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This paper presents an active compensation strategy for RMS wavefront error of perturbed off-axis telescopes in
the framework of nodal aberration theory. First, the orthogonalized expression of the wave aberration function
in the vector form for perturbed off-axis telescopes is derived by using RMS normalization. The orthogonalized
aberration function is applied to analytically describe the RMS wavefront error in perturbed off-axis telescopes
with circular apertures. Then, the system compensation model for perturbed off-axis telescopes is established. The
compensation model takes the weighted square sum of the RMS wavefront errors at representative field points as
the objective function, which is minimized to obtain the optimal compensation solution of off-axis systems with
perturbation constraints. The compensation model is solved by using a particle swarm optimization algorithm.
Then, the off-axis three-mirror anastigmatic telescope is taken as an example, and the system compensations for
the misaligned tertiary mirror and deformed primary mirror are discussed. After compensation, the average RMS
wavefront errors in the perturbed off-axis systems are greatly reduced, which can well meet the system require-
ments. Finally, Monte Carlo simulations of the optimal compensation method and sensitivity table method are
carried out to demonstrate the correctness and accuracy of the proposed method.  © 2021 Optical Society of America
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1. INTRODUCTION

To eliminate obscuration in traditional on-axis reflective tele-
scopes with multiple mirrors, off-axis reflective telescopes have
been developed [1,2], which can reduce stray light and increase
optical throughput. In practical engineering, off-axis systems
are increasingly used. Because of the weight constraints of space-
based systems, the mirrors and supporting structures need to be
lightweight, resulting in higher flexibility and lower structural
frequencies. This kind of system is easily affected by severe
environments such as vibration and thermal stress, which cause
system aberrations and degrade the imaging capabilities. With
an increase in aperture size and performance requirements, it is
necessary for space-based optical systems to be equipped with
active optical adjustment mechanisms to correct or compensate
for system perturbations on orbit.

In a complex optical telescope, each optical element may have
perturbations (component misalignments or surface defor-
mations) that lead to degradation of image quality. In active
optics [3-5], it is ideal that each optical element has the ability
to correct misalignments and surface deformations, which can
restore the system to the nominal state. However, it is difficult
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to implement in practical engineering, especially for the space-
based systems with strict weight and volume constraints. To
reduce system complexity and avoid using too many force actua-
tors and adjustment devices, it is of significance for space-based
optical systems to use limited adjustment devices to compen-
sate for system performance [6,7]. For example, the effects of
misalignments of larger mirrors can be compensated for by
adjusting smaller mirrors; the deformation on the monolithic
primary mirror (PM) can be corrected by a smaller active mirror
optically conjugated to the primary [8,9].

To correct or compensate for perturbed telescopes, the
corresponding adjustment values should be determined. To
determine these adjustment values, several methods have been
studied, such as the sensitivity table (ST) method, reverse
optimization (RO) method, and a method based on nodal
aberration theory (NAT). Among them, the ST method is com-
monly used [10]. Because the ST method basically adopts linear
approximation, the accuracy is limited by the assumption. With
an increase in perturbation range, the linear relationship will be
broken, and the calculated adjustment values using the ST may
be inaccurate. Moreover, in some optical systems, perturbation
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parameters are likely to be strongly coupled, which can lead to
the singularity problem in the ST method, and the calculated
adjustment values can also be inaccurate. The RO method [11]
uses the optimization module of optical design software to
obtain adjustment values. It is easy to do on the ground, but this
method is difficult to implement on orbit, except that a large
number of relevant data can be continuously transmitted to the
ground. Moreover, most of these methods are numerical, and so
have difficulty providing deep theoretical guidance for system
compensation, leading to problems in practical application. To
overcome these shortcomings, the methods based on NAT are
proposed.

NAT is a powerful tool for design, alignment, and analysis
of nonsymmetrical systems, which was discovered by Shack
[12] and developed by Thompson [13—18]. Some researches
on NAT have been reported recently [19-26]. The computa-
tion strategy of misalignments and figure errors for two-mirror
telescopes using NAT was presented [19]. The Large Synoptic
Survey Telescope (LSST) telescope alignment plan based on
NAT was reported [20]. The optical alignment of off-axis
telescopes based on NAT was developed [21,22], which dis-
cussed mainly the alignment strategy for system restoration. A
systematic and in-depth discussion for the aberration fields of
off-axis two-mirror telescopes induced by lateral misalignment
was presented [23], and some quantitative discussion on direct
compensation of the effect of the PM astigmatic figure error
was given. The optical compensation method for the perturbed
three-mirror anastigmatic (TMA) telescope was developed,
which takes the nominal aberrations as the objective for system
compensation [24]. The alignment or compensation methods
usually take nominal aberrations as the baseline to calculate the
adjustment values. However, different from system restoration,
itis not necessary for active compensation for perturbed systems
to take nominal aberrations as the baseline, and it is more rea-
sonable to aim for optimal performance of perturbed systems
based on some image quality criteria. As far as we know, the
analytical method of active compensation based on the optimal
image quality criterion for perturbed systems is rarely involved.
As a vital measure of image quality, the RMS wavefront error
is often used to evaluate system performance. Therefore, in
this paper, an active compensation strategy for optimal RMS
wavefront error in perturbed off-axis optical telescopes based on
NAT is proposed.

This paper is organized as follows. In Section 2, the wave aber-
ration function in vector form and its orthogonalized expression
for perturbed off-axis telescopes based on NAT are presented.
Section 3 provides the active compensation model for perturbed
off-axis telescopes. In Section 4, the verification of system com-
pensation for an off-axis TMA telescope is demonstrated. The
paper is concluded in Section 5.

2. WAVE ABERRATION FUNCTION AND ITS
ORTHOGONALIZED EXPRESSION FOR
PERTURBED OFF-AXIS TELESCOPES

A. Wave Aberration Function in Vector Form for
Perturbed Off-Axis Systems

The wave aberration in an optical system consists of all surface
contributions. The vector form of the wave aberration function
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Fig.1. Representation of relationship between the parent pupil and
decentered pupil.

in the rotationally symmetric system is given by [13]

W=32 202 Wi, (H- ) (5 p)'(H - 5)"
J ? n. o m

(1)
where #=2p +m, [ =2n+m, H denotes the normalized
field vector, p is the normalized pupil vector, and W, ; denotes
the aberration coefficient of surface j.

The off-axis system in this paper can be considered as the
off-axis portion of a rotationally symmetric on-axis system. The
transformation relationship between the parent pupil vector
and the decentered pupil vector is shown in Fig. 1, which can be
expressed as

P =Bp+L, 2

where B denotes the ratio of the radius of the decentered pupil
to that of the parent pupil, o” and p designate the normalized
pupil vectors of the parent system and the decentered system,
respectively, and L denotes the pupil decenter vector normalized
by the pupil radius of the parent system.

To develop a mathematical expression of the aberration field
for a misaligned system, an effective field vector was introduced
[27]. The effective aberration field height associated with the
jthsurface is written as

Hyj=H—o0j, (3)
where 6 ; denotes the aberration field decenter vector for surface
j»> which is related directly to the corresponding misalignment
parameters.

In the presence of misalignment, the wave aberration in
off-axis optical systems in vector form can be expressed as

oo 00 XX

W= "33 (W) (Hyj - Hy)?
7 P n m

X [(Bp+L)- (Bp+ L))'[Hyj - (BF+ L)]". (4)

Equation (4) can be expanded through fifth order using the
rules of vector multiplication, which is the basis for NAT. Then
by merging similar items, it is given by

Mo - (5 ) + Mo (- )+ st - 65 - 5)°
W= +1:I4z'/52(,5 'ﬁ)+nsa'53fn31 p(p - P) )
+My - p2 + T (p-p) + T4y - p
. (5)
where the notations (ITgp, IT32, etc.) denote the corresponding
coefficients, and where
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Teo = B® Woco,

M5 =6Woeo B°L + B> W35,

where the definitions of the notations (\Ifl 315 \1‘522, etc.), as
defined in Ref. [28], are given in Appendix A.

It can be seen that the wave aberration in misaligned off-axis
systems is the function of the aberration field decenter vectors.
The coefficient expressions of the two lowest-order aperture
terms are not given, as they do not contribute to image blur.

B. Orthogonalized Expression of Wave Aberration
Function in Vector Form for Perturbed Off-Axis
Systems

If the wave aberration function is not orthogonal, this means
that the magnitude of each term depends on the other terms
in system analysis. Once a proper orthogonal relationship is
established, the cross terms in the aberration function can be
eliminated. It greatly facilitates the subsequent analysis and
processing. The orthogonal form can define a balance among
classical aberrations, and the coefficients of orthogonal poly-
nomials are independent of the number of polynomials used in
the expansion. Because of the orthogonality over the unit circle,
Zernike polynomials are particularly attractive in wavefront
analysis. There exist several definitions of Zernike polynomials.
In this paper, the convention outlined in Noll [29] is used,
which uses RMS normalization.

The aberration function of a system without rotational sym-
metry can be expanded in terms of a set of RMS normalized
Zernike polynomials [29], which can be given by

Wip, )= nt1A,0R0+> Y V20 +1)
n=0

n=1 m=1

X [Aum B (p) cos m@ + B,y R (p) sin m@],
(7)

where p and ¢ denote the radial and azimuthal components of
0, respectively, and where 4,,, and B,,, are the Zernike coeffi-
cients of the corresponding terms; the radial dependence of the
Zernike polynomials is expressed as

(n—m)/2
o “D=5) L,

s=0

@)

My = 6Woeo BL? +2B*Ws5, L + 1 B2
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M, = BX (W13 + ®331M)Z + %Bz(‘i’zzzz + l_1'14222)
+6Wpso BXL - L)L2 +2B>(L - L) LWys; +2B2(Wys, - L) L2
+2B2(Wodo + Waion) L2 + 2 BX(L - L)W, + 3 B3, L™,
M1 = B3 (W31 + Waz10) + 4B°(Woso + Wasonr) L + 333@3422*
+18Wyeo B3 (L - L)L + 6B3(L - L)Wy5; + 3B3(Wy51)* L2,

(6)

242>

M40 = B*(Woso + Wasonr) + 9Woeo B (L - L) +3B%(Vys; - L),

ﬁ33 = 2‘%GOB3Z3 + 33‘315122 + 533\_1:’2 L+ §B5\_I)3333,

242

where 7 and m in Eq. (7) and Eq. (8) are positive integers
(including zero) known as the radial degree and the azimuthal
frequency, respectively. It should be noted that 7 — 72 > 0, and
n — m must bean even number.

To make the Zernike description related directly to the NAT
expression, the wave aberration function can be expanded over

the Zernike vector, which is given by

WE) =YY Con 21, ©)

n=0 m=0

where Z7 (p) isa Zernike vector, which can be expressed as

(n=m)/2
- 2(n+1)
Z}(p) = Tho. o Z
m, s=0
(_1)3 (71 —S)’ 5 o n—m=2s >m
AEE -t

(10)

where §,, ¢ is the Kronecker delta function (8,, 0 = 0 if m # 0;
8mo=11if m=0), and C,,, denotes the coefficient vector of

the corresponding term. When 7 = 0, the terms in Eq. (10) are
scalars, not vectors, but scalars can also be considered as a special
form of vectors, which are a useful extension to a unified vector
description. Here, in accordance with the tradition of optical
testing, the x axis is chosen as the reference axis [30], and the

angle is measured counterclockwise from it.

According to Eq. (10), the wave aberration function
expanded through fifth order in perturbed off-axis systems,
inEq. (5), can be rewritten as
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—

T A0 + TR 4B + 2R AP + 140 ]

+ioo - [ 2 26) + 1283 | + Tl - 1215)

(11)
After merging the similar items in Eq. (11), the wave aberra-
tion function can be converted into the orthogonal polynomials

(%ﬁzz + 4fn4z) '25(5) + \/Lgﬁﬁ : Z;(Ia)
+ (35 + 2510 ) - 245 + (e ) - Z25)

W=1{+ <6fn40+ 4[H60) 22(/3)"_ (20[“51)'2;('5)

+ (5= Tl) - Z05) + (lﬁ51 + 3+ 1) - 2 6)
+ (2()[“60 + == l_140 +t55 l120) . 2‘2’(5)
(12)

The polynomials are related to classical aberrations and
provide a convenient aberration description. For the sake of
orthogonality, the higher-order terms are combined with the
appropriate lower-order terms. This is reasonable in view of the
conventional aberration balance. The orthogonal aberration
expansion presented here can be used to describe perturbed
off-axis telescopes, and it is useful while trying to compensate for
the performance of perturbed systems.

3. OPTIMAL SYSTEM COMPENSATION FOR
RMS WAVEFRONT ERROR IN PERTURBED
OFF-AXIS TELESCOPES

As an optical system becomes more and more complex, the
system compensation becomes more and more challenging.
Obviously, if the position and surface shape of each optical
element in the system can be adjusted arbitrarily, the system
can restore to the nominal state. But in engineering, due to the
limitation of weight and volume, it is hoped that the system
performance can be compensated for as easily as possible. The
misalignments and low frequency surface errors of optical
components can induce the same type of aberrations, and it
is possible to balance these induced aberrations. When some
perturbed components cannot be changed, it is possible to com-
pensate for the corresponding induced aberrations by adjusting
other components with motion mechanisms. This can elimi-
nate or partially eliminate the influence of perturbations and
improve system performance. In this paper, the aim of system
compensation is to improve the image quality and meet the
required system performance. It is more reasonable to optimize
the system performance based on some image quality criteria.
Image quality can be defined in terms of RMS wavefront
etror, spot size, or some other quantities at the representative
field points. During active optical compensation, a compre-
hensive image quality criterion with direct physical significance
is beneficial. The RMS wavefront error is a measure of how

Vol. 60, No. 6 / 20 February 2021 / Applied Optics 1793

much the wavefront surface deviates from a spherical surface.
In general, RMS wavefront error is a good criterion for aberra-
tion balance. Therefore, it will be used as the measure of image
quality to compensate for system performance.

A. Analytical Expression of RMS Wavefront Error for
Perturbed Off-Axis Telescopes

Once the orthogonal aberration expansion for perturbed off-
axis systems is developed, it can be used to calculate the image
quality criterion. In this section, the RMS wavefront error with
the mean subtracted is used as the measure of image quality. The
wavefront variance of the fit over the circular aperture can be

defined as

2
wzzl//[W(p,G)]zpdpdG—iz[/ W(p,é)pdpdé)] :
T b

(13)
where @” is the wavefront variance. By substituting the
aberration expansion of Eq. (12) into Eq. (13), the RMS
wavefront error in perturbed off-axis telescopes can be expressed
analytically as

2

rms_(w )2

1
2 2

o - |2 > -
1 3 1 1
‘%sz‘*'mnﬂ +‘V§H31+ﬁns1
. Lo L2 L2
= +|#H4o+fgneo Lgnaa —|—|—4ﬁ1’[42 ]
+ 20[“51 + 20[1—1()0 + A
(14)

where | - | indicates the operation of taking the module for a vec-
tor, and A denotes the lower-order terms, which will be treated
separately.

It can be seen that the sum of the squares of the coefficients
of Eq. (12) yields the wavefront variance in perturbed off-axis
telescopes. The property of orthogonalization allows individual
terms to be added or subtracted to the polynomials without
changing the other coefficients. It allows the terms that can
be corrected separately such as focus to be removed from the
polynomials without affecting other terms. As the image plane
can be adjusted, it does not cause any image degradation. The
terms that do not affect the point image quality are not usually
considered in the calculation of image quality.

The figure errors of optical components can be introduced
into NAT [31], so they can also be introduced into the above
image quality criterion. The RMS wavefront error can be
regarded as the function of misalignments and figure errors,
which provides a description of the effect of perturbations on
image quality. Based on the criteria, the system compensation
model can be established.

B. Optimal Compensation Model for RMS Wavefront
Error in Perturbed Off-Axis Telescopes

In system compensation for off-axis optical telescopes, all the
RMS wavefront errors at the representative field points need to
be considered. The compensation problem is defined as
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min[wrms,l(X)5 a)l'ms‘Z(X)s R} wrms,j(X)7 Y a)rms.N(X)]’
].21127"' 9N7
st. XeD,

(15)

where X = (X, X5+ Xa)7 denotes the decision variables
(compensation variables or their functions), M is the num-
ber of decision variables, /V is the number of representative
field points, X € D denotes the decision space, and @, j(X)
represents the RMS wavefront error at the jth field point,
which is given in Eq. (14). Assuming that the optimal value
of RMS wavefront error of the jth field point is a);"ms’j, then
Oy = (g1 @y - Wl )7 is the ideal solution to
the compensation problem. But it is difficult to achieve in the
compensation model, so we can seck the satisfactory solution
based only on the corresponding performance criterion.

It can be seen that it is a multi-objective optimization prob-
lem. To solve this problem, a trade-off consideration is required.
To comprehensively consider the image quality of the whole
field of view (FOV), the weighted square sum of RMS wavefront
errors at representative field points is used as the objective func-
tion. The optimal compensation model for perturbed off-axis
telescopes may be stated as follows:

*

N

min Y A [@mms ; (X1,
j=1

st. XeD,

(16)

where A ; is the field weighting factor, which represents the
importance of the corresponding field point. The general com-
pensation model for RMS wavefront error in perturbed off-axis
telescopes is established.

It should be noted that compensating for perturbations with
other perturbations usually leads to an inclination of the beam
with respect to the optical axis of the PM, and requiring focus
and tilt adjustments of the focal plane (FP). To solve the optimal
model conveniently, the focus term is treated separately. By solv-
ing the compensation model, the optimal compensation values
(except focus and tilt) can be determined. Then, according to
the fringe Zernike coefficient for the medial focal surface at
representative field points, by using the most commonly used
least-squares method, the focus and tilt adjustments of FP can
be easily determined.

C. Solving Method of the Compensation Model
Based on Particle Swarm Optimization

The mathematical models of practical engineering problems are
often difficult to solve accurately. In the above compensation
model, the relationship between the objective function and the
decision variables is nonlinear. When the nonlinearity of the
model is strong, it is difficult to solve accurately.

In this paper, a particle swarm optimization (PSO) algorithm
[32] is used to solve the compensation problem. PSO is a generic
optimization method, which has the advantages of fast calcula-
tion speed, good global search ability, and fewer parameters to
be adjusted, so it is used more and more in the field of function
optimization.

The flow diagram of the PSO algorithm for the compensa-
tion problem is shown in Fig. 2. The process of the algorithm is
described as follows.
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Define the compensation problem
space and initialize parameters

Initialize the positions and velocities
of particles

#—

Evaluate the evolutionary states and
adaptively adjust the parameters

e

Update position and velocity
of the particle i

Evaluate particle i
Update pBest; and gBest

Fig. 2.

model.

Flow diagram of PSO algorithm for the compensation

Step 1. Define the compensation problem space and initialize
parameters.

Step 2. Initialize the positions and velocities of particles (pop-
ulation size is P). These particle positions represent the set of
compensation solutions.

Step 3. Evaluate the evolutionary states and adaptively adjust
the parameters.

Step 4. Update position X; and velocity V; of the associated
particle. The range of position is [ X min, Xmax]-

Step 5. Evaluate the associated particle and update the
individual best (pBest,) and global optimal position (gBest).

Step 6. Repeat steps 3—5 until the stopping criterion is satis-
fied, and give the results.

The decision values of the above compensation model can
be obtained by using the above steps. Of course, if the accu-
racy requirement is not high, the compensation model can be
simplified, and then it can be solved analytically.

4. VERIFICATION OF SYSTEM COMPENSATION
FOR THE PERTURBED OFF-AXIS TMA
TELESCOPE

One of the most commonly used types of off-axis telescopes
is the off-axis TMA system, because it has fewer optical com-
ponents while maintaining good system performance. This
section takes the off-axis TMA telescope as a typical example for
discussion. Generally speaking, the secondary mirror (SM) of
the system is much smaller than the PM and the tertiary mirror
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(TM), so it is relatively easy to be adjusted in engineering. This
section discusses mainly the system compensation by adjusting
the SM. It is also often used in practical engineering, and it is of
significance to simplify the configuration of space active optical
systems. Without losing generality, two cases are considered:
one to compensate for the misaligned TM by adjusting SM, and
the other to compensate for the deformed PM. Other cases can
be treated in a similar way.

A. Optimal System Compensation for Off-Axis TMA
System with Misaligned TM

Misaligned optical components induce aberrations, and they
often induce the same kind of aberrations. A misaligned system
can be compensated for by balancing the misalignment-induced
aberrations of different components. In this subsection, optimal
compensation of the off-axis TMA system with misaligned TM
by adjusting SM is discussed. The compensation model takes
the decision variables to a region of solution where the induced
aberrations are mutually balanced. The compensation variables
considered here are the lateral misalignment of SM.

Most large optical systems have an aperture stop located on
PM. So here, the stop is located on PM, which is chosen as the
coordinate reference. The aberration field decenter vectors of
SMand TM can be expressed as

G =P+ 2(1 + crmd) (1 + esne)iinlGehy /G,

— asph
;35[ = Q+2dz(l +65Mdl)uPMUSM/GA’

& =S+ csmD/ G,

> acph T/ G[J ’
(17)
where
P ¢ | XDEy L —BDEmMm
"~ Gg | YDEM Gs | ADEmv

6_ L [XDEn(] g [BDEsy
- G4 | YDEry |’ | —ADEgy |’
7 [XDEw]
YDEgm
Gs=Ilerm(dy — di) 4 2csm(ermdidy 4 dy) + 1ipu,

G = dy+d\Qcsmdy — 1)]upm,

Gy = (1 + csmdr) ttpm,

G p = dyuppm,

(18)
where 5551\/1; and 5;;211 denote the aberration field decenter vectors
for SM; UTF;\; and o GTM designate the aberration field decenter
vectors for TM; XDEgy, YDEgy, ADEgy, and BDEgy are the
misalignments of SM; XDEry, YDE 1\, ADE M, and BDE 1y
denote the misalignments of TM; cgy is the curvature of SM;
ctm denotes the curvature of TM; ) is the mirror spacing
between PM and SM; 4, is the spacing between SM and TM;
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upp is the incidence angle of the chief ray at the PM; and super-
scripts sph and asph denote contributions of the spherical base
and aspheric departure, respectively. For the spherical base, the
relevant optical characteristic point is the location of the center
of curvature of the surface. Here, XDE and YDE are the mirror
vertex decenters in the x-z and y-z planes, respectively, and
ADE and BDE are the mirror tip-tilts in the x-z and y-z planes,
respectively.

As SM and TM are in the state of misalignment, the image
quality criterion can be regarded as the function of their mis-
alignments. According to Eq. (17), the aberration field decenter
vectors of TM can be described by that of SM. Therefore,
the compensation model for the off-axis TMA system with
misaligned TM by adjusting SM can be expressed as

. N A sph sph asph asph 2
min Zl j| @rms,j \OsM,x2 OsM,yr OsM.x> OsMmy ) |
j=

(19)
sph sph asph a.sph
s.t. {USM,X, OsM,y OsM,xe Osmy [ € (-1, 1),

where subscripts x and y denote the two components of the cor-
responding decenter vectors.

By solving the above model, the aberration field decenter
vectors of SM can be obtained. According to the transformation
relation of Eq. (17), the optimal compensation values of SM can
be determined. After SM is adjusted, the compensation values
of FP can be determined using the wavefront data at the typical
field points.

The optical layout of the off-axis TMA telescope used in
this section is shown in Fig. 3. It has a stop aperture diameter of
1000 mm with a 2.3° x 0.3° FOV. The radius values of PM,
SM, and TM are —8004.06, —2021.03, and —2712.44, respec-
tively. The thickness values between mirrors are —3446.93
and 3491.15, respectively. The conic values of PM, SM,
and TM are —0.921, —4.717, and —0.293, respectively. To
perform this example, several FOVs are selected, which are
(1.15°, —0.15°),  (=1.15°, —=0.15°), (—1.15°, —0.45°),
(1.15°, —0.45°),  (0.58°, —=0.2°),  (—0.58°, —0.2°),
(0.58°, —0.4°), (—0.58°, —0.4°), respectively. Here, the
introduced misalignments of TM for the off-axis TMA tele-
scope are shown in Table 1. In the compensation model, all
weights are equal (A; = 1), which means that all field points
are weighted equally. The search space of the aberration field
decenter vectors is (—1, 1), the population size of PSO is
30, and the maximum number of iterations of PSO is 2000.
Using these parameters, the aberration field decenter vectors
of SM for system compensation can be determined, which are

sph _ sph ASPl‘l
O, = —9-378 X 1074, oM, y

—1.991 x 1073, og* =
3.765 x 1072, and oasPhy =4.731 x 1072. Then, according to
Eq. (17), the compensation values of SM for the off-axis TMA
telescope with misaligned TM can be determined. For system

compensation, the compensation values cannot be compared

Table 1. Introduced (I-M) Misalignments of TM for the
Off-Axis TMA Telescope’
XDEmy YDEyu ADEry
I-M —0.2500 0.1000 0.0200
“XDE and YDE are in millimeters, ADE and BDE in degrees.

BDEqy
—0.0150
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L =(0,-0.6087), B=500/1277.78

Fig.3. Optical layout of the off-axis TMA system.

Table 2. Computed (C-V) and Referred (R-V)
Compensation Values of SM and FP for the Off-Axis
TMA Telescope with Misaligned ™

XDEsy  YDEgy ADEgy BDEgy
RV 0.2838 0.3580 0.0167  —0.0113
C-V 0.2796 0.3515 0.0166  —0.0111
ZDEzp ADEp BDEp
R-V —0.0119  —0.0801  0.0465
CcVv —0.0128  —0.0771  0.0466

“XDE, YDE, and ZDE are in millimeters, ADE and BDE in degrees.

with the introduced misalignment values directly. To evaluate
the computed compensation values based on the proposed
method, the referred values need to be determined. They can
be obtained by optimization processing support embedded
in optical simulation software. The computed and referred
compensation values of SM and FP for the misaligned TM are
listed in Table 2. It can be seen that the computed compensation
values are very close to the referred values.

The computed compensation values are introduced into
the perturbed system in optical simulation software. Full field
displays (FFDs) of RMS wavefront errors before and after
compensating for the misaligned TM are shown in Fig. 4. It
can be found that the RMS wavefront errors of the off-axis
TMA telescope with misaligned TM can be well compensated
for. The average RMS wavefront error in the off-axis system
is reduced from 0.088 (after misalignment) to 0.039A (after
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compensation), which can well meet the system performance
requirements (0.07 waves limit). It indicates that the proposed
compensation method is correct and effective.

B. Optimal System Compensation for Off-Axis TMA
System with Deformed PM

If the rigid-body motions of small optical components can
compensate for typical surface deformations of large aperture
components, active optical configuration of space systems can
be greatly simplified. It can reduce the complexity and improve
the stability of optical systems. Low frequency surface defor-
mations and misalignments often induce the same types of
aberrations, and there exist compensation relationships between
them. Based on the compensation model, the influence of low
frequency surface deformations on the system can be eliminated
or partially eliminated. In this subsection, compensation of
the off-axis TMA system with deformed PM (astigmatism) by
adjusting SM is discussed.

To establish the relationships between the contribution of
surface deformations and primary aberrations, Zernike polyno-
mials are used. Here, the contribution of astigmatic deformation
of PM can be regarded as the astigmatic component independ-
ent of the FOV, and the induced aberrations can be integrated
into NAT [31]. In the proposed compensation model, the
notation containing the astigmatism component is given by

\_1}2222 = ‘%22]_‘}2 — 2]32222 + EZZZZ' (20)

To integrate the astigmatism of PM into the compensa-
tion model of the perturbed off-axis system, it is necessary to
add it directly to the existing astigmatic component that is
independent of the FOV; given by

82222 :MBzzzz +FB§22/BZ’ (21)
where Ml_ézzzz is a quadratic function of the aberration field
decenter vectors and corresponds to the constant astigmatism
induced by misalignments [31], pézzzz denotes the constant
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(average value 0.0884). (b) FFDs for RMS wavefront errors after compensation (average value 0.0391).
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Full field displays (FFDs) before and after compensating for the deformed PM. (a) FFDs for RMS wavefront errors after deformation (aver-

age value 0.0832). (b) FFDs for RMS wavefront errors after compensation (average value 0.0412).

Table 3. Introduced (I-V) Astigmatic Figure Errors of
PM for the Off-Axis TMA Telescope”

FCgM chM
v —0.08 0.05

“The fringe Zernike coefficients are in A.

Table 4. Computed (C-V) and Referred (R-V)
Compensation Values of SM and FP for the Off-Axis
TMA Telescope with Deformed PM°

XDEsy YDEgy ADEgy BDEgy
C-v —0.0916  —0.0941 0.0012  —0.0016
R-V —0.0945  —0.0912  0.0013 —0.0015
ZDEp ADEgp BDEjp
[oAY 0.1123 —0.0357  —0.0076
R-V 0.1135 —0.0346  —0.0078

“XDE, YDE, and ZDE are in millimeters, ADE and BDE in degrees.

astigmatism induced by the astigmatic deformation of PM,
and B denotes the ratio of the radius of the decentered pupil to
that of the parent pupil. In other words, the aberration induced
by deformation is included in 5’322, so it is introduced into the
compensation model.

Here, the system used is the same as in the previous subsec-
tion, and the parameters used are also the same. The introduced
astigmatic deformation of PM (p CgM and ngM) for the off-
axis TMA telescope is shown in Table 3. Similar to the case of
misaligned TM, according to the proposed method, the aberra-
tion field decenter vectors of SM can be determined, and then
the compensation values of SM for the deformed PM can be
determined. The referred values can also be obtained by optical
simulation software. The computed and referred compensation
values of SM and FP for the deformed PM are listed in Table 4.
It can be seen that the computed values based on the proposed
method are very close to the referred values.

The computed compensation values are introduced into
optical simulation software. The RMS wavefront errors before

and after compensating for the deformed PM are character-
ized in Fig. 5. It can be seen that the RMS wavefront errors of
the off-axis telescope with deformed PM can be compensated
for satisfactorily. The average RMS wavefront error in the
off-axis system is reduced from 0.083A (after deformation) to
0.041A (after compensation), which can well meet the system
performance requirements.

The results indicate that the proposed method in this paper
is effective. It should be noted that before compensating for
the effect of astigmatic deformation of PM using the pro-
posed method, the astigmatic deformation values need to be
determined. According to the computation method for mis-
alignments and surface figure errors, the perturbation values can
be obtained with a certain period, and the perturbed systems can
be compensated for based on the idea proposed in this paper.
Although only the astigmatism compensation problem is dis-
cussed here, other surface deformation compensation problems
can be solved by a similar method.

C. Monte Carlo Simulation

The ST method is usually used in engineering. To demonstrate
the effectiveness of the proposed method, it is compared to the
ST method. Monte Carlo simulations are performed to evaluate
these two methods. Here, only the system compensation for
misaligned TM is simulated, and similar results can be obtained
in other situations.

Table 5. Introduced Four Different Cases of
Misaligned TM Considered in Monte Carlo Analysis’
XDEry, YDEry ADEry, BDEy ME
Case 1 [—0.2,0.2] [—0.015, 0.015] \
Case2 [—0.5, 0.5] [—0.03, 0.03] \
Case 3 [—0.8, 0.8] [—0.05, 0.05] \
Case 4 [—0.2,0.2] [—0.015, 0.015] 5%

“XDE and YDE are in millimeters; ME denotes the measurement error.
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Four different cases are adopted in the Monte Carlo simula-
tions, which are listed in Table 5. In case 1, case 2, and case 3, the
ranges increase in sequence without measurement errors. Case 4
includes 5% relative measurement error.

In the simulation, 100 trial perturbed states are randomly
generated following a standard uniform distribution for each
case. There are 400 pairs of misalignments for all cases, and the
simulations for each trial system can be performed by using
the proposed method and the ST method. The compensation
values can be obtained for each perturbed state, and the com-
puted values are used to compensate for the perturbed off-axis
system. To evaluate the simulation results more fully, the average
RMS wavefront errors (WFEs) can be obtained for each trial
system. The average RMS WFEs before and after compensation
for misaligned TM based on the proposed method and the ST
method are shown in Figs. 6 and Fig. 7, respectively.

As can be seen in Fig. 6, the compensation results for case 1,
case 2, and case 3 demonstrate the correctness of the proposed
method. Comparing Fig. 6 with Fig. 7, it can be found that in
cases 1-3, after compensation based on the proposed method,
the off-axis system has better compensation performance. It
indicates that the proposed method is basically not affected by
the misalignment range. However, with the increase in pertur-
bation range, the compensation performance of the ST method
decreases (case 2 and case 3). As the perturbation range increases,
the linear relationship in the ST method is broken, which can
lead to degradation of system performance. A comparison of
the results for case 4 shows the two methods are affected by
measurement errors, but the proposed method is also better
than the ST method at the considered level of measurement
errors. It can be concluded that the compensation results of the
proposed method are better than the ST method in the same
perturbation cases. The proposed method is a better choice for
active compensation for perturbed off-axis telescopes.

Wiz = Wisi H — Ajs,
U2, = Whyy H? — 2H Aryr + B2
222 — W222 222 222

Ups; = Wisi H — Ausi.
Wasosr = Whion(H - H)
lij%/;z = Wh H? — 2H Apsy + é2242,
Wss10r = Wasiu(H - HYH —

Waonr = Waaons(H - H) — 2H - Ayxops + Bazouss
Wsyy = Way (H - HYH — 2(H - As) H +2Bsi H
— 2H - Asiors + Bosous,

2(H - Assi) H + 2Bss i H — (H - H) Asz i + 3331M
W3y = Wags H® — 3H? Asss + 3H Bl — C3s,,
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5. CONCLUSION

In this paper, the wave aberration function in an orthogonal-
ized form for perturbed off-axis telescopes was derived in the
framework of NAT by using RMS normalization. The Zernike
description was related directly to the NAT expression. The
orthogonalized form can eliminate the cross terms in the aberra-
tion function and define a balance among classical aberrations.
The orthogonalized aberration function was applied to analyti-
cally describe the RMS wavefront error in perturbed off-axis
telescopes. The square sum of the coefficients of the orthogonal-
ized function yields the system wavefront variance. The active
compensation problem of perturbed systems was formulated
as an optimization model, which took the weighted square sum
of RMS wavefront errors at the representative field points as
the objective function. Then, the off-axis TMA telescope was
taken as an example, and the system compensation results were
given. After optimal compensation, the average RMS wavefront
errors in the off-axis TMA telescope with misaligned TM and
deformed PM were reduced to 0.0392 and 0.0412, respectively.
They can well meet the system performance requirements.
Finally, Monte Carlo simulations of the proposed method
and ST method were carried out, which demonstrated the
correctness and accuracy of the proposed method.

This paper proposes a general compensation method using
NAT for perturbed off-axis telescopes. Although only the defor-
mations on the stop are discussed in the paper, the method can
be extended to take into account the deformations on the surface
away from the stop through the specific pupil footprint for each
field point. The method proposed in this paper can be used for

reference in active compensation for complex off-axis systems.

APPENDIX A

This appendix provides the definition of the notations (\i’] 315
\_132222, etc.) used in Eq. (7) in Section 2, as defined in Ref. [28].
The difference is that the symbol “W” replaces the symbol “[]”.
They can be given by

H — (H - H)Asn, +B311H Cann,

- C331M1 (A1)

Wy = | WaroH - H)CH - H) — 4CH - H)(H - Aior) }
+4B420M(H H)+2H* 34220M 4H - C420M+ D420M
B - Wiz (H - H>H2—2(3H H)H A +3(H - H)B},,
| —2(H- A H? C422H*+3B422H —3HC422+D4
[ W1 (H - H)(H - HYH — 4(H - H)(H - Asy) H + 6Bsy, (H - HYH
Wiy = | +2(° - B ) H = 4(H - Csi) H +3Dsuy H — (H - I - H) Asn |
| +2(H - H)B%,, H* — 4(H - H)Csy, — H2C%,, +2D2 H* — Esy
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where

Whtn =3 Whin; Ap = > Wiimd
j ]

Biim =Y Witnj (5 -57), Bl =3 Witni5?,
j j

Chtm = > Whinj(0) - G))5;, Ch, = > WiimiG 3,
j j

Diim = Z Wit (0 'aj)z’ Z31517” = Z Wit (G -5]')5]2,
j j

E/elm = Z M[m](&] : 6_])25_]
j

(A2)
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