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Abstract. It is always a challenging task to detect a small target with low signal-to-noise ratio
under complex background in infrared images. To address this problem, an effective algorithm
based on background subtraction is proposed. First, we add the gradient feature into the kernel
regression model to acquire an edge-preserving background estimation. The smoothing matrix of
the kernel function is reestablished by a rotation angle and an elongation scale. Further, a multi-
scale first-order directional derivative filter is presented to calculate these factors adaptively.
Second, to segment the real target from the subtracted image, we model the imaging process
of the small target using the point spread function of the optical system. According to the analy-
sis of the imaging size and the energy distribution of target, an energy concentration criterion is
constructed and used for target extraction. Finally, comparison of experimental results demon-
strates that the proposed algorithm achieves robust performances on background suppression and
extracts the target accurately with a high detection probability and low false alarm rate. © 2021
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.60.12.123101]
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1 Introduction

Infrared (IR) small-target detection with a far distance plays a significant role in many appli-
cations, such as precise guidance,1 infrared search and tracking systems (IRST),2 and remote
sensing.3 The measurements required from IR images are obtained from the difference of natural
IR radiant between target and background. If the detection system is equipped with an angular
sensor and a range finder, the measurement will also be augmented by the angle and range
information. In general, the images always contain clutter due to several factors, such as the
sources of target and background radiation, transmission properties of atmosphere, and limita-
tions of IR detector.4,5 Especially, when these factors get worse, the density of clutter will
increase dramatically. This clutter will bring many false alarms to the detection results.
Thus, detecting dim small targets in complex background is a necessary capability for a robust
IR detection system. Although many detection algorithms have been developed in recent dec-
ades, the requirement of high detection probability and low false alarm rate is still not reached.3,6

The fundamental problems mainly include three aspects. (1) The background edge. In general,
there are always many luminous edges in the complex background. Due to the obvious gradient
variation, this clutter is difficult to suppress and is retained in the detection results.7 (2) The
dimness characteristic of small target. Due to the long imaging distance, the small target captured
by the infrared focal plane array is a weak light spot. Consequently, it has a low signal-to-noise
ratio (SNR) and lacks available features to be utilized for detection.8,9 (3) Disturbance from the
detector noise. This internal noise generated by the IR detector exists widely in IR images.
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Because it shares the similar sparse characteristic to the small target, it will confuse the detection
process and bring many false alarms.10

Over the past few decades, many algorithms on infrared small-target detection have been
reported, which can be broadly grouped into three categories: human vision system (HVS)
method,11,12 background estimation method,13,14 and data structure method.15,16 The HVS
method makes use of the local difference principle to distinguish the actual target from complex
background.17 Some researchers define the local contrast feature to detect small target, such as
local contrast measurement (LCM)18 and its improved versions.19–22 For example, Chen et al.23

added the accommodative scales and weighted map into the LCM to restrain various back-
ground. Han et al.24 proposed a ratio-difference joint LCM to enhance the small target salience
in the complex background. Wang et al.25 combined the LCM and high-boost filter to achieve
high-speed local contrast. Besides, some algorithms put the difference filter into the infrared
small-target detection.26 Wang et al.27 combined the temporal filtering and difference of
Gaussian operator to improve the detection accuracy. Kim proposed28 min-local-LoG filter
to overcome the sensitivity to edge clutter. However, the detection results of these algorithms
are easily affected by the heavy clutter and noise. In addition, the morphological filtering method
such as top-hat transform is another widely used tool to detect small target.29,30 Comparing with
the aforementioned filters, it has a better anti-interference ability and fits the multiscale feature of
targets.31,32 Unfortunately, they rely on the priori target information, such as size and shape. And
the detection results are sensitive to the background edge. In recent years, some researchers pay
attention to the gradient feature of small target and propose the facet model for target detection.33

Based on facet model, Cao et al.34 designed a detection algorithm using the discontinuity of
small target and derivative dissimilarity measure. Bi et al.35 utilized the multiorder directional
derivatives to suppress background and enhance the target in each derivative subband. Although
these algorithms achieve good performance, false alarms exist more or less. The advantage of
HSV-based method is simple operation. However, when the clutter and noise are heavy, they are
more dependent on the postprocessing.

The second category is designed based on the background estimation. The small target is
detected by subtracting the estimated background from the original image. The detection result
of this category depends on the accuracy of background estimation. Existing algorithms mainly
include two approaches. One is the least mean squares (LMS) filter proposed by Hadhoud and
Thomas.36 It predicts the background image by minimizing the difference between the original
image and the desired output image. Subsequently, some improvements based on LMS are car-
ried out. Cao et al.37 integrated the consistency principle of neighboring pixels into the LMS filter
to improve the estimation precision. Bae et al.38 proposed the edge directional two-dimensional
(2D) LMS filter to suppress the background edge. However, these filters rely on the step size and
the correctness of the reference image. The other approach is the statistical regression. In this
kind of approach, the most successful of the IR dim small-target detection methods is kernel
regression (KR).39,40 It establishes the background estimation model using a polynomial con-
structed by the gray values of neighboring pixels. The background is estimated as the zero-order
term of the polynomial.41 Unlike the LMS filter, this approach is a nonparametric regression
algorithm. It only relies on the data itself and does not need a reference image. However,
KR filter is sensitive to the background edge, which will decrease the background estimation
performance and increase the false alarm rate.

The third category concentrates on the data structure. In this category, the image is regarded
as a linear superposition of the target, background, and noise, and the small target is separated
from backgrounds by optimizing objective functions.42 The robust principal component analysis
(RPCA) is one of the popular ideas.43 Based on this method, Gao et al.44 proposed infrared patch-
image model. Subsequently, Dai et al.45 weighted each column in the patch image to suppress the
complex background in the IR image. These algorithms do not obtain a better suppression per-
formance for the background edge. To overcome this issue, Wang et al.46 proposed the total
variation regularization and principal component pursuit method. Meanwhile, to achieve more
robust detection, the low-rank recovery and sparse representation methods are introduced to
infrared small target detection.47,48 However, these algorithms rely on the construction of objec-
tive models and the robust optimization methods. In addition, some methods convert the detec-
tion problem into a binary classification problem, such as dictionary representation,49 neural
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works,50 and support vector machine.51 Although the detection performance is good, due to
excessive dependence on training samples and label selection, these methods are unsuitable
to practical applications.

Putting the emphasis on both background suppression and target extraction, a detection algo-
rithm of IR dim small target based on background subtraction category is proposed in this paper.
First, to improve the estimation accuracy of background edges, we modify the classic KR
method and propose an adaptive kernel function. The smoothing matrix of the kernel function
is rewritten as a product form by a rotation matrix and an elongation matrix. Then, a filter model
of multiscale first-order directional derivative (MFODD) is constructed to estimate two matrices
by minimizing the directional derivative of samples. Second, to distinguish the target and noise,
we model the target image using the PSF of optical system. After analyzing the energy distri-
bution and imaging size of small target on IR image, an energy concentration criterion is derived
and performed to extract the actual target from the subtracted image. Comparing with some
existing state-of-the-art algorithms, the proposed algorithm achieves good detection perfor-
mances with a high detection probability and a low false alarm rate.

2 Adaptive KR Model for Background Removal

In this section, we formulate the classic kernel estimator and provide its weaknesses on the
choice of smoothing matrix and drawback on the background edge estimation. Further, to
address these problems, a new KR function that can adapt to the shape and orientation of back-
grounds is proposed. The smoothing matrix is rewritten as a product form by a rotation matrix
and an elongation matrix. Then, an MFODD filtering model is established to estimate two
matrices.

2.1 Classic KR for Background Estimation

The KR model of image data is written as follows:

EQ-TARGET;temp:intralink-;e001;116;392Ii ¼ zðχiÞ þ εi; i ¼ 1;2; : : : ; N; (1)

where χi ¼ ½xi; yi�T is a 2 × 1 vector of the spatial coordinates of a sample pixel, Ii is the image
gray of a sample pixel, i is the index of the sample pixel, zð·Þ is the regression function, εi is the
random noise, which is supposed to be a Gaussian variable with zero mean, and N is the total
number of sample pixels in the detection window.

Although the expression of zð·Þ remains unspecified, under the assumption that the regres-
sion function is locally smooth to some order D, we can utilize a generic local expansion at any
sample point χi to approximate zðχÞ. This relationship can be described by the D-order Taylor
series as follows (we omit the high order expansion for simplicity):

EQ-TARGET;temp:intralink-;e002;116;264zðχiÞ ≈ ξ0 þ ξT1 ðχi − χÞ þ 1

2
ðχi − χÞTξ2ðχi − χÞþ · · · ; (2)

where ξ0 ¼ zðχÞ is the gray value of pixel to be estimated, ξ1 and ξ2 are vectors of the first and
second order of zðχÞ, respectively, which can be calculated as

EQ-TARGET;temp:intralink-;e003;116;199ξ1 ¼ ∇zðχÞ ¼
�
∂zðχÞ
∂x

;
∂zðχÞ
∂y

�
T
; (3)

EQ-TARGET;temp:intralink-;e004;116;142ξ2 ¼ ∇2zðχÞ ¼ 1

2

�
∂2zðχÞ
∂x2

; 2
∂2zðχÞ
∂x∂y

;
∂2zðχÞ
∂y2

�
T

; (4)

where ∇ and ∇2 denote the gradient and Hessian operators, respectively.
fξdgDd¼0 can be derived by minimizing the random noise in Eq. (1). According to the least-

square theory, the estimation of fξdgDd¼0 is established by the following optimization model:
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EQ-TARGET;temp:intralink-;e005;116;735min
fξdg

XN
i¼1

εi ¼ min
fξdg

XN
i¼1

½Ii − ξ0 − ξT1 ðχi − χÞ − ξT2 × vechfðχi − χÞðχi − χÞTg− · · · �2KGðχi − χÞ;

(5)

where KGð·Þ is the kernel function that is used to assign the weights for samples, G is the 2 × 2

smoothing matrix. vechð·Þ is defined as the half-vectorization operator of the “up-triangular”
portion of a symmetric matrix, as follows:

EQ-TARGET;temp:intralink-;e006;116;645vech

��
a b
c d

��
¼ ½a; b; d�T: (6)

This optimization problem can be described as a weighted least-squares problem. In fact, we
just focus on the gray value of the pixels. So, it is only necessary to derive ξ0 from Eq. (5) and
the local gradient fξdgDd¼2 can be ignored in the estimation. Regardless of the high order term of
the estimator, the estimation of background is simplified as

EQ-TARGET;temp:intralink-;e007;116;550ẑðχÞ ¼ ξ̂0 ¼ eT1 ðχTxWxχxÞ−1χTxWxI; (7)

where e1 is a column vector, in which the first element is 1 and other elements are equal to 0.
I ¼ ½I1; I2; · · · ; IN �T , Wx ¼ diag½KGðχ1 − χÞ; KGðχ2 − χÞ; · · · ; KGðχN − χÞ�,

EQ-TARGET;temp:intralink-;sec2.1;116;492χx ¼

2
66664

1 ðχ1 − χÞT vechTfðχ1 − χÞðχ1 − χÞTg
1 ðχ2 − χÞT vechTfðχ2 − χÞðχ2 − χÞTg
..
. ..

. ..
.

1 ðχN − χÞT vechTfðχN − χÞðχN − χÞTg

3
77775:

A common and intuitive choice ofKGð·Þ is to use spatial distance between the estimated pixel
and samples. Based on the principle of radiometric distance, the weights can be assigned using
the following Gaussian kernel function:

EQ-TARGET;temp:intralink-;e008;116;376KGi
ðχi − χÞ ¼ 1

2π detðGiÞ
expf−ðχi − χÞTG−1

i ðχi − χÞg; (8)

where Gi is the covariance matrix of the kernel function of i’th sample pixel, which is also
defined as the smoothing matrix. It controls the shape of the kernel function and further decides
the quantity of samples. In other words, the choice of the smoothing matrix determines the esti-
mation performance of KR.

In the previous works, the smoothing matrix is usually established by a simplified model,
as follows:28

EQ-TARGET;temp:intralink-;e009;116;260Gi ¼ hμiE; (9)

where h is a global smoothing parameter, μi is a scalar parameter, E is a 2 × 2 identity matrix.
Research often concentrates on the optimization algorithm to derive the aforementioned

parameters. However, under the model of Eq. (9), the smoothing matrix is a diagonal matrix.
Because the elements of Gi on subdiagonal are zero, the row and column direction of kernel
function is irrelevant. In other words, this classic model is not suitable for background edges with
multidirection characteristics. Furthermore, the background cannot be estimated well.

2.2 Smoothing Matrix Selection Based on Multiscale First-Order Directional
Derivative

To obtain a better background estimation, the kernel function should adapt to the direction and
scale of background edge. With this intuition in mind, we add the gradient feature and the scale
of samples into the smoothing matrix. According to the geometric interpretation of the covari-
ance, the smoothing matrix can be rewritten as52
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EQ-TARGET;temp:intralink-;e010;116;589G ¼ RϒϒRT; (10)

where G is the abbreviation of Gi, R ¼
h
cos θ − sin θ
sin θ cos θ

i
and Υ ¼

h γx 0

0 γy

i
θ is the rotation

factor, which is defined as the clockwise angle from the vertical axis in a normal coordinate
system, γ ¼ ½γx; γy� represents the elongation factors on the horizontal and vertical directions.
These two factors of θ and γ denote the scale and direction of the kernel function.

Figure 1 schematically shows how factors affect the spreading of kernels on a background
edge. First, the kernel rotates with the gradient direction until reaching the dominant orientation
of background edge. Then, the kernel elongates the maximum scale according to the length of
the background edge. In the final result, the factors of θ and γ represent the orientation of back-
ground edge and the corresponding energy of the direction, respectively. Due to the addition of
θ and γ, the kernel function will get a better estimation on the background edge.

To estimate the parameters of θ and γ, an MFODD filter is contracted based on the facet
model. It is modeled as follows:

EQ-TARGET;temp:intralink-;e011;116;409

∂Ii
∂~lθ;γ

¼ fðK2;γ − 3.4K7;γ − 2K9;γÞ sin θ þ ðK3;γ − 3.4K10;γ − 2K8;γÞ cos θg ⊗ f; (11)

where f is the original IR image,⊗ is the convolution operator, ∂Ii
∂~lθi ;γi

is the directional derivative

of the sample pixel gray Ii on the direction θi and scale γi, γi is the abbreviation of ½γi;x; γi;y�.
Kj;γ is the fitting coefficient under scale γ in the facet model, which can be obtained as

EQ-TARGET;temp:intralink-;e012;116;317Kj;γ ¼
Pjðr; cÞP

c 0∈Ωγy

P
r 0∈Ωγx

P2
jðr 0; c 0Þ ; j ¼ 1;2; · · · ; 10; (12)

where Pjðr; cÞ is the two-dimensionality discrete orthogonal polynomials, which is constructed
as f1; r; c; r2 − 2; rc; r2 − 2; r3 − 3.4r; ðr2 − 2Þc; ðc2 − 2Þr; c3 − 3.4cg, ½r; c�T ∈ Ωγx × Ωγy is

the coordinates of pixels in the local analysis window, Ωγx × Ωγy represents the combination of

the coordinate set of rows or columns under scale ½γx; γy�. Let the location of the current sample
pixel is (0, 0), the symmetric set Ωγx and Ωγy can be defined as Ωs ¼ f−2s;−2sþ 1; · · · ;

2s − 1;2sg, where s is the scale index. Defining S as the upper scale limit of the analysis window,
the set of scale index on a single direction is denoted as Θ ¼ f1; · · · ; Sg. Hence, Ωγx × Ωγy has

S2 combinations and the scale γ of the smoothing matrix has S2 cases.
In the MFODD model, θi denotes the dominate direction of the sample pixel i and γi reflects

the number of neighboring pixels who are similar to the sample pixel on this side. Taking Fig. 1
as an example, the sample is located on the background edge. When the direction is perpen-
dicular to the maximal gray gradient of the sample and the scale is equal to the length of the
edge, the kernel function gets a good estimation on background. At this moment, the absolute
value of the MFODD filtering gets the minimum response. With this intuition in mind, the esti-
mation of θi and γi is represented as follows:

Fig. 1 Schematic representation illustrating the effects of the improved smoothing matrix on the
scale and direction of the kernel function.
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EQ-TARGET;temp:intralink-;e013;116;517½θ̂i; γ̂i� ¼ arg min

���� ∂Ii
∂~lθ;γ

���� γ ∈ Θx × Θy; θ ∈ Ξ; (13)

where Ξ is the angle set of θ. In the target detection, we mainly concentrate on the direction of
0 deg, 45 deg, 90 deg, −45 deg. So, only these four angles are considered in the rotation factor
estimation of the proposed adaptive kernel function. γ is used to describe the energy of the sam-
ple on the orientation. So, the value of γ should be the maximum target scale S.

Figure 2 is a visual illustration of the adaptive kernel function on a complex cloud back-
ground. The size of the real target located in region 4 is 2 × 3 pixels. So, in the MFODD filtering,
we set S ¼ 3. (This setting will be further analyzed in Sec. 3.1.) In region 1, the direction of the
cloud edge in the local area is slant. So, γ ¼ 1 and θ ¼ −45 deg can be estimated from Eq. (13).
Analogously, due to the horizontal and narrow shape of cloud in region 2, the smoothing matrix
will obtain a large scale and a rotation factor with 90 deg. When the background is clean such as
region 3, a standard Gaussian formation can be estimated by MFODD filter. Both the local
enlargements and the kernel functions of three regions are shown in Fig. 2.

Submitting the estimation results of the MFODD filter into Eq. (7), the background can be

estimated as f̂Bðx; yÞ ¼ ẑðχÞ. Further, a subtraction operation is adopted to segment the target
image and remove the clutter and noise:

EQ-TARGET;temp:intralink-;e014;116;296f 0ðx; yÞ ¼ fðx; yÞ − f̂Bðx; yÞ: (14)

In the subtracted image f 0ðx; yÞ, the target becomes salient and the background clutter is
extremely suppressed. As for some residual clutter that is not completely eliminated, a global
threshold can be used for removal.

3 Energy Concentration Criterion for Target Extraction

After a subtraction operation, a “pure” target image is obtained. However, some isolated noises
such as the detector noise will also remain in the subtracted image. Due to sharing the similar
feature of bright and small size with the target, it is difficult to eliminate in the background
removal and will increase the false alarm rate. To extract the actual target accurately, an energy
concentration criterion is proposed in this section.

3.1 Imaging Size and Energy Distribution of Infrared Dim Small Target

The linear theory of image formation, related to Gaussian optics, allows expressing the imaging
process as a convolution product between the radiance distribution on the object plane and the

Fig. 2 Example of adaptive kernel under different background.
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point spread function (PSF).53 To obtain the image, the energy captured by the optical system is
integrated and sampled by the detector. This whole imaging process can be described as

EQ-TARGET;temp:intralink-;e015;116;711fTðx; yÞ ¼ ζ½gðx; yÞ ⊗ PSF�; (15)

where gðx; yÞ is the real target in the object space, PSF is the point spread function of optical
system, ζ½·� is the sampling function of IR detector, which represents the process of discretization
and sampling, and fTðx; yÞ is the image of target.

With the imaging distance of the target farther away, the real target gðx; yÞ is approximately
a point. Thus, the target image fTðx; yÞ can be described by the PSF of the optical system. The
ideal PSF of the optical system is represented as a first-order Bessel function

EQ-TARGET;temp:intralink-;e016;116;609PSF ¼
�
2J1ðπρ∕λFÞ

πρ∕λF

�
2

; (16)

where J1 is the first-order Bessel function, λ is the response wavelength of the detector, F is the
optical parameter, which is defined as the ratio between the focal length and the aperture of

optical system, ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2

p
is the radius of the detector, ðx0; y0Þ is the imaging

location of target center on the detector. For example, ðx0; y0Þ ¼ ð0;0Þ represents that the target
locates on the pixel center of IR detector.

Based on Eqs. (15) and (16), we first analyze the imaging size of the target. The distribution
of PSF on the 2D image plane is defined as Airy spot. Let Z denote πρ

λF. According to the character
of Bessel function, we can note that when Z ¼ 1.22π, it gets the minimal value J1ðZÞ ¼ 0.
Further, the diameter of the Airy spot can be derived as follows:

EQ-TARGET;temp:intralink-;e017;116;452d ¼ 2.44λF; (17)

where d is the diameter of Airy spot.
In the real world, the long-wave IR detection system is usually adopted to capture the long

distance target.54 Submitting some common parameters of λ ¼ 9 to 10 μm and F ¼ 2 into
Eq. (16), the size of Airy spot can be derived as 43.9 to 48.8 μm. In addition, Eq. (15) shows
that the target image is the discrete sampling result of Airy spot by the IR detector. It is assumed
that the shape of the detector element is rectangle. According to the common pixel sizes of long-
wave IR detector (15, 25, 30 μm), we can note that the target size will change from 1 × 1 to
3 × 3 pixels. In other words, the maximum target scale is no more than S ¼ 3.

Second, we analyze the energy distribution of target. Equation (16) indicates that the energy
of PSF is related to the location of ðx0; y0Þ. Thus, the energy distribution of target is affected by
the projected location of target center. Next, we adopt the simulations to analysis the energy
distribution of small target under different projected location. Assuming that the pixel size is
25 μm and the deviations of the row and column direction keep coincident. The result is shown
in Fig. 3. The first row is the three-dimensional (3D) schematic diagrams describing the pro-
jected location of the small target center on the pixel. And the second row is the corresponding
energy distributions in the 2D space. In Fig. 3(a), the target is projected on the pixel center.
In Figs. 3(b) and 3(c), the projected center target is 8 and 12 μm away from the pixel center,
respectively.

Figure 3(a) shows that although the target is projected on the pixel center, the energy does not
completely concentrate on a single pixel but diffuses to neighboring pixels. The reason is that the
diameter of Airy spot exceeds the pixel size of detector, which has been proved by the above
analysis about target size. From Figs. 3(b) and 3(c), it can be noted that with the increasing of
deviations between the target center and pixel center, the energy of the central pixel decreases
gradually. On the contrary, the neighboring pixels get higher energy. When the target is projected
at the intersection of four pixels, the energy distribution of the discrete target is extremely uni-
form. Based on the simulation, we can draw the conclusion that the target energy captured by IR
detector will disperse on the image. And this property can be used as an important judgment for
distinguishing the actual target and false alarms in the subtracted image.
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3.2 Energy Concentration Criterion Construction

The aforementioned analysis denotes that the imaging size of target will be no more than
3 × 3 pixels. With this intuition in mind, we construct the filtering window as shown in
Fig. 4. The detected pixel ðx; yÞ is the center pixel of this window.G1 ∼ G9 represent the energies
of pixels in the filtering window.

From the last section, we have noted that the target energy distribution is affected by the
projected location of a small target center on the detector. When the target projects at the pixel
center, such as Fig. 3(a),G5 of pixel ðx; yÞ is strong. When the projected center deviates from the
pixel center, such as the condition of Figs. 3(b) and 3(c), G1 ∼ G9 of neighboring pixels will rise
gradually with the increasing of the deviation distance. According to this diffusion property,
an energy concentration criterion is constructed as follows:

EQ-TARGET;temp:intralink-;e018;116;336Ge ¼
GmaxP
9
i¼1 Gi

; (18)

where Ge represents the energy concentration of detected pixel, Gmax is the maximum energy in
nine pixels, and the denominator term is the sum of energies of these nine pixels.

According to the definition in Eq. (18), the energy concentration map of the whole image can
be obtained from subtracted image by the following calculation:

Fig. 4 Filtering window of the energy concentration criterion.

Fig. 3 Examples of target image for several deviations between the target center and the pixel
center: (a) 0 μm, (b) 8 μm, and (c) 12 μm.
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EQ-TARGET;temp:intralink-;e019;116;487Geðx; yÞ ¼
maxff 0ðxþ i; yþ jÞgP

9
i¼1 f

0ðxþ i; yþ jÞ ; ði; jÞ ∈ Lm; (19)

where Lm ¼ f−1;0; 1g is the direction vectors.
To extract the actual target in the energy concentration map, it is necessary to determine the

variation range of target energy concentration. Hence, we simulate the energy concentration with
different deviations between target center and pixel center under some common pixel sizes. The
results are plotted in Fig. 5. a represents the value of pixel size.

We can note that the energy concentration of target changes periodically with the increasing
of the deviations of target center. The period is approximated to the pixel size. In addition, Fig. 5
also indicates that when the deviation is equal to the half of the pixel size, the energy concen-
tration reaches the lower limit. Besides, the lower limit is independent of the pixel size and is
kept at 0.22. Unlike the lower limit, the upper limit of energy concentration depends on the
location and pixel size simultaneously. When the target exactly projects at the pixel center, the
energy concentration reaches the maximum value. Further, the peaks of curves between different
pixel sizes in Fig. 5 indicate that when the pixel size becomes larger, the target will obtain a
higher energy. It illustrates that enlarging the pixel size of detector property is helpful to improve
the target salience.

In this paper, we denote the variation range of energy concentration as ½Gth1; Gth2�. Setting it
as the segment thresholds, the actual target can be extracted by the following binary operation:

EQ-TARGET;temp:intralink-;e020;116;246

�
Target pixel; if Gth1 ≤ Geðx; yÞ ≤ Gth2

Nontarget pixel; otherwise
: (20)

According to the proposed energy concentration criterion, the detector noise and other iso-
lated noises can be eliminated and the actual target will be extracted from the subtracted image.

4 Experimental Results

4.1 Data Acquisition Equipment

To obtain the actual and reliable image resources, a prototype IRST system is set up to capture
the airliners leaving from Changchun Longjia International Airport, which is shown in Fig. 6.
The IR camera is mounted on a two-axis motion platform. The pan and tilt axes of the platform
could be changed continuously through the serial port. The ADS-B global navigation system

Fig. 5 Target energy concentrations under different deviations between target center and pixel
center.
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(GNS) is employed to acquire the flight information, including the speed, location, and altitude
of the aircraft. The screenshot of GNS is also shown in Fig. 6.

The specific parameters of the long-wave IR camera are presented in Table 1. Submitting the
parameters into Eq. (17), we can note that the target size is no more than 3 × 3 pixels. Thus, we
set S ¼ 3 in the adaptive KR model. In addition, because the pixel size of our detector is 30 μm,
½Gth1; Gth2� ¼ ½0.22; 0.8� is set as the segment threshold of the energy concentration criterion in
the target extraction.

4.2 Performance Evaluation

In the experimental step, two aspects are adopted to evaluate our proposed method: background
suppression performance and detection performance. The signal-to-clutter ratio (SCR) and
background suppression factor (BSF) are used as the filter metrics for background suppression,
which are defined as55

EQ-TARGET;temp:intralink-;e021;116;187

8>><
>>:

SCR ¼ μt − μc
σc

BSF ¼ σin
σout

; (21)

where μt and μc represent the mean values of target region and background region, σc represents
the stand deviation of the background region, σin and σout denote the standard deviation (STD) of
the original input image and the STD of the filtered image, respectively.

In addition, receiver operating characteristic (ROC) curve is adopted to evaluate the detection
performances of different algorithms. It is used to describe the dynamic relationship between the

Fig. 6 Data acquisition equipment.

Table 1 Detailed parameters of the IR camera.

Style name Brief description

Manufacturer Sofradir

Spectral band pass (μm) 7.7 to 11.3

Element size (μm) 320 × 256

Pixel size 30

NETD (mK) 17.32

ADC resolution (bit) 14

Focal length (mm) 38

F∕# 2

Integration (μs) 300

Ma et al.: Adaptive kernel regression and energy concentration criterion for infrared dim small target detection

Optical Engineering 123101-10 December 2021 • Vol. 60(12)

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 21 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



detection probability and false alarm rate. In this paper, we totally adopt two types of ROC,
which are defined, respectively, as follows:35,56

EQ-TARGET;temp:intralink-;e022;116;711

8>><
>>:

Pd;1 ¼
Ntrue

Ntotal

× 100%

Pfa;1 ¼
Nfalse

Nfalse þ Ntotal

× 100%

; (22)

EQ-TARGET;temp:intralink-;e023;116;630

8>><
>>:

Pd;2 ¼
Mtrue

Mtotal

× 100%

Pfa;2 ¼
Mfalse

Msum

× 100%

; (23)

where Ntrue and Nfalse are the number of the detected true targets and false alarms, respectively,
Ntotal is the total number of targets. Mtrue and Mfalse are true and false pixels detected, Mtotal is
total true pixels, and Msum is total pixels in image.

4.3 Detection Performance and Comparison

We totally obtain three IR sequences of small targets using the constructed equipment. Three
representative images from these sequences are shown in Fig. 7. The type of targets is the civil
aircraft. Seqs. 1 and 2 contain cloud and building clutter on sky backgrounds. Seq. 3 contains
various detector noise and nonuniformity noise. The small target regions are located and mag-
nified in original images for clearer observation. The target sizes are listed in Table 2. For com-
parison purpose, other five methods are performed, including Top-hat, LCM, RPCA, LMS, and
classic KR.

First, we verify the ability of proposed algorithm on background suppression using the three
tested sequences. The results of different algorithms are shown in the form of 3D gray maps in
Figs. 8–10. The gray value has been normalized. The target locations are marked by red circles.

Figures 8(a) and 8(b) show that Seq. 1 contains numerous complex cloud backgrounds.
Under this condition, the HVS-based methods including top-hat and LCM have a good perfor-
mance on target enhancement. However, the cloud backgrounds are not suppressed effectively.

Fig. 7 Samples on three IR sequences. (a) The raw image of Seq. 1, (b) the raw image of Seq. 2,
and (c) the raw image of Seq. 3.

Table 2 Sizes of targets in Fig. 7.

Fig. 7(a1) Fig. 7(b1)

Fig. 7(c1)

Target 1 Target2

Target size (pixels) 2 × 3 2 × 2 2 × 3 3 × 3
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Similarly, as shown in Fig. 8(e), the results of RPCA also contain many residual clutter.
Figures 8(f)–8(h) show that although the LMS and classic KR achieve better performances
on cloud background than top-hat and LCM, they are sensitive to the background edge. By
contrast, after being processed by the proposed algorithm, the cloud clutter is suppressed com-
pletely, and the target becomes the most salient in the image.

As shown in Figs. 9(a) and 9(b), the bright buildings have strong radiation intensity in Seq. 2.
Its edge regions bring crucial challenges to the background suppression. Under such complex
backgrounds, the suppression results of top-hat, LCM, and RPCA contain obvious residuals on
the regions of building edges and corner points. Furthermore, the target is almost submerged by
residual clutter and even lost. Although the classic KR achieves a better performance than other
algorithms, it is sensitive to the building edges. By contrast, the proposed algorithm maintains its
robustness to the building background.

Figures 10(a) and 10(b) show that the targets in Seq. 3 are almost swamped by massive
detector noises. The sparse property of this noise is similar to the small target, which is easily
to result in false alarms. As shown in Figs. 10(c) and 10(d), top-hat and LCM not only enhance
the small target but also increase the noise intensity. Due to the existence of detector noise, the
low-rank property of the background in Seq. 3 is not obvious, and a precise desired image can
not be obtained. Thus, both RPCA and LMS do not get good suppression performances.
Although the classic KR can suppress the noise clutter, the enhancement performance of small
target is still inferior to the proposed algorithm.

Fig. 8 Results of background suppression processed by different algorithms for Seq. 1. (a) The
raw image sample of Seq. 1, (b) the 3D gray map of sample image, (c) top-hat, (d) LCM, (e) RPCA,
(f) LMS, (g) classic KR, and (h) proposed adaptive KR.
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Table 3 lists the values of SCR and BSF of all algorithms on tested sequences. The best
results are highlighted in bold. As can be seen from Table 3, the proposed method achieves
the highest BSF on all sequences and the largest target enhancement on Seqs. 1 and 3.
Although top-hat and LCM get highest SCRs in Seq. 2, they do not suppress clutter effectively.
The quantitative results reflect that the proposed algorithm can enhance the target salience and
maintain the robustness to various IR backgrounds simultaneously.

Second, the subtracted images obtained from the aforementioned processes are utilized to
extract the actual target and verify the performance of the proposed energy concentration
criterion. Comparison algorithms adopt the constant false alarm rate (CFAR) method as the
segment algorithm. Detailed steps of CFAR are referred in Ref. 9. The extraction results of all
algorithms on three sequences are shown in Figs. 11–13. The candidate points are marked by red
rectangles.

Figures 11 and 12 show that the extraction results of top-hat and LCM contain many false
alarms on the background edge. In contrast, RPCA, LMS, and classic KR achieve better per-
formances than the HVS-based method. However, the background edges are not suppressed
effectively and result in the increasing of false alarms.

Figure 13 shows that the noise background brings a great challenge for small target detection.
All the comparison algorithms do not distinguish the actual target and the detector noise well.
There are many false alarms in the final detection results. On the contrary, the proposed method
has the least false alarms and extracts the target accurately.

Fig. 9 Results of background suppression processed by different algorithms for Seq. 2. (a) The
raw image sample of Seq. 1, (b) the 3D gray map of sample image, (c) top-hat, (d) LCM, (e) RPCA,
(f) LMS, (g) classic KR, and (h) proposed adaptive KR.
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Fig. 10 Results of background suppression processed by different algorithms for Seq. 3. (a) The
raw image sample of Seq. 1, (b) the 3D gray map of sample image, (c) top-hat, (d) LCM, (e) RPCA,
(f) LMS, (g) classic KR, and (h) proposed adaptive KR.

Table 3 SCR values and BSF values for the suppression results of different algorithms.

Filtering methods Metrics Fig. 7(a1) Fig. 7(b1)

Fig. 7(c1)

Target 1 Target2

Top-hat SCR 2.1738 5.8998 2.9845 2.6566

BSF 0.1525 2.7335 1.0494 1.0308

LCM SCR 2.5088 8.8872 4.9181 2.8982

BSF 0.5156 3.4790 2.1202 2.0951

RPCA SCR 6.6556 2.5366 1.6259 1.8206

BSF 1.7678 5.7667 1.2000 0.6819

LMS SCR 2.0356 2.3886 1.7298 1.6877

BSF 1.6234 6.4451 1.1048 1.0650

Classic KR SCR 2.0392 3.7353 1.6402 1.1676

BSF 1.8282 8.669 0.8419 0.8079

Proposed SCR 7.5474 4.3097 5.7998 6.3052

BSF 10.4693 9.0577 3.2489 2.4412
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Two types of ROC curves on three sequences are shown in Fig. 14. The corresponding
calculations are shown in Eqs. (22) and (23), respectively. For Seq. 1, due to the influence of
complex clouds, comparison algorithms do not achieve high detection probabilities. While, the
proposed algorithm shows a strong ability to detect more than 80% of the small targets under a
low false alarm rate. For Seq. 2, the strong edge of building background seriously affects the

Fig. 11 Detection results of different algorithms for Seq. 1. (a) The raw image, (b) top-hat, (c) LCM,
(d) RPCA, (e) LMS, (f) classic KR, and (g) proposed energy concentration criterion.

Fig. 12 Detection results of different algorithms for Seq. 2. (a) The raw image, (b) top-hat, (c) LCM,
(d) RPCA, (e) LMS, (f) classic KR, and (g) proposed energy concentration criterion.
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detection results of comparison algorithm. However, as shown in Fig. 14(b), the proposed
method is robust and achieves the best detection. For Seq. 3, when the false alarm rate is very
low, the ROC curves of the proposed method are not lower than 75%. And the detection prob-
ability of proposed method rises the fastest to 100% than comparison methods. While, compari-
son algorithms cannot get good performance under low false alarm rate. In general, trends of
ROC curves in Fig. 14 indicate that under the same false alarm rate, the proposed algorithm
achieves the highest detection probability in three sequences. This demonstrates that our pro-
posed algorithm is more robust than other comparison algorithms.

Fig. 13 Detection results of different algorithms for Seq. 3. (a) The raw image, (b) top-hat, (c) LCM,
(d) RPCA, (e) LMS, (f) classic KR, and (g) proposed energy concentration criterion.

Fig. 14 Two types of ROC curves of different algorithms for (a) Seq. 1, (b) Seq. 2, and (c) Seq. 3.

Ma et al.: Adaptive kernel regression and energy concentration criterion for infrared dim small target detection

Optical Engineering 123101-16 December 2021 • Vol. 60(12)

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 21 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



The aforementioned experiment results and quantitative evaluations show that the proposed
method has good abilities on target enhancement and background suppression. Also, the
performance and robustness of the proposed method are both superior to other comparison
methods.

5 Conclusions

In this paper, a robust algorithm is proposed for background removal and small-target detection
in IR images. First, to suppress the complex background and the strong edge, we add the gradient
feature and scale of samples into the kernel function. The smoothing matrix is reestablished by a
product of a rotation matrix and an elongation matrix. Then, an MFODD filter is modeled to
estimate the rotation angle and the elongation factor. Second, to extract the actual target in the
subtracted image, we analysis the imaging size and the energy distribution of the small target on
the IR detector. Further, an energy concentration criterion is constructed as a segment method.
The experimental results demonstrate that the proposed algorithm achieves better performances
than other existing state-of-the-art algorithms. The quantitative evaluations in terms of SCR,
BSF, and ROC indicate that it can conspicuously suppress background and detect dim small
target.

Acknowledgments

This work was supported by the Nation Natural Science Foundation of China (Grant Nos.
61675202, 61627819, 61727818, and 61905240).

References

1. S. Aghaziyarati, S. Moradi, and H. Talebi, “Small infrared target detection using absolute
average difference weighted by cumulative directional derivatives,” Infrared Phys. Technol.
101, 78–87 (2019).

2. J. Han et al., “Infrared small-target detection under complex background based on subblock-
level ratio-difference joint local contrast measure,” Opt. Eng. 57(10), 103105 (2018).

3. M. Nasiri and S. Chehresa, “Infrared small target enhancement based on variance differ-
ence,” Infrared Phys. Technol. 82, 107–119 (2017).

4. S. L. Wolfe, Introduction to Infrared System Design, SPIE Optical Engineering Press,
Bellingham, Washington (1996).

5. L. Huo et al., “Staircase-scene-based nonuniformity correction in aerial point target detec-
tion systems,” Appl. Opt. 55, 7149–7156 (2016).

6. K. Bai et al., “Robust contact-point detection from pantograph-catenary infrared images
by employing horizontal-vertical enhancement operator,” Infrared Phys. Technol. 101,
181–185 (2019).

7. Y. Dai et al., “Non-negative infrared patch-image model: robust target-background separa-
tion via partial sum minimization of singular values,” Infrared Phys. Technol. 81, 182–194
(2017).

8. Q. Song et al., “Single frame infrared image small target detection via patch similarity
propagation based background estimation,” Infrared Phys. Technol. 106, 103197 (2020).

9. R. Liu et al., “An omnidirectional morphological method for aerial point target detection
based on infrared dual-band model,” Remote Sens. 10, 1054 (2018).

10. B. Narayanan, R. C. Hardie, and R. A. Muse, “Scene-based nonuniformity correction tech-
nique that exploits knowledge of the focal-plane array readout architecture,” Appl. Opt.
44(17), 3482 (2005).

11. S. Zhao et al., “Infrared target detection method based on the receptive field and lateral
inhibition of human visual system,” Appl. Opt. 56(30), 8555–8563 (2017).

12. Y. Qian et al., “Infrared small target detection based on saliency and gradients difference
measure,” Opt. Quant. Electron. 52, 151 (2020).

Ma et al.: Adaptive kernel regression and energy concentration criterion for infrared dim small target detection

Optical Engineering 123101-17 December 2021 • Vol. 60(12)

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 21 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1016/j.infrared.2019.06.003
https://doi.org/10.1117/1.OE.57.10.103105
https://doi.org/10.1016/j.infrared.2017.03.003
https://doi.org/10.1364/AO.55.007149
https://doi.org/10.1016/j.infrared.2019.06.015
https://doi.org/10.1016/j.infrared.2017.01.009
https://doi.org/10.1016/j.infrared.2020.103197
https://doi.org/10.3390/rs10071054
https://doi.org/10.1364/AO.44.003482
https://doi.org/10.1364/AO.56.008555
https://doi.org/10.1007/s11082-020-2197-x


13. Y. Wang et al., “Small target detection using edge-preserving background estimation based
on maximum patch similarity,” Int. J. Adv. Rob. Syst. 14(6), 1–11 (2017).

14. Y. Li and Y. Zhang, “Robust infrared small target detection using local steering kernel recon-
struction,” Pattern Recognit. 77, 113–125 (2018).

15. T. Ma et al., “Infrared small target detection based on divergence operator and nonlinear
classifier,” Opt. Quantum Electron. 53, 369 (2021).

16. M. Ju et al., “ISTDet: an efficient end-to-end neural network for infrared small target detec-
tion,” Infrared Phys. Technol. 114, 103659 (2021).

17. L. Genin, F. Champagnat, and G. L. Besnerais, “Background first- and second-order mod-
eling for point target detection,” Appl. Opt. 51, 7701–7713 (2012).

18. C. Chen et al., “A local contrast method for small infrared target detection,” IEEE Trans.
Geosci. Remote Sens. 52(1), 574–581 (2014).

19. Y. Chen and Y. Xin, “An effective infrared small target detection method based on visual
contrast mechanism,” IEEE Trans. Geosci. Remote Sens. Lett. 13(7), 962–966 (2016).

20. J. Liu et al., “Tiny and dim infrared target detection based on weighted local contrast,” IEEE
Trans. Geosci. Remote Sens. Lett. 15(11), 1780–1784 (2018).

21. C. Xia et al., “Infrared small target detection based on multiscale local contrast measure
using local energy factor,” IEEE Geosci. Remote Sens. Lett. 17(1), 157–161 (2020).

22. J. Han et al., “A local contrast method for infrared small-target detection using a tri-layer
window,” IEEE Geosci. Remote Sens. Lett. 17(10), 1822–1826 (2020).

23. Y. Chen et al., “An effective infrared small target detection method based on the human
visual attention,” Infrared Phys. Technol. 95, 128–135 (2018).

24. J. Han et al., “A local contrast method combined with adaptive background estimation for
infrared small target detection,” IEEE Geosci. Remote Sens. Lett. 16(9), 1442–1446 (2019).

25. H. Wang et al., “A novel and high-speed local contrast method for infrared small-target
detection,” IEEE Geosci. Remote Sens. Lett. 17(10), 1812–1816 (2020).

26. E. Lee, E. Gu, and K. Park, “Effective small target enhancement and detection in infrared
images using saliency map and image intensity,” Opt. Rev. 22(4) 659–668 (2015).

27. X. Wang, C. Ning, and L. Xu, “Spatiotemporal difference-of-Gaussians filters for robust
infrared small target tracking in various complex scenes,” Appl. Opt. 54(7), 1573–1586
(2015).

28. S. Kim, “Min-local-LoG filter for detecting small targets in cluttered background,” Electron.
Lett. 47(2) 105–106 (2011).

29. C. Corbane et al., “Fully automated procedure for ship detection using optical satellite
imagery,” Proc. SPIE 7150, 71500R (2008).

30. X. Bai, “Morphological center operator for enhancing small target obtained by infrared im-
aging sensor,” Optik 125, 3697–3701 (2014).

31. X. Bai, F. Zhou, and B. Xue, “Fusion of infrared and visual images through region extraction
by using multi scale center-surround top-hat transform,” Opt. Express 19, 8444–8457
(2011).

32. X. Bai, F. Zhou, and B. Xue, “Multiple linear feature detection based on multiple-structuring-
element center-surround top-hat transform,” Appl. Opt. 51, 5201–5211 (2012).

33. B. Zhu and Y. Xin, “Effective and robust infrared small target detection with fusion of poly-
directional first order derivative images under facet model,” Infrared Phys. Technol. 69,
136–144 (2015).

34. X. Cao et al., “Infrared small target detection based on derivative dissimilarity measure,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(8), 3101–3116 (2019).

35. Y. Bi et al., “Fast detection of distant, infrared targets in a single image using multiorder
directional derivatives,” IEEE Trans. Aerosp. Electron. Syst. 56(3), 2422–2436 (2020).

36. M. M. Hadhoud and D. W. Thomas, “The two-dimensional adaptive LMS (TDLMS) algo-
rithm,” IEEE. Trans. Circuits Syst. 35(5), 485–494 (1998).

37. Y. Cao, R. Liu, and J. Yang, “Small target detection using two-dimensional least mean
square (TDLMS) filter based on neighbor analysis,” Infrared Millim. Waves 29(2), 188–200
(2008).

38. T. Bae, F. Zhang, and I. Kweon, “Edge directional 2D LMS filter for infrared small target
detection,” Infrared Phys. Technol. 55, 137–145 (2012).

Ma et al.: Adaptive kernel regression and energy concentration criterion for infrared dim small target detection

Optical Engineering 123101-18 December 2021 • Vol. 60(12)

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 21 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1177/1729881417744822
https://doi.org/10.1016/j.patcog.2017.12.012
https://doi.org/10.1007/s11082-021-03041-4
https://doi.org/10.1016/j.infrared.2021.103659
https://doi.org/10.1364/AO.51.007701
https://doi.org/10.1109/TGRS.2013.2242477
https://doi.org/10.1109/TGRS.2013.2242477
https://doi.org/10.1109/LGRS.2016.2556218
https://doi.org/10.1109/LGRS.2018.2856762
https://doi.org/10.1109/LGRS.2018.2856762
https://doi.org/10.1109/LGRS.2019.2914432
https://doi.org/10.1109/LGRS.2019.2954578
https://doi.org/10.1016/j.infrared.2018.10.033
https://doi.org/10.1109/LGRS.2019.2898893
https://doi.org/10.1109/LGRS.2019.2951918
https://doi.org/10.1007/s10043-015-0110-9
https://doi.org/10.1364/AO.54.001573
https://doi.org/10.1049/el.2010.2066
https://doi.org/10.1049/el.2010.2066
https://doi.org/10.1117/12.805097
https://doi.org/10.1016/j.ijleo.2014.01.130
https://doi.org/10.1364/OE.19.008444
https://doi.org/10.1364/AO.51.005201
https://doi.org/10.1016/j.infrared.2015.01.020
https://doi.org/10.1109/JSTARS.2019.2920327
https://doi.org/10.1109/TAES.2019.2946678
https://doi.org/10.1109/31.1775
https://doi.org/10.1007/s10762-007-9313-x
https://doi.org/10.1016/j.infrared.2011.10.006


39. Y. Yang, J. Yang, and K. Yang, “Adaptive detection for infrared small target under sea-sky
complex background,” Electron. Lett. 40(17), 1083–1085 (2004).

40. Y. Gu et al., “A kernel-based nonparametric regression method for clutter removal in infra-
red small-target detection applications,” IEEE Trans. Geosci. Remote Sens. Lett. 7(3), 469
(2010).

41. H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and recon-
struction,” IEEE Trans. Image Process. 16(2), 349–366 (2007).

42. T. Zhang et al., “Infrared small target detection via self-regularized weighted sparse model,”
Neurocomputing 420, 124–148 (2021).

43. Y. Lyu et al., “Cirrus detection based on RPCA and fractal dictionary learning in infrared
image,” Remote Sens. 12(1), 142 (2020).

44. C. Gao et al., “Infrared patch-image model for small target detection in a single image,”
IEEE Trans. Image Process. 22(12), 4996–5009 (2013).

45. Y. Dai, Y. Wu, and Y. Song, “Infrared small target and background separation via column-
wise weighted robust principal component analysis,” Infrared Phys. Technol. 77, 421–430
(2016).

46. X. Wang et al., “Infrared dim target detection based on total variation regularization and
principal component pursuit,” Image and Vision Comp. 63, 1–9 (2017).

47. L. Zhang et al., “Infrared small target detection via non-convex rank approximation
minimization joint l2, 1 norm,” Remote Sens. 10(11), 1821 (2018).

48. T. Zhang et al., “Infrared small target detection based on non-convex optimization with
lp-norm constraint,” Remote Sens. 11(5), 559 (2019).

49. Y. Sun et al., “Infrared small-faint target detection using non-I.I.D. mixture of Gaussians and
flux density,” Remote Sens. 11(23), 2831 (2019).

50. Y. Zhang et al., “Small infrared target detection based on low-rank and sparse representa-
tion,” Infrared Phys. Technol. 68, 98–109 (2015).

51. M. V. Shirvaikar and M. M. Trivedi, “A neural network filter to detect small targets in high
clutter backgrounds,” IEEE. Trans. Neural Network 6, 252–257 (1995).

52. S. Park and J. Lim, “Non-asymptotic rate for high-dimensional covariance estimation with
non-independent missing observations,” Stat. Probabil. Lett. 153, 113–123 (2019).

53. S. Datcu, L. Ibos, and Y. Candau, “Focal plane array infrared camera transfer function
calculation and image restoration,” Opt. Eng. 43(3), 648–657 (2004).

54. L. Fortunato et al., “SKYWARD: the next generation airborne infrared search and track,”
Proc. SPIE 9819, 98190K (2016).

55. P. Lv et al., “A method for weak target detection based on human visual contrast mecha-
nism,” IEEE Trans. Geosci. Remote Sens. Lett. 16(2), 261–265 (2019).

56. K. Zhang and X. Li, “Infrared small dim target detection based on region proposal,” Optik
182, 961–973 (2019).

Mingyang Ma is currently a PhD student at Changchun Institute of Optics, Fine Mechanics and
Physics, Chinese Academy of Sciences. His research interests include infrared imaging, target
detection, estimation theory, and sensor data fusion.

Dejiang Wang is currently a research fellow at Changchun Institute of Optics, Fine Mechanics
and Physics, Chinese Academy of Sciences. His research interests include signal processing,
infrared image processing, and pattern recognition.

He Sun is currently an assistant research fellow at Changchun Institute of Optics, Fine Mechanics
and Physics, Chinese Academy of Sciences. Her research interests include polarization optical
technology, image processing, and computer vision.

Tao Zhang is currently a research fellow at Changchun Institute of Optics, Fine Mechanics and
Physics, Chinese Academy of Sciences. His research interests include nonlinear control and
estimation, signal processing, and imaging techniques.

Ma et al.: Adaptive kernel regression and energy concentration criterion for infrared dim small target detection

Optical Engineering 123101-19 December 2021 • Vol. 60(12)

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 21 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1049/el:20045204
https://doi.org/10.1109/LGRS.2009.2039192
https://doi.org/10.1109/TIP.2006.888330
https://doi.org/10.1016/j.neucom.2020.08.065
https://doi.org/10.3390/rs12010142
https://doi.org/10.1109/TIP.2013.2281420
https://doi.org/10.1016/j.infrared.2016.06.021
https://doi.org/10.1016/j.imavis.2017.04.002
https://doi.org/10.3390/rs10111821
https://doi.org/10.3390/rs11050559
https://doi.org/10.3390/rs11232831
https://doi.org/10.1016/j.infrared.2014.10.022
https://doi.org/10.1109/72.363430
https://doi.org/10.1016/j.spl.2019.06.002
https://doi.org/10.1117/1.1645846
https://doi.org/10.1117/12.2229065
https://doi.org/10.1109/LGRS.2018.2866154
https://doi.org/10.1016/j.ijleo.2019.02.008

