time metrics for PS framework Tpg(n) is shown as
below:

t= §+C-n+P, n=2,3,...,

3)

where T is the training time with using single GPU, C is the
communication time and P is the preparation time for opening
and closing deep learning platform.

For our ring parallel architecture, #; is also inversely
proportional to the number of n of GPUs used. Let the size of

K
Aw in each GPU is K, single GPU send — to his right

n
neighbor each round. Every GPU do n—1 rounds of scatter
and n — 1 rounds of gather, so the total communication volume

-1 -1
is 2K - n—. Then we can get that 7, is proportional to n—.

And 13 isnalso a constant. So the training time metrics for ging
parallel framework Tr;,g(n) is shown as below:

t= r +C- "

n n-—

The most difference between these two training time metrics

is t. As the number of GPUs r increases, f, in ring parallel
architecture will be smaller than PS framework.

CHP =23, ()

5 Experiments

In this section, we evaluated our parallel temporal convolution
network as two part. On the one hand, we tested the accuracy
of proposal generation based on MTN; on the other hand, we
evaluated the accelerated efficiency of our ring parallel
architecture on MTN.

5.1 Temporal action detection
Dataset. ActivityNet-1.3 [6] is a normal video dataset for the
temporal action proposal generation task. It contains 19994
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untrimmed videos containing 200 classes of action instances
and corresponding annotations. each untrimmed video inc-
ludes one or more action instances. ActivityNet-1.3 is divided
into training set, test set, validation set in a ratio of approxi-
mately 2 : 1 : 1. THUMOSI14 [7] is a smaller video database
containing 20 class action instances but they have a longer
duration. THUMOS14 contains 213 and 200 temporal
annotated untrimmed videos in testing and validation sets
separately. In this part, we will compare the performance of
various commonly used methods for temporal action detection
on ActivityNet-1.3 and THUMOS14.

Evaluation metrics Because it is rare that our generating
proposals completely coincide with ground truth, we need to
set a threshold of IoU (Intersection over Union) to judge
whether proposals are correct or not. When the IoU between
the proposal and ground truth is higher than the threshold, it is
correct. In temporal action proposal generation task, Average
Recall (AR) calculated with multiple IoU threshold is usually
used as evaluation metrics. For ActivityNet-1.3, we set IoU
threshold as [0.5 : 0.05:0.95] and [0.5:0.05:1.0] for
THUMOSI14. Because AR increases with the increase of AR
with Average Number of proposals (AN), we use AR with
definite AN as metrics, which is denoted as AR@AN. Besi-
des, we also apply area under the AR vs. AN curve (AUC) as
metrics On ActivityNet-1.3.

Implementation details Two-stream network [30] whose
temporal network is BN-Inception [32] and spacial network is
ResNet [33] is used to encode videos. About the parameters in
SENet[29], we set the reduction ratio with 512 feature maps as
16 and the reduction ratio with 3 feature maps as 1. Besides, to
test the impact of our improvement on the final proposal
generation result, we apply proposal generation module
(PGM) and proposal evaluation module (PEM) in boundary
sensitive network (BSN) to deal with the output of our
temporal convolution network. The structure of BSN is shown
in Fig. 1 (c). We implement MTN with TensorFlow [31]. Our
parallel computing platform contains 8 Tesla V-100 GPUs.

We tested the loss curve with validation set between the
original temporal convolution network and MTN. We also
briefly changed the original architecture by adding or reducing
one convolution layer The result is shown as Fig. 10. We can

2.71 — Origin

— Improved
2-cnn-layers

2.6 4-cnn-layers

22. NN
g 25 N/\\”J #A\f\,]:\/
™ r"\f/_/ ‘ | /v \J .L\\
‘#‘KMI‘JI 'u\,\/ \\‘-./
2.3

=
o
=
)
S
w
=)
S
S
w
=
=N
S
=
S
[
S

Epoch

Fig. 10 Loss curve with validation set. origin is the original temporal
convolution network and improved denotes MTN. 2-cnn-layers and 4-cnn-
layers mean to reduce or add one one-dimensional convolution layer based on
origin
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see that whatever we increase or decrease the number of
layers, the curve will be worse. But there is an obvious decline
with using our improvement.

We also compared the final result of proposal generation
between our MTN and other state-of-art proposal generation
algorithms, which is shown as Table 1 and Table 2.

Effectiveness of modules in MTN To evaluate the
effectiveness of SENet and multipath dense layers, we
demonstrate an ablation study on ActivityNet-1.3. The result
is shown in Table 3. We can see from the table that the
Multipath DenseNet has played a more effective role than SE-
ConvNet in MTN, this is because the information extracted by
Multipath DenseNet is a representation of information not just
a promotion of existing information.

5.2 Parallel computing acceleration
Because of occupying huge memory and a large number of
video files, distributed deep learning is indispensable for
applying temporal action detection algorithm to the actual.
Because of the inefficient of the traditional PS framework on
distributed deep learning, we applied parallel ring architecture
to our temporal convolution network and received a good
result. The speed ratio with these two parallel frameworks is
shown as Fig. 11. As the number of GPU increases, the
performance of parallel ring architecture is getting better and
better than PS architecture.

To further explore the relationship between the number of
GPUs and training time, we defined training time function
T (n), where n is the number of GPUs used.

Table 1 Comparison results between MTN and other state-of-the-art prop-
osal generation methods on the validation set of ActivityNet-1.3 in terms of
AR@AN and AUC

Method AR@100 (val) AUC (val)
Zhao et al. [18] 0.653 53.02
Dai et al. [34] - 59.58
Ghanem et al. [35] - 63.12
Lin et al. [8] 0.748 66.17
MTN 0.756 67.26

Table 2 Comparison results between MTN and other state-of-the-art pro-
posal generation methods on the validation set of THUMOS14 in terms of
AR@AN. For simplicity, we use @AN instead of AR@AN

Method @50 @100 @200 @500
DAPs [11] 13.56 23.83 33.96 49.29
SCNN-prop [12] 17.22 26.17 37.01 51.57
SST [9] 19.90 28.36 37.90 51.58
TURN [17] 19.63 27.96 38.34 53.52
BSN [8] 29.58 37.38 45.55 54.67
MTN 30.61 38.12 46.24 55.31

Table 3 Ablation study of MTN based on ActivityNet-1.3. MTN with SEN-
et denotes the absence of dense layers and MTN with Multipath denotes aban-
doning SENet in MTN. For simplicity, we use @AN instead of AR@AN

Methods @1 @ @0 @50 @100 AUC
Origin 0292 0469 0549 0696 0.748  66.17
SE-ConvNet 0303 0476 0553 0699 0750  66.57
Mul-DenseNet ~ 0.317 0482 0556 0702 0751  66.85
MTN 0332 0490 0562 0706 0.756  67.26
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Speed ratio
O = N W kA NN X

1 2 3 4 5 6 7 8
Number of GPU

O Ideal = Parameter server B Ring-allreduce

Fig. 11 Comparison of speed ratio between PS and parallel ring architecture

In order to test the validation of our training time metrics,
we use the number of GPUs used, n, as the independent
variable and the training time as the dependent variable to fit
Eq. (3). The fitting curve is shown in Fig. 12 and we can get
that T =4223.8,C = 12.1,P =290.8.

If we use the same training time metrics 3 to fit the training
time with using parallel ring architecture, we would get the
result of C = —3.8 <0, which is obviously unreasonable. The
fitting curve for ring parallel architecture with using Eq. (4) is
shown in Fig. 12 orange curve and we can get that 7 = 4400.1,
C=59.6,P =363.5.

The parameter C is much bigger in parallel ring architecture
than it in PS, which indicates that parallel ring architecture is
lower than PS in transfer speed. But if the number of GPUs
increases to an obvious level, especially in large scale deep
learning like some video task, parallel ring architecture will be
a better choice than Parameter Server framework.

6 Conclusion

In this paper, we have proposed Multipath Temporal ConvNet
(MTCN) for proposal generation task and applied a new
parallel architecture, ring parallel architecture, to accelerate
ournetworkbyreducingthepressureofcommunication.OurMTN-
can extract more effective informationfrom long video feature
sequences. Our state-of-the-art method here does not only
have a better performance but also has a higher acceleration
efficiency compared with other action proposal generation
methods, which is significant for dealing with large-scale
video databases in the industrial filed.

1400 1

—— Parametar server architecture
Parallel ring architecture

1300+

1200+

1100+

Training tima/s

1000+

900+

40 45 50 55 60 65 70 75 80
The number of GPU

Fig. 12 Fitting curve of training time function
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