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Convolutional neural networks have been widely applied in saliency detection task because of its pow-
erful feature extraction capability. Most of existing saliency detection models have achieved great pro-
gress by aggregating the strong multi-level features. However, it is still a challenging task to design
the feature fusing strategy because of the various differences between multi-level features. In this paper,
we explore the effect of cascaded pooling operations for saliency detection and propose a novel network
to decode saliency cues from multi-level features progressively. We refer to the architecture as ‘‘cascaded
hourglass” feature fusing network. The proposed network equips with three cascaded sub-modules to
capture the multi-scale context and integrate multi-level features progressively. Specifically, we first pro-
pose a multi-scale context-aware feature extraction block with different dilated convolutional branches
to obtain multi-scale context-aware saliency cues. Then, a hourglass feature fusing block with successive
steps of pooling operations is applied to convert the features to multiple feature spaces. Furthermore, we
stack a serial of the hourglass feature fusing blocks to purify the multi-level coarse features progressively.
Finally, we combine the selective features with cascaded feature decoder to produce final saliency map.
Extensive experiments demonstrate the proposed network compares favorably against state-of-the-art
methods. Additionally, our model is efficient with the real-time speed of 28 FPS when processing a
400� 300 image.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Salient object detection aims to find the most discriminative
objects or regions in images or videos. Primitively, it is an auxiliary
way to explore the human vision and cognition mechanism. But
recently, it has been developed as a pre-processing method in
extensive computer vision tasks, such as object recognition [1],
image or video segmentation [2,3], content-aware image editing
[4], stereoscopic thumbnail generation [5] and object tracking [6].

Many saliency detection methods have been proposed in the
past decade. Generally, the proposed methods can be simply
divided into two categories: traditional methods, and deep-
learning based methods. Traditional methods are mainly based
on low-level cues and hand-crafted features, such as color features
[7,8], spatial distribution [9,10], and so on [11–15]. However, these
low-level features lack of semantic information, which may fail to
detect the accurate salient regions in complex scenarios. Recently,
convolutional neural networks (CNNs) have been widely used in
various computer vision tasks [16,17] because of its powerful capa-
bility in visual feature representation. Similarly, benefit from the
powerful multi-level features, especially the high-level semantics,
most CNNs-based saliency detection methods have achieved a
remarkable progress. Generally, most saliency detection methods
adopt an encoder-decoder architecture: CNNs serve as the encoder
to extract multi-level features, while their proposed structures
take as the decoder to extract and purify saliency cues from
multi-level features progressively. Many effective features decod-
ing strategies have been designed, such as short connection [18],
gate mechanism [19], attention model [20–23], residual learning
[24,25], edge-aware model [26–28], and so on [29,30]. However,
since different salient objects or regions possess extensive uncer-
tain diversities in shape, size and features, it can still be a challeng-
ing task to decode the saliency cues from multi-level features.

In the architecture of CNNs, with the repeated stride and pool-
ing operations, the extracted features gradually change from low-
level representation to high-level representation. Specifically,
low-level features contain more spatial details but full of noises,
while high-level features represent rich semantics but lack of
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accurate location information. On the one hand, high-level and
low-level features are complementary with each other, which is
helpful for saliency detection. On the other hand, it also means that
multi-level features are significantly different with each other,
which will inevitably bring some noises to the result and degree
the performance if we integrate multi-level features without dis-
crimination. It has been proved by Wu et al. [31]that saliency
detection is a low-level computer vision task which is more depen-
dent on the high-level semantic information. How to capture the
high-level semantic information is the crucial issue for saliency
detection. In the architecture of CNNs, the successive convolutional
operations can filter the features from coarse-level to refined-level,
while the repeated pooling operations can transform the features
from the low-level representation to the high-level representation.
Therefore, the pooling operations can be an available method for
saliency detection, which has been proved by Liu et al. [32] with
the top-level performance for saliency detection.

In this paper, we further explore the intrinsic mechanism of
pooling operations and propose a novel cascaded hourglass feature
fusing network for saliency detection. Specifically, the proposed
network contains three cascaded sub-modules: cascaded multi-
scale context-aware feature extraction module (CMCFEM), cas-
caded hourglass feature fusing module (CHFFM), and cascaded fea-
ture decoder (CFD). Specifically, we first adopt a multi-scale
context-aware feature extraction block (MCFEB) which contains a
group of cascaded dilated convolutional operations to capture
multi-receptive-filed features. Furthermore, we cascade a serial
of MCFEBs together and form a top-down pathway as the CMCFEM
to transmit the multi-receptive-filed features progressively. Sec-
ond, we construct a hourglass feature fusing block (HFFB) with four
cascaded encoder-decoder sub-branches to convert the features
from one scale into multiple feature scales. Besides the first sub-
branch, each sub-branch contains a pair of down-sample and up-
sample operation: down-sample operation converts the feature
to a new scale, while up-sample operation recovers the feature
to the original size. In the middle of each sub-branch, two convo-
lutional layers are embedded to capture more local context infor-
mation and filter the coarse features. We cascade the four
encoder-decoder sub-branches together and transmit the output
of each sub-branch to next sub-branch, which weighs the coarse
features from local receptive field to global receptive field progres-
sively. Furthermore, to filter multi-level coarse features gradually,
we hierarchically couple a serial of HFFBs as the cascaded hour-
glass feature fusing module (CHFFM). Since the structures of these
cascaded blocks are seemed as a serial of cascaded hourglasses
with different sizes, we denote our network as ‘‘cascaded hour-
glass” feature fusing network. Finally, four feature decoder blocks
are equipped as cascaded feature decoder(CFD) to combine these
refined features and make the final prediction. To overcome the
ambiguities of the saliency edges and learn the hard pixels sur-
rounding the boundaries, we adopt a weighted cross entropy loss
to train the proposed model.

Extensive experiments demonstrate the performance of the
proposed method can compare favorably against state-of-the-art
methods. We conclude our main contributions as follows:

1. We propose a multi-scale context-aware feature extraction
block (MCFEB) with a group of cascaded dilated convolutional
operations to extract multi-receptive-filed features. Further-
more, we cascade a serial of MCFEBs together as CMCFEM to
transmit the multi-receptive-filed features progressively.

2. We design a hourglass feature fusing block with cascaded pool-
ing sub-branches to transform features from one-level to multi-
ple scales. Moreover, a serial of hourglass features fusing blocks
are stacked together to integrate multi-level features
hierarchically.
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3. The proposed model can achieve the state-of-the-art perfor-
mance under different metrics. Furthermore, our method is
not only comparably lightweight but also efficient. When pro-
cessing a 400� 300 image on an NVIDIA TITAN Xp GPU, the
model based on ResNet-50 can run with the real-time speed
of 28 FPS.

2. Related works

Many saliency detection methods have been proposed over the
past decade. Early approaches produce the saliency map based on
the low-level features. However, benefiting from the powerful fea-
ture extraction capability of CNNs, most CNNs-based methods can
achieve comprehensive superiorities compared with the tradi-
tional methods. In this paper, we mainly focus on the deep-
learning based saliency detection models in recent years.

Most of existing salient object detection networks are devoted
to aggregate the multi-level features from CNNs to improve the
performance. As mentioned in Section 1, many feature fusing
strategies have been proposed, such as short connections, gate
mechanism, attention model, residual learning, edge-aware sal-
iency detection, and so on. For example, Hou et al. [18] present a
skip-layer structures via dense short connections to fully integrate
multi-level features together. Zhang et al. [19] construct a bi-
directional gate structure between adjacent convolutional layers
to bilaterally filter multi-level coarse features. Liu et al. [35] design
an encoder-decoder structure to convert a coarse global prediction
to refined saliency map hierarchically and progressively. Luo et al.
[29] design a multi-relation grid structure to combine multi-scale
local, deconvolution and global information together. Zhuge et al.
[36] propose a novel approach that transforms prior information
into an embedding space to select attentive features and filter
out outliers for salient object detection. Zhang et al. [37] present
a generic aggregating multi-level features framework to integrate
multi-level feature maps into multiple resolutions. Wu et al. [31]
abandon low-level features and only decode saliency cues from
high-level features via a cascaded partial decoder framework. Deng
et al. [24] design a recurrent residual refinement network
equipped with residual refinement blocks to alternately extract
different saliency cues from multi-level features. Mohammadi
et al. [38] propose a feature guide network to distinguish the
ambiguous salient and non-salient regions.

Attention mechanism is widely used in various vision task for
its great ability to select features, such as fixation prediction
[39,40], video saliency detection [41–43] and saliency detection
[20,23,44,25,21]. For example, Zhang et al. [20] propose a novel
attention guided network to selectively integrate multi-level fea-
tures in a progressive manner. Zhao et al. [23] explore the different
characteristics of multi-level features and purposefully utilize dif-
ferent attention module for the high-level and low-level features.
Zhu et al. [44] present an output-guided attention module built
with multi-scale outputs to overcome the problem of faulty infor-
mation produced by traditional attention module. Chen et al. [25]
embed the attention and residual refinement network together to
guide feature learning in side out layers and then fuse the learned
features for saliency detection. Chen et al. [21] utilize reverse
attention to guide side-output residual learning in a top-down
manner.

Recently, to capture the structural information of salient
objects, more and more researchers construct their networks to
extract the edge information or train their networks with structure
information as auxiliary supervision. For example, Zhuge et al. [45]
propose a boundary-guided aggregating feature fusion network for
salient object detection. Zhou et al. [46] propose a siamese edge-
enhancement network to preserve the edge structure for salient
object detection. Su et al. [28] rethink saliency detection in terms
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of the selectivity or invariance of different features to construct the
network. Zhao et al. [26] extract the salient edge information and
salient object information simultaneously, and then guide the sal-
iency detection with edge information. Liu et al. [32] introduce the
pooling operation to expand the receptive fields of features and
join edge information to train the whole network.

In a word, most of existing saliency detection methods are
devoted to extract the saliency cues from multi-level features
and integrate them with different strategies. In this paper, we fur-
ther explore the effect of pooling operations in the saliency detec-
tion task and propose a cascaded hourglass feature fusing network
for saliency detection.
3. The proposed network

The proposed network consists of three sub-modules: cascaded
multi-scale context-aware feature extraction module (CMCFEM) to
extract the multi-scale context features, cascaded hourglass fea-
ture fusing module (CHFFM) to progressively refine the combined
multi-level features, and cascaded feature decoder (CFD) to decode
the final saliency cues from the refined features. The whole struc-
ture of our proposed network is shown in Fig. 1.
3.1. Cascaded multi-scale context-aware feature extraction module

Multi-scale context information is beneficial to prevent the
degradation of performance which caused by various diversities
of salient objects. However, it is proved by zhang [47] that the
empirical receptive field size of CNN is much smaller than the the-
oretical one especially on high-level layers. This will make many
CNN-based saliency detection methods incorporate the momen-
tous global scenery prior insufficiently. As above mentioned, sal-
iency detection is a visual task which is more dependent on
high-level semantics. Thus, it is necessary to expand the receptive
field to facilitate the sufficient incorporation of global semantics.
Atrous spatial pyramid pooling(ASPP) module [48] is a commonly
used module in many saliency detection models [19,23]. It utilizes
a group of dilated convolutional operations with different dilated
rates to extract multi-receptive-fields contextual information.
However, a convolutional operation with large dilation rate may
also bring a gridding issue. Besides this, convolutional operations
with large kernel sizes are also frequently used to capture the local
contextual information [38]. But the large kernel size may increase
the parameters of model and need more computer memories.

In this paper, we utilize a group of dilated convolutional opera-
tions and further cascade them together to excavate the multi-
receptive-fields information progressively. As shown in Fig. 2, we
first add a 3� 3 convolutional layer to learn more local informa-
tion and then split the input features into four sub-branches with
a group of 1� 1 convolutional operations. A 3� 3 dilated convolu-
tional layer is embedded in each branch to capture more local con-
text. The dilation rates of the four dilated sub-branches are set to
1;2;4;6f g, respectively. Generally, the larger dilation rate can help
the network to capture larger receptive-field context, but the larger
dilation rate may also cause graver gridding effect and loss more
spatial details. To counteract these drawback, we arrange the four
dilated sub-branches from small dilation to large dilation and fur-
ther introduce the short connections into the structure. Generally,
the output features from the sub-branch with smaller dilation rate
contains more spatial details, which can help the sub-branch with
larger dilation rate remedy the gridding effect to some extent.
Therefore, we transmit the output of one sub-branch to next sub-
branch and add it to the original inputs of next sub-branch. Fur-
thermore, inspired by ASPP, we adopt an image pooling branch
with a global average pooling operation and a 1� 1 convolutional
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layer to capture the image-level saliency cues. Finally, we concate-
nate all the outputs of the five sub-branches and employ a combi-
nation of 3� 3 and 1� 1 convolutional layer to integrate them
together.

We stack four MCFEBs together as cascaded multi-scale
context-aware feature extraction module (CMCFEM) to learn more
local context from the multi-level side-outputs features. Given the
VGG-Net version of FPN [49] as an example, we use the feature
maps outputted by conv2, conv3, conv4, conv5 as the four side-
output features. The four side-output feature maps have strides
of 2;4;8;16f g pixels with respect to the input image, and the chan-
nel numbers of four side-output features are set to
128;256;512;512f g, respectively. In this paper, to reduce the com-
putation complexity, we reduce the channel numbers of all side-
outputs features to 64 with 1� 1 convolutional layer. Moreover,
we transmit the output of previous block to the next and concate-
nate it with the side-output features as the mixed input for each
MCFEB. Finally, we capture four corresponding side-output fea-
tures from the four MCFEBs and deliver them to the subsequent
sub-modules.

3.2. Cascaded hourglass feature fusing module

The multi-scale contextual information contained in the side-
output features from CMCFEM is helpful for saliency detection.
However, the multi-level features are only simply concatenated
together in CMCFEM, which may bring some noises to the four
side-output features. In this section, we design a hourglass feature
fusing block (HFFB) and further stack them with connections. All of
the connected HFFBs form a cascaded hourglass feature fusing
module (CHFFM), which can dispel the noises and integrate the
side-output features hierarchically.

As above mentioned, in the feature encoding process, the
repeated stride and pooling operations can translate the features
from low-level representation to the high-level representation.
Similarly, in the feature decoding process, the pooling operations
can be considered as a feasible method to eliminate the diversities
between multi-level features. In this section, we propose a cas-
caded hourglass feature fusing module with a serial of pooling
operations to integrate the multi-level features. The whole struc-
ture of block is shown in Fig. 3. We are not the first one to explore
the effect of pooling operations for saliency detection. In PoolNet
[32], Liu et al. have proved the huge potential of pooling operation
for saliency detection with the top-level performance. Fig. 4 shows
the basic pooling unit in PoolNet [32], which is called feature
aggregation module (FAM). The pooling branches in FAM are orga-
nized by a parallel way, while these in the proposed module are
stacked in a cascaded way. The number of sample operations of
FAM is 6, while the number of the proposed module is 8. For the
same scale input feature, the receptive filed of HFFB can reach to
68, which is larger than FAM with 40. Generally, our module can
more sufficiently extract the feature in a larger receptive filed,
while FAM can extract the feature in a smaller receptive filed but
with relatively less parameters. We will provide more comparisons
in the experiment section.

As shown in Fig. 3, we first add all input multi-level features
together as the mixed input of this module, and then construct four
sub-branches to progressively transform the features from coarse-
level to refined-level. Specifically, we first adopt a sub-branch
without any pooling operations to learn more local context from
the mixed input features. Subsequently, three cascaded pooling
sub-branches are embedded into the structure and the down-
sampling rates of three pooling sub-branches are set to 2;4;8f g
compared to the scale of the input feature maps, respectively. In
each pooling sub-branch, a down-sample operation is used to
transform the feature to the new scale feature space, and a



Fig. 1. The framework of our proposed network. CMCFEM represents the cascaded multi-scale context-aware feature extraction module. CHFFM is the cascaded hourglass
feature fusing module. CFD is the cascaded feature decoder. h1; h2; h3; h4f g are the predictions of the four horizontal pathways, and all the down-sampling rates in comparison
of the input image are 1=2 when VGGNet-19 [33] as backbone (1=4 when ResNet-50 [34] as backbone). While v1;v2;v3;v4f g are the predictions of the four vertical pathways,
and the down-sampling rates are 1=2;1=4;1=8;1=16f g respectively when VGGNet-19 as backbone ( 1=4;1=8;1=16;1=32f g when ResNet-50 as backbone).

Fig. 2. The structure of multi-scale context-aware feature extraction block(MCFEB).
‘‘3� 3� 128” represents the ‘‘3� 3” convolutional layer with the channel number
128. ‘‘3� 3� 64;1” represents the ‘‘3� 3” convolutional layer with the channel
number 64 and the dilation rate 1. ‘‘Image pooling” represents a global average
pooling operation. Other settings can be similarly learned.
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corresponding up-sample operation is employed to recover the
features to the original size. Furthermore, to avoid the excessive
loss of spatial details produced by the repeated pooling operations,
the inputs of the last two pooling sub-branches are composed with
two items: the features down sampled from the last pooling sub-
branch with the average pooling layer1 (to avoid overstepping the
boundary, we pad the feature image boundary with zero at each
down-sample operation), and the down-sampled features from the
original mixed input features with the bilinear interpolation func-
tion2. After each pooling operation (both down-sample and up-
sample operation), a concomitant 3� 3 convolutional operation is
applied to reduce the aliasing effect produced by pooling operations.
Furthermore, we embed a dilated 3� 3 convolutional layer and a
3� 3 convolutional layer in the middle of each sub-branch to further
expand the receptive fields and learn more local context. The dilation
of the four branches are set to 8;4;2;1f g, respectively. Finally, the
output features of each sub-branch are up-sampled and further
added to the outputs of next sub-branch. Different from the struc-
ture with four parallel pooling branches in [32], we cascade these
four sub-branches together to transform the coarse-level features
to the selective features progressively. Since the structure of this
block is similar with two connected opposite hourglasses (as shown
in Fig. 3(b)), we refer to the bottom-up (from high resolutions to low
1 https://pytorch.org/docs/stable/nn.html#avgpool2d.
2 h t t p s : / /py to r ch . o r g /doc s / s t ab l e /nn . f unc t i ona l . h tm l?h i gh l i gh t =

interpolate#interpolate

https://pytorch.org/docs/stable/nn.html#avgpool2d
https://pytorch.org/docs/stable/nn.functional.html?highlight=interpolate#interpolate
https://pytorch.org/docs/stable/nn.functional.html?highlight=interpolate#interpolate


Fig. 3. The structure of hourglass feature fusing block(HFFB). It is the basic unit of CHFFM. (a) The detailed structure of HFFB. (b) The whole illustration of HFFB. (c) The
legends of graph (a). For conciseness, we only explain the meanings of some items. The meanings of other items can be learned similarly.

Fig. 4. The structure of basic pooling unit in PoolNet [32].
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resolutions) and top-down (from low resolutions to high resolutions)
encoder-decoder block as hourglass feature fusing block.

Generally, low-level features are more concrete and contain
more spatial details but without discrimination, while high-level
features are more abstract and more satisfied with the saliency
detection task. Therefore, it is necessary to lay more emphases
on low-level features when construct the network. In this paper,
we stack a set of hourglass feature fusing blocks to focus on the
low-level features and integrate the multi-level features progres-
sively. As Fig. 1 shows, a serial of HFFBs are stacked to gradually
integrate the side-output feature from CMCFEM. We denote the
HFFBs used for same side-output feature from CMCFEM as a cas-
caded hourglass feature fusing layer (CHFFL) and the numbers of
the four left–right CHFFLs are linearly decreasing from 4 to 1.
According to the number of HFFBs, we denote the four left–right
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CHFFLs as CHFFL4, CHFFL3, CHFFL2, CHFFL1, respectively. It is
worth to notice that the information of small objects cannot be
well reconstructed if the pooling rate is larger than the size of small
objects (e.g. if we adopt four average pooling operations, the
objects under the size of 16 cannot be well reconstructed theoret-
ically). Therefore, we only adopt two pooling sub-branches with
down-sample rate 2;4f g in the HFFB of CHFFL1. Finally, we intro-
duce the short dense connections to the structure and transform
the features from high-level CHFFL to low-level CHFFL. The
multi-level features transmitted to each HFFBs are first added
together as a mixed input, and then the mixed input is delivered
to the four sub-branches to dispel the intrinsic divergences. All of
the connected HFFBs construct four horizontal and four vertical
pathways. In macro view, these cascaded feature fusing blocks
are seemed as several sets of cascaded hourglasses with different
sizes. With these cascaded hourglasses, the side-output features
from each MCFEBs are filtered from coarse-level to refined-level
progressively and hierarchically.

3.3. Cascaded Feature Decoder

We design four corresponding decoder blocks to combine the
refined features from the four CHFFLs. Similarly, the four decoder
blocks are also cascaded in a top-down pathway. Besides the last
decoder, each decoder takes the features from the same CHFFL
and the output of the previous decoder as inputs. The structure
is shown in Fig. 5. We first adapt two 3� 3 convolutional layers
to learn more local context from the features from the same CHFFL.
In addition, we upsample the features from the previous decoder
and couple a 3� 3 convolutional layer to reduce the gridding
effect. Subsequently, we concatenate them together and apply a
combination of 3� 3 and 1� 1 convolutional layer to reduce the
channel dimension of the mixed features to 64. As above men-
tioned, the high-level features are more consistent with saliency
detection, therefore, the high-level feature can be severed as atten-
tive information for low-level feature. Specifically, we first produce
a high-level saliency map with a 1� 1 convolutional layer. The
produced saliency map which can be considered as the semantic
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attention map is then multiplied with the mixed features. Further-
more, we introduce the residual learning to this module and add
the high-level-semantics guided mixed features into the original
mixed features as the output of the feature decoder module.
Finally, we couple a 3� 3 and 1� 1 convolutional layer to produce
the final prediction (v1 in this paper) from the output of last deco-
der module.

3.4. Loss Function

Binary cross entropy(BCE) is the most widely used loss function
in salient object detection. However, BCE only calculates the pixel-
level loss and ignores the structure of the salient object, which may
obscure the edge of the salient region and degree the performance
of model. Moreover, the pixels surrounding the edge are hard to
distinguish and need to assign more weights. Recently, many sal-
iency detection methods adopt the edge-aware [29,23] or IOU
[27] loss function to capture the structure of salient object. In this
paper, we employ a pixel position aware (PPA) loss function to
learn the global structure of salient object and assign more weights
to hard pixels, which has adopted by Wei et al. [50]. PPA loss is
consisted of two weighted losses: a weighted binary cross
entropy(wBCE) loss and a weighted IoU (wIoU) loss:

Lppa ¼ Lwbce þ LwIou ð1Þ
The weighted binary cross entropy(wBCE) loss function is formed as
following:

Lswbce ¼ �
PH

i¼1

PW
j¼1ð1þ caijÞ

P1
l¼01ðgs

ij ¼ lÞ log Prðps
ij ¼ ljWÞ

PH
i¼1

PW
j¼1caij

ð2Þ

where 1ð:Þ is the indicator function, c is the hyper-parameter set as
1. The notation l 2 0;1f g indicates two kinds of the labels. ps

ij and gs
ij

are the prediction and ground truth of the pixel at location ði; jÞ in
an image. W represents all the parameters of the model and
Prðps

ij ¼ ljWÞ represents the predicted probability. aij is the weight
to indicate the pixel importance, which is calculated according to
the difference between the center pixel and its surroundings. It is
formed as:

as
ij ¼

P
m;n2Aij

gtsmnP
m;n2Aij

1
� gtsij

�����

����� ð3Þ

where As
ij represents the area that surrounds the pixelði; jÞ. If as

ij is
large, pixel at ði; jÞ is very different from its surroundings, which
may represent an important pixel (e.g., edge) and deserves more
attention. Similarly, the weighted Iou(wIoU) loss can be defined
as:

Lswiou ¼ 1�
PH

i¼1

PW
j¼1ðgtsij � ps

ijÞ � ð1þ cas
ijÞPH

i¼1

PW
j¼1ðgtsij þ ps

ij � gtsij � ps
ijÞ � ð1þ cas

ijÞ
ð4Þ

Furthermore, we apply multi-level deep supervision as an auxiliary
loss to facilitate sufficient training vertically and horizontally. As
Fig. 1 shows, we first obtain four horizontal saliency maps from
the side-outputs of CHFFL4 with 1� 1 convolutional layer. The four
horizontal saliency maps denoted as h1; h2;h3;h4f g represent the
four horizontal pathways. Similarly, another four vertical saliency
maps are produced from the outputs of the four cascaded feature
decoder modules, and the four vertical saliency maps denoted as
v1;v2;v3;v4f g represent the four vertical pathways. Given the four
horizontal and four vertical saliency maps, the total loss of our net-
work can be defined as:

L ¼
X4

h¼1

Lhppa
2h

þ
X4

v¼1

Lvppa
2v

ð5Þ
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where Lhppa corresponds to the loss of the h-th horizontal pathways
in our network and the pathways with heavier parameters are
assigned with higher weights to ensure the abundant training
(the loss of h1;h2;h3;h4f g corresponds to the scale factor
1=2;1=4;1=8;1=16f g, respectively). Lvppa corresponds to the loss of
the v-th vertical pathways in our network and the pathways of
lower level features are assigned with higher weights to focus on
the low-level features (the loss of v1; v2;v3;v4f g corresponds to
the scale factor 1=2;1=4;1=8;1=16f g, respectively).

4. Experiment

4.1. Experiment setup

Datasets. To evaluate the performance of our proposed frame-
work, we conduct experiments on five commonly used benchmark
datasets: ECSSD [51], DUTS [52], DUT-OMRON [53], HKU-IS [54],
PASCAL-S [55]. ECSSD contains 1000 images which are semanti-
cally meaningful and structurally complex with pixel-wise ground
truth. DUTS is a large-scale dataset containing two subsets:
DUTS-TR and DUTS-TE. DUTS-TR contains 10,553 images designed
for training and DUTS-TE has 5019 images for testing.
DUT-OMRON has 5168 high quality images. Images of this dataset
have one or more salient objects and relatively complex back-
ground. HKU-IS contains 4447 challenging images and most of
them contain multiple disconnected salient objects. PASCAL-S
includes 850 natural images selected from the PASCAL VOC 2010.

Evaluation metrics. To compare the performance of different
methods, we adopt three widely-used metrics: precision and recall
(PR) curve, F-measure, and mean absolute error (MAE). The preci-
sion and recall are computed by comparing the binarized saliency
map against the ground truth mask. A pair of the precision and
recall scores can be obtained with the threshold ranging from 0
to 255. Using the sequence of precision-recall pairs, the
precision-recall (PR) curve can be plotted. F-measure is a harmonic
mean of each pair of precision and recall, and defined as:

Fb ¼ ð1þ b2Þ � Precision� Recall
b2 � Precisionþ Recall

ð6Þ

where b2 ¼ 0:3 is used to emphasize the precision. For a fair com-
parison, we adopt maximum F-measure (max-F, larger is better)
as the metric. We also use the MAEmetric(smaller is better) to mea-
sure the average difference between the saliency prediction and the
ground truth. It is computed as:

MAE ¼ 1
H �W

XH

i¼1

XW

j¼1
Pði; iÞ � Gði; jÞk k ð7Þ

where P is the predicted saliency map, and G is the corresponding
ground truth.

Implementation details. We implement our network based on
PyTorch repository3 [56] and train it on the DUTS-TR dataset. In
training process, the training images are randomly cropped, rotated,
and horizontally flipped for data augmentation. We initialize the
parameters of basic feature extractor with the well-pretrained back-
bone (VGGNet-19 [33] and ResNet-50 [34]), while other layers are
randomly initialized. We use the stochastic gradient descent (SGD)
algorithm to train the whole network with the momentum of 0.9,
and weight decay 0.0005. During the training process, the initial
learning rate is set as 0.005 for the network based on ResNet-50
(0.01 for VGGNet-19) and adjusted by the ‘‘poly” policy [57] with
the power of 0.9. For the network based on ResNet-50, the training
loss converges after 15 k iterations with the batch size of 32, while

https://pytorch.org


Fig. 5. The structure of feature decoder (FD). ‘‘Cat” is the concatenation operation.
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25 k iterations with the batch size of 18 for the network based on
VGGNet-19. We take the saliency map v1 as the final prediction.

4.2. Ablation studies

In this section, we investigate the effect of different loss func-
tion first. Moreover, we compare the performance with or without
scale factors in the loss function. Then we carry out a serial of
experiments to learn the performance of the network with differ-
ent sub-modules. To further verify the effect of our proposed
sub-modules, we also test the effects of some other similar mod-
ules on model improvement. Specifically, we replace the MCFEB
with the commonly used ASPP module [48] first, and then replace
HFFB with the feature aggregation module (FAM) used in PoolNet
[32]. We set the ResNet-50 version of FPN [49] as the baseline
model. The quantitative and qualitative results of ablation studies
are summarized in Table 1 and Fig. 6, respectively.

Evaluation of loss function: We first compare the perfor-
mance of the model trained with BCE or PPA loss function.
Although the proposed network trained with BCE can also achieve
the well performance, PPA loss function can introduce the struc-
ture information into the network and achieve a better result.
Actually, the introduction of structure information is instructive
for saliency detection, which has been proved by many saliency
detection methods [29,27,26,50,45,46,28]. As shown in Table 1,
the PPA loss function mainly contributes to the MAE metric, which
represents less errors in the difficult boundary areas.

Evaluation of scale factors: We compare the performance of
the PPA loss function with or without scale factors. Scale factors
in loss function are to make the training focus on the low-level fea-
tures and the pathways with heavier parameters. As shown in
Fig. 7, the scale factors can ease the optimization task with a faster
convergence at early stages. Moreover, the scale factors pay more
attentions to the shallow pathways with heavier parameters,
which will train the network more fully. Seen from Table 2, in
the two difficult datasets DUTS [52], DUT-OMRON [53], the net-
work trained with scale factors can achieve the better results.

Comparisons of MCFEB and ASPP: ASPP module [48] is a
commonly used module to capture the multi-receptive-fields con-
text. ASPP module equips with a group of parallel dilated convolu-
tional layers to capture more local context. However, the large
dilation can cause serious gridding effect and lose beneficial spatial
details. In this paper, to overcome these problems, we design a
MCFEB and introduce the short connection into the structure to
expand the receptive fields progressively. As shown in Fig. 6, com-
pared with ASPP module, our proposed MCFEB is more deliberate
to deal with the complex scene and can persist more saliency
details. Moreover, as shown in Table 1, the quantitative results of
MCFEB can comprehensively surpass the performances of ASPP
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module. Both results can prove the effect of the short connection
between the dilated convolutional layers.

Comparisons of HFFB and FAM: Feature aggregation module
(FAM) is a pooling module used in PoolNet [32] which comprises
four parallel pooling sub-branches. It has been proved the huge
potentiality of pooling operations for saliency detection with the
top-level performance. We further explore the effect of pooling
operations and design a novel HFFB. We carry out the quantitative
comparisons in Table 1 first. As shown in Table 1, our proposed
pooling module can achieve the comparative performance in terms
of the listed quantitative metrics. Moreover, both pooling module
can handle the complex scenes, but our proposed module is more
accurate to suppress the noise and can reserve more vivid saliency
details, which is shown in Fig. 6. Besides the parallel pooling struc-
ture in [32], our proposed cascaded pooling structure can also
achieve a good result for saliency detection.

Evaluation of CFD: High-level features contains more high-
level semantics, while low-level features contains more spatial
details. h1;h2;h3;h4f g and v1;v2; v3;v4f g in Fig. 1 show the differ-
ences visually. Thus, we design the feature decoder and cascade
them together to integrate these selective features. With CFD, the
performance of our model can be further improved, which can be
seen in Fig. 6 and Table 1.

4.3. Comparison with state-of-the-arts

We compare our proposed model with 14 previous state-of-the-
art methods, including RFCN [58], DHS [35], Amulet [37], NLDF
[29], DSS [18], BMPM [19], PAGRN [20], AFNet [22], PAGENet
[59], MLMSNet [60], SRM [61], DGRL [30], PiCANet [62], CPD
[31]. For fair comparison, all the saliency maps are provided by
the authors or achieved by available codes.

Quantitative comparisons. We list all the quantitative
results in Table 3 and Fig. 8. As shown in Table 3, the proposed net-
work can outperform others on almost all the five datasets under
different metrics. Although we did not realize the best perfor-
mance on DUT-OMRON [53], our method demonstrates great com-
petitiveness. Moreover, we display the PR curves in Fig. 8. These
curves can provide a holistic evaluation of models. From these
curves, we can observe that our model possesses a good capability
to detect salient regions with a higher precision.

Visual comparisons. To evaluate the robustness and applica-
bility of models, we choose some typical images from the public
test dataset of saliency detection and exhibit all the images in
Fig. 9. As shown in Fig. 9, the salient objects possess various char-
acteristics, such as size, shape, numbers and so on. Specifically, the
images in 1th to 4th rows represent the common salient objects
but with relatively complex background. As we can see, our model
can better suppress the background noise and make a more



Table 1
Quantitative results of the network based on the different modules. The best results are marked in .

Fig. 6. Visual comparisons of our ablation studies. (a) Source Imges. (b) Results of baseline trained with BCE. (c) Results of baseline trained with PPA. (d) Results of
baseline + CMCFEM. (e) Results of baseline + ASPP. (f) Results of baseline + CMCFEM + CHFFM. (g) Results of baseline + CMCFEM + FAM. (h) Results of
baseline + CMCFEM + CHFFM + CFD. (i) Ground truth.

Fig. 7. The training loss of the PPA loss function with or without scale factors. To
more clearly show the differences, we carry out a log operation for the training loss
from 0 to 3000 training iteration.

Table 2
Quantitative results of the PPA loss function with/without scale factors.

With scale factors Without scale factors

maxF
p

0.8719p
0.8686
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accurate prediction. Moreover, our model can preserve more struc-
tural details, which can also be proved by the images in 5th row.
Subsequently, the images in 6th to 7th row contain multiple salient
objects. It is worth to notice that the salient objects in 6th rowwith
various sizes are difficult to detect. However, our method can per-
fectly manage the scene and produce a more accurate prediction.
The salient objects in the images of 8th to 9th row are low con-
trasted, which are hard to be distinguished. But our model can bet-
ter pick out the salient objects. Finally, our method can also
commendably predict the small salient objects, which can be seen
in the images of 10th to 11th row. In a word, the proposed model
can possess the good robustness and applicability to detect various
salient objects.

Memory comparisons. In general, a deeper neural network
can make better performance, but it is also followed by a larger
memory footprint and computation. So it will be difficult to apply
the model to real-time detection and deploy the model in the
mobile terminals. Thus it is necessary to make a balance between
the effect and efficiency of the model, and the size of the saliency
DUTS DUT-OMRON

mae maxF mae

0.0431 0.7865 0.0680
0.0435 0.7817 0.0695



Table 3
Quantitative comparisons of our model and the state-of-the-art models. ‘‘–” represents the model is trained on this
dataset. The best three results are marked in , , .

Fig. 8. PR curves of different methods on five datasets.
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detection model can also be considered as the significant metrics.
Fig. 10 displays the sizes and max F-measure of some models on
ECSSD [51]. As shown in Fig. 10, some larger saliency detection
models can not truly achieve the better performance. In contrast,
our model contains less parameters but can achieve a better result.
It is worth to notice that the performance of our model is slightly
worse than the top-level network PoolNet [32] (0.939 vs 0.943),
but our model is less than the half of the size of PoolNet [32]
(123 MB vs 260 MB, both are based on ResNet-50 [34]). Further-
more, when dealing with an image with the size of 400� 300 on
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an NVIDIA TITAN Xp GPU, our model based on ResNet-50 can run
at the real-time speed of 28 FPS.
5. Conclusions

In this paper, we further explore the effect of pooling operations
on saliency detection and design a novel feature fusing network
based on the cascaded pooling operations. We first design a cas-
caded multi-scale context-aware feature extraction module



Fig. 9. The visual comparisons of our model and the state-of-the-art saliency methods.

Fig. 10. Memory comparisons of some other saliency methods and our model,
including RFCN [58], DHS [35], NLDF [29], DSS [18], BMPM [19], MLMSNet [60],
SRM [61], DGRL [30], CPD [31], PoolNet [32].
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(CMCFEM) to capture multi-receptive-fields features. Furthermore,
a hourglass feature fusing block (HFFB) is proposed to convert the
feature into multiple-scale feature spaces. With a serial of HFFBs, a
cascaded hourglass feature fusing module (CHFFM) is constructed
to further integrate multi-level features progressively. Finally, we
adopt a cascaded feature decoder(CFD) to make the final predic-
tion. Our model is not only lightweight but also efficient with the
real-time speed. Extensive experiments demonstrate our network
can achieve the state-of-the-art performance.
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