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A B S T R A C T   

A fully automated chromosome analysis system can substitute cytogenetic experts for the task of chromosome 
karyotype analysis, which in turn can substantially increase the efficiency of disease diagnosis. However, the 
construction of such a system is most crucially restricted by the accuracy of chromosome classification, during 
karyotype analysis. To facilitate the construction of an automatic chromosome analysis system, an input-aware 
and probabilistic prediction convolutional neural network (IAPP-CNN) is presented in this paper for high ac-
curacy of chromosome classification. The approach follows three stages and consists of one input-aware module, 
one feature extractor module and one probabilistic prediction module. In the first stage, the input-aware module 
develops raw images automatically into the global-scale image, the object-scale image and the part-scale image, 
by introducing an attention mechanism. In the second stage, the three scale images are input into the feature 
extraction module through three branches, then the respective feature operators are obtained via their inde-
pendent CNN feature extractors. In the third stage, the probabilistic prediction module uses three dynamic 
probabilistic parameters to estimate the prediction of each CNN branch separately, and then combined the three 
CNN votes for the final decision. The feature expression ability of the key feature was improved and the network 
was enabled to focus on the recognizable regions in the image. Evaluation results from a large dataset of healthy 
patients showed that the proposed IAPP-CNN achieved the highest accuracy of 99.2% for the chromosome 
classification task, surpassing the performance of a competitive baseline created by state-of-the-art methods.   

1. Introduction 

Karyotyping is an important albeit arduous task in the field of bio-
logical research. In addition to being the principal method of detecting 
genetic diseases, its application is also increasing in other medical di-
agnoses [1,2]. Traditional karyotype analysis methods rely on time- 
consuming manual analysis, and the analysis result quality is directly 
related to the experience of the expert. In recent years, methods based on 
deep learning to complete automatic karyotype analysis have attracted 
the attention of researchers [3–5]. Ding et al. [4] proposed a pre- 
processing model for chromosome segmentation and feature enhance-
ment, and used Convolutional Neural Networks (CNN) for chromosome 
recognition. Xie et al. [5] divided the automatic chromosome analysis 
system into three parts: chromosome segmentation, geometric optimi-
zation and chromosome classification, as an integrated workflow for 
automatic karyotype analysis, with chromosome classification being the 
most the critical part. Although image processing technologies for 

chromosome classification exist, their accuracy in chromosome classi-
fication remains too low for clinical use. Reducing the contribution of 
experts involved, while ensuring high accuracy of chromosome classi-
fication remains a considerable challenge. 

Karyotyping is the procedure of visualizing and classifying the 
chromosomes in a cell, as shown in Fig. 1. In order to better visualize and 
classify chromosomes, researchers stain chromosomes to increase their 
contrast and ensure their appearance in cell images. Some researchers 
use fluorescent staining to dye different types of chromosomes with 
different colors, as a simple way to help doctors distinguish chromo-
somes [6,7]. Nevertheless, this method has serious limitations and 
controversies due to its high cost and unreliable operation. According to 
the characteristics of chromosomes during the metaphase stage, Giemsa 
staining has been employed [8–10] to make chromosomes produce 
lighter and darker gray levels, in order to be classified by cytogenetic 
experts and image processing technology. Owing to its low cost and 
strong reliability, Giemsa staining has become the most widely used 
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method to obtain stained metaphase chromosomes. Appropriate feature 
description and extraction are important parts of automatic chromo-
some classification procedures for Giemsa staining chromosomes, which 
only have lighter or darker stripes. In the early stage of chromosome 
classification, researchers have studied the process of feature description 
and extraction based on medial axis transform (MAT), centromere po-
sition, etc. Lerner et al. [11] proposed two approaches about MAT, to 
examine the MAT-based features [12]. Jahani et al. [13,14] proposed an 
effective method for centromere locating and length calculation by a 
linearly varying gray-level mask and an algorithm to identify and 
straighten the single curved human chromosomes. In addition, the 
multilayer perceptron (MLP) method has been introduced to improve 
the accuracy of human chromosome classification [11,15,16]. The 
above discussed technologies based on traditional classification have 
improved the efficiency of chromosome classification. However, the 
performance of these chromosome classification methods deeply de-
pends on the selection of chromosome images, which has been still far 
from sufficient for wide applications. 

The emergence of deep neural networks has brought new opportu-
nities for medical image processing, such as medical image segmenta-
tion [17–19] and classification [20–22]. A lot of works based on CNNs 
have also appeared in the field of chromosome classification [23–32]. 
Previous works [24,25] only used existing CNNs for fine-tuning on 
chromosome datasets, and obtained better results than traditional 
classification methods. Other studies [26,29] used a combination of 

preprocessing technology and deep learning. They applied traditional 
methods to straighten bent chromosomes, and then used the processed 
chromosomes as input into CNN for classification. Using a similar 
strategy with the above works, Gupta et al. [30] designed a novel CNN 
named Siamese Networks and achieved 94.6% accuracy in their private 
dataset. Qin et al. [31] was the first to introduce the part-scale image 
information for chromosome classification, and utilized the concatena-
tion features from both global-scale and part-scale to predict type and 
polarity. The introduction of part-scale image information has improved 
the results of chromosome classification. In addition, Lin et al. [32] 
proposed an image augmentation method to enlarge the training data-
set, to enrich the chromosome data quantity. Fu et al. [28] used 
Generative Adversarial Networks [33] to generate more chromosome 
training data. Compared to traditional classification methods, deep 
learning methods have shown a stronger classification capability for 
chromosomes. However, there are still challenges in chromosome clas-
sification using deep learning to be addressed: (1) performance of fully 
developed deep convolutional neural network [34–38] on chromosome 
datasets has room for improvement; (2) it is difficult to recognize 
chromosomes due to the sub-class categories having a similar appear-
ance, while intra-class images have large differences; (3) chromosome 
data is relatively scarce, needs to be collected from hospitals by spe-
cialists, and labeling is expensive. Therefore, chromosome classification 
remains a challenging task. 

Inspired by the above observations, we propose a practical method to 

Fig. 1. Metaphase chromosome image using Giemsa staining (a), and the standard karyotyped image (b).  

Fig. 2. An example of chromosome image and its corresponding label of chromosome dataset.  
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create a chromosome dataset that effectively reduces manual partici-
pation. Based on this, an input-aware and probabilistic prediction con-
volutional neural network (IAPP-CNN) is proposed. IAPP-CNN 
highlights the capacity to zoom a raw image into multi-scale images and 
makes a probabilistic prediction for the category of the chromosome. 
Object-scale images from original global-scale images and discrimina-
tive part-scale images from object-scale images were extracted using an 
object-aware mechanism and a part-aware mechanism, respectively. 
Therefore, multi-scale coarse-to-fine images from a single-scale image 
were developed. To extract more abundant feature information, we 
innovatively employed three independent state-of-the-art CNNs to learn 
the three scale images. The above works [11,15,16,30] use one two- 
layer MLP for the classification of the obtained embedding from CNN 
or fuse the embedding from two CNN branches before classification 
[31]. Different from the above works, we added three output logits of 
MLP directly, to obtain more abundant discriminative prediction infor-
mation and selected the category with the largest value. Furthermore, 
inherent ambiguity, such as limited data quality or label noise, leads to 
overfitting systems with poor generalization on unseen data. To tackle 
this, we innovatively introduced dynamic probabilistic parameters to 
capture the confidence score for the predicted output of the three CNN 
branches. The accuracy and robustness of the model can be further 
improved without increasing the training. This paper proposed a new 
approach for the input image and the output prediction of CNNs in the 
chromosome classification task that has not been explored so far by 
other researchers [23–30,32]. The experiment demonstrated that the 
performance of our method was superior to the performance of state-of- 
the-art CNNs. 

2. Introduction of chromosome dataset 

The chromosome karyotype images used in this work were collected 
from the local hospital in February 2020 to create the chromosome 
classification dataset. The same standard with previous works in the 
literature was followed in the creation of chromosome dataset for 
comparability reasons [5,30,31]. As shown in Fig. 2, the annotation 
information of our dataset includes only the category label. Karyotype 
chromosome images from 300 patients were obtained and 13,800 
chromosome images were produced. Classes 1 to 22, each had 300 im-
ages, class X had 200 images, and class Y had 100 images. The chro-
mosome dataset was created by the following proposed methods and its 
correctness was verified by experts. 

Due to the big size of the dataset, manual labeling of each image is a 
tedious and time-consuming task. Therefore, a method was designed to 
automatically extract images and annotations from karyotype images, 
which is convenient for the application of the Giemsa staining chro-
mosome data. A characteristic karyotype image we used for making our 
dataset is shown on the left of Fig. 2. Each chromosome was labeled into 
categories according to the existing labeling. The method included the 
following steps: 

(1) Collecting karyotype chromosome pictures of 300 healthy pa-
tients and filtering out problematic ones, such as blurred images and 
blank images; 

(2) Generating images and labels: As shown in Fig. 2, each category 
of the chromosome image has its fixed position. Based on this observa-
tion, we can set up automatic chromosome segmentation and obtain the 
chromosome image and its corresponding label. The karyotype image 
was binarized and the coarse mask image of each chromosome image 
was obtained, then morphological open and close operations were 
applied to the coarse mask image. Each chromosome image corre-
sponding to the binarized mask location was extracted. Finally, each 
chromosome image was expanded to 224 × 224 pixels with a pixel value 
of 255 for the background, totaling 13,800 chromosome images. 

3. Methods 

The main idea behind our IAPP-CNN is to construct a novel deep 
neural network that can extract more information from chromosome 
images and make a more robust prediction for chromosome classifica-
tion. The proposed method is composed of three steps: (1) the input- 
aware module and feature extraction; (2) model training and loss 
function; and (3) probabilistic predictions by integrated uncertainty 
estimates module. In this section, the approach of our method is briefly 
introduced. Then, the mechanism of multi-scale image generation using 
the input-aware module is described. Next, the end-to-end training 
mechanism and loss function are presented. Finally, the prediction 
mechanism is introduced. 

3.1. Approach view 

According to the annotations of the datasets [39], works for classi-
fication based on CNN can be divided in works based on strong anno-
tations and works based on weak annotations. Works based on strong 
annotations always employ part annotation or bounding box annotation 

Fig. 3. Dataset annotation for image recognition (images have three-level annotation: image. image with category label annotation (a), image with category label 
annotation, bounding box annotation (white rectangle), and part annotations (the color dot) (b)). 

H. Wei et al.                                                                                                                                                                                                                                     
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to find the location of the object or discriminative areas, as shown in 
Fig. 3. Although the accuracy of the classification is improved, hiring 
experts to label the images is expensive. Thus, methods based on strong 
annotations are limited. Other works on classification tasks based on 
weak annotations just used the category label with stronger applica-
bility, but limited annotations always induce a decline of accuracy. To 
address this problem, a novel IAPP-CNN is proposed here that uses the 
category label annotations to achieve high accuracy. 

The architecture of the IAPP-CNN is presented in Fig. 4. The original 
input image Iwas regarded as the global-scale image. Using an object- 
aware mechanism, the object image can be obtained from the global 
image without using bounding box annotations. To extract the 
discriminative part area without using part annotations or bounding 
boxes, we borrowed the last feature map of the object-scale feature 
extractor. The discriminative part image can be obtained by using the 
last feature map of the object-scale feature extractor as input to the part- 
aware mechanism. Three scale images were input to its feature 
extractor, and three logits were obtained. The three output logits from 
three CNN branches were added when making the inference prediction, 
contrary to previous works [11,15,16,30,31]. Furthermore, due to risks 
from the uncertainty of the classification, an integrated uncertainty es-
timates module was introduced to evaluate the reliability of each logit, 
before they were added. The introduction of the integrated uncertainty 
estimates module further improved the accuracy and robustness of 
chromosome classification. 

3.2. Input-aware module 

Chromosome classification differs from generic image classification. 
It is a fine-grained image classification, aiming to classify the chromo-
somes into different types. The chromosome images are very similar. 
Both the global appearance and discriminative part feature play an 

important role in the chromosome classification task. In this paper, the 
input-aware module was proposed, forming a strict coarse-grained to 
fine-grained image process to extract and learn much more information 
about chromosome images. The module is analysed in the following 
subsections. 

3.2.1. Global-scale image generation and feature learning 
As mentioned earlier, most of the methods based on convolutional 

networks [24–26,29] are fine-tuned using the pre-trained model on 
large datasets such as ImageNet. 

Given a raw image I, the global deep feature representations denoted 
as F ∈ Rh×w×c were extracted using Formula : 

F = g(I) (1) 

whereg(⋅) represents the convolutional layers to map the input image 
I to a feature representation, and also includes other related operations 
(i.e., BN, ReLU, and pooling). The high-level representation Fg ∈ Rh×w×c 

will be used for global-scale classification. 

3.2.2. Object-scale image generation 
According to the annotations of the dataset, only category label an-

notations were used in this study. An object-aware mechanism was 
designed to extract the object-scale image. 

The input image of the global-scale feature extractor branch can be 
written as I ∈ RH×W×3; where H represents the height of image and W 
represents the width of image. First, the image was converted to a 
grayscale image I1 ∈ RH×W×1, and then the average value of the gray 
image was computed by the following Formula : 

Pave =

∑W − 1
x=0

∑H− 1
y=0 Pixel(x, y)

H × W
(2) 

Fig. 4. Overview of IAPP-CNN (the method contains three branches and parameters of branches are independent).  
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whereH and W represent the height and the width of the grayscale 
image, respectively and Pixel(x, y) represents the pixel of the position 
(x, y). 

Here, Pave was employed as the low limit of the threshold to deter-
mine whether the element at the position in the grayscale image is part 
of the object image. The upper limit of the threshold was 254 because 
the pixel value of the background in a global-scale image was 255. 

Then, a coarse binary image was obtained as a mask map initially by 
the following Formula : 

B(x,y) =

{
255 if Pave < Pixel(x, y) < 254
0 others (3) 

Subsequently, image morphological corrosion was performed to 
remove noise or other irrelevant details in the binarized image and used 
morphological expansion to bridge the discontinuous parts of the 
binarized image. Thus, for the mask image, the locations where the pixel 
value was 255 were the foreground object image and the locations in 
which the pixel value was 0 were background images. Finally, we ob-
tained a binary mask by Formula and the object image by inserting the 
binary mask image M1

(x,y)in the global image. 

M1
(x,y) =

{
1 if Pave < Pixel(x, y) < 254
0 others (4) 

Then the object image was obtained by: 

Io = Ig ⊙ M1
(x,y) (5) 

where ⊙ denotes element-wise multiplication. Image Io was input 
into the object-scale feature extractor branch and the deep representa-
tion Fo ∈ Rh×w×c that will be used for object-scale classification was 
extracted. 

3.2.3. Part-scale image generation 
Inspired by works on image retrieval and classification tasks 

[40–43], a part-aware mechanism was designed to extract discrimina-
tive part image information for chromosome classification. As illustrated 
in Fig. 5, the output feature representation Fo ∈ Rh×w×c was obtained 
through the object-scale feature extractor branch. Taking it as the basic 
input feature map, the discriminative part image was extracted by part- 

aware mechanism. 
In the object-scale feature extractor branch, the last feature map 

written as Fo ∈ RH×W×C was obtained. Because SE-Net [44] can pay 
attention to the discriminative area, one squeeze and two excitation 
mechanisms were proposed by using different reduction ratios r. Two 
different reduction ratios r were used to encourage and facilitate the last 
feature map Fo ∈ RC×H×W to generate two different re-weight feature 
maps. 

Feature map Fo ∈ RC×H×W can be described as Fo =

[ x1 x2 ... xc ] ∈ RH×W×C. Global average pooling was applied to the 
squeeze feature map Fo into a channel-wise descriptor z =

[ z1 z2 ... zc ] ∈ Rc by reducing the feature map Fo to its spatial 
dimensionH× W. Thus, the l − th element of channel-wise descriptor z 
can be computed by: 

zl =
1

H × W

∑H

i=1

∑W

j=1
xl(i, j) (6) 

where H and W represent the height and width of the feature map, 
respectively. Next, different from SE-Net, we designed a two-excitation 
mechanism by using different reduction ratios. Formula was used to 
calculate z and get a one-dimensional vector: 

m = σ(W2δ(W1z) ) = [m1 m2 … mc ] ∈ Rc (7) 

where δand σ represent the ReLU function and Sigmoid function, 
respectively. In W1 ∈ R

c
r×cand W2 ∈ Rc×c

r, r represents the reduction 
ratio. 

The same design of SE-Net was adopted by forming a dimensionality- 
reduction layer and a dimensionality-increasing layer with parameters 
W1 and W2, respectively. 

The learned parameter W models the correlation and weight be-
tween the channels of the feature map. The reduction ratio r, which has 
an important relationship with the parameter W, can determine the 
correlation between channels. Using different reduction ratios r, 
different attention vectors m can be obtained. 

In Formula , the attention vector m is obtained. By re-calibrating the 
input feature map Fo ∈ RH×W×C with the attention vector m, the re- 
weighted feature map is obtained by Formula : 

Fig. 5. Discriminative part image obtained module.  
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U = [m1x1 m2x2 … mcxc ] ∈ Rc×h×w (8) 

Two different reduction ratios r were used to generate two different 
feature maps with different attention vectors m, written, as U1 ∈ Rh×w×c 

and U2 ∈ Rh×w×c. 
Those feature maps can focus on the same or different discriminative 

parts. To select the most important discriminative part area, the inter-
section of two feature maps was chosen. 

The feature map U1 ∈ Rh×w×c was aggregated across the channel 
dimensions c to produce an average feature map M ∈ Rh×w by Formula : 

M =
∑c

i=1
mixi,M ∈ Rh×w (9) 

Then, the mean value Mave of the feature map is computed as follows: 

Mave =

∑w− 1
x=0

∑h− 1
y=0M(x, y)

w × h
(10) 

Here, Mave was assigned as the decisive limit of whether the element 
is chosen or not. Thus, an activation mask map is obtained by Formula : 

M2
1(x,y) =

{
1 if M(x,y) > Mave
0 others (11) 

Similar to U2 ∈ Rh×w×c, another activation mask map M2
2(x,y)

can be 
obtained. The two masks may have the same or different activation 
areas. To get the discriminative part, the intersection of the M2

1 and M2
2 

was obtained by Formula : 

M2
(x,y) = Max(M2

1 ∩ M2
2) (12) 

Then, the part image Ip was calculated using Formula : 

Ip = Io ⊙ M (13) 

The region with the largest connection in M was selected as the bi-
nary mask image. Putting the binary mask image M on the object image, 
results in the discriminative part image. Then, the deep representation 
Fp ∈ Rh×w×c was obtained by using the part image as input in the part- 
scale feature extractor. 

3.3. End-to-end training and loss function 

The feature maps in the global-scale, object-scale and part-scale 
feature extractor branches can be written as Fg ∈ RH×W×C, Fo ∈

RH×W×C and Fp ∈ RH×W×C, respectively. Taking the output feature rep-
resentation Fg ∈ RH×W×C as an example, a vector that can be written as 
z = [ z1 z2 … zc ] ∈ Rc is obtained by using global average pooling. 
Here, z is used as the input feature into a fully connected (FC) layer like 
y = fc(x,w, b) and the global logitsf = [ f0 f1 ... fn− 1 ] ∈ RN are 
calculated, whereN represents the number of the classes. 

Taking f as the output logits of the convolution neural networks, the 
traditional cross-entropy (CE) was employed as the loss function, which 
is the same as the other two branches, thus, the losses are: 

Lossall = Lglobal +Lobject +Lpart (14) 

where, Lglobal, Lobject and Lpart represent the cross-entropy loss function 
for each branch, respectively. Each branch uses its loss function for 
training, and three branches form an end-to-end training. The parameter 
of each branch is independent, which ensures that each branch can learn 
its scale image features independently and extract information more 
efficiently. 

3.4. Probabilistic prediction 

In the above section, each branch output logits y ∈ RN was obtained. 
In order to receive the final prediction, output logits of the three 

branches were added as shown in Formula : 

yconcat = yglobal + yobject + ypart (15) 

The chosen category was the one with the largestyconcat value. Adding 
the output logits of each branch comprehensively considered the fea-
tures of different-scale images, ensuring the stability and robustness of 
the prediction. 

Uncertainty quantification is the basic issue yet unsolved for CNNs. 
For medical images, the model prediction based on CNN requires more 
risk assessment to achieve high accuracy. To reduce the risks caused by 
epistemic uncertainty, the integrated uncertainty estimates module was 
introduced, which is used to estimate the reliability of the model pre-
dictions. Before adding the predicted values of the three branches, the 
uncertainty of the model output was weighed by parameter λ. The for-
mula is as follows: 

yconcat = λg ∗ yglobal + λo ∗ yobject + λp ∗ ypart (16) 

where λg, λo and λp in Formula are used to model the confidence score 
for the output logits yglobal, yobject and ypart, respectively. 

To calculate the dynamic probabilistic parameter λ, the existing 
feature representation was utilized to obtain the uncertainty estimates. 

In one of the feature extractor branches, the output logits y ∈ RN 

were obtained and fed into a SoftMax function to get a confidence score 
by Formula . 

pi =
exp(yi)

∑N
j=1exp

(
yj
) (17) 

In 
∑m

i=1pi = 1 i ∈ {1 2 ... N }, P = { p1 p2 ... pN } ∈ RN is 
the prediction score vector andN is the number of object categories. 
Here, ps

i was used as the confidence score obtained from the prediction 
vector p, where i is the corresponding index associated with the 
maximum score for the image s. Thus, the three output logits yglobal, yobject 

and ypart produced its probabilistic parameters λg, λo, and λp to estimate 
the confidence for prediction without adding trainable parameters. 

4. Experimental results and discussions 

4.1. Dataset 

Based on the method described in Section 2, a large chromosome 
dataset containing 13,800 chromosome images was extracted from 300 
patients. The dataset was split as other typical classification datasets 
[39,45]. The details of the dataset are displayed in Table 1. 

4.2. Implementation details 

In all the experiments, the input images of the global-scale branch 
were resized to 224 × 224. The object-scale images obtained from the 
global-scale branch and part-scale images obtained from the object-scale 
branch were also resized to 224 × 224 before being fed into the CNNs. 
When training the model, the images were flipped horizontally with a 
probability of 0.5. The IAPP-CNN was trained on the chromosome 
dataset for 50 epochs and the batch size of the train dataset was set to 26. 
The standard stochastic gradient descent method was used. The learning 
rate was initially set to 0.02, the weight decay to 1 × 10− 5 and the 
momentum to 0.9. The model was implemented in PyTorch. The same 
initialization as the IAPP-CNN was used for the other networks. 

Table 1 
The statistics of the chromosome datasets.  

Dataset Picture  Images total 
Male Female  Train Test 

Chromosome 150 150  6900 6900 13,800  
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4.3. Evaluation metrics 

Performance of chromosome classification in the literature often uses 
the following four metrics: recall, precision, accuracy, and F1-score. 
Higher values represent higher accuracy and robustness of the model. 

To compute the four metrics, the following four criteria are defined 
for multi-class classification: 

True positives (TPj): a chromosome image, which belongs to class j, is 
predicted to be class j. 

False positives (FPj): a chromosome image, which does not belong to 
class j, is predicted to be class j. 

False negatives (FNj): a chromosome image, which belongs to class j, 
is predicted to be class k(∀k ∕= j). 

True negatives (TNj): a chromosome image, which does not belong to 
class j, is predicted to be class k(∀k ∕= j). 

Then, recall, precision, accuracy, and F1-score can be computed as 
following: 

recallj =
TPj

TPj + FNj
(18)  

precisionj =
TPj

TPj + FPj
(19)  

F1j = 2⋅
Rej⋅Prj

Rej + Prj
(20)  

F1 =
1

Ncls

∑Ncls

j=1
F1j (21)  

accuracy =
1
M

∑Ncls

j=1
TPj (22) 

where Ncls represents the 24 classes of chromosome and M represents 
the number of all tested chromosome images. 

4.4. Quantitative evaluation 

4.4.1. Compared with state-of-the-art methods 
The performance of the proposed method was compared to state-of- 

the-art methods by two metrics: the accuracy of all the tested images, 
and the average F1-score. All experiments were carried out on the same 
chromosome dataset, as shown in Table 1. 

Table 2 provides a comparison of the proposed method with state-of- 
the-art methods. The methods in Table 2 can be divided into four groups 
from top to bottom: (1) the first three methods were proposed specif-
ically for classifying images with Giemsa staining chromosomes. The 
first two methods straightened bent chromosomes, and then fed the 
processed chromosomes into CNNs, the third method combined the ar-
chitecture of ResNet and Inception to improve the performance of the 
original Inception; (2) methods based on fine-tuning the most well- 
known CNNs. The proposal of AlexNet represented the upsurge in the 
application of neural networks; VggNet explores the depth of CNNs, 
which is deeper than AlexNet; Inception increases the width of the 
network; ResNet develops shorter connections between layers and the 
model by-pass signal from one layer to the next via identity connections; 
DenseNet is an architecture that connects all layers directly with each 
other. Each layer obtains additional input from all preceding layers and 
passes on its feature-maps to all subsequent layers. Methods based on 
fine-tuning the model are to train the existing CNNs on the chromosome 
dataset to obtain the best classification performance. Those methods 
used the fully developed state-of-the-art CNNs, and represent the best 
performance on the chromosome classification task; (3) methods adding 
the input-aware module based on CNNs; and (4) IAPP-CNN based on 
CNNs. 

Table 2 
Performances of our method compared with state-of-the-art methods.  

Method F1-score (%) Accuracy (%) 

Sharama et al.[29] 96.3 ± 0.2 95.9 ± 0.2 
Gupta et al.[30] 95.9 ± 0.3 95.9 ± 0.2 
Lin et al.[32] 97.1 ± 0.3 97.8 ± 0.1 
fine-tuning AlexNet [34] 95.8 ± 0.2 96.2 ± 0.1 
fine-tuning InceptionV4 [35] 97.5 ± 0.7 97.7 ± 0.5 
fine-tuning VGG16bn-Net [36] 97.9 ± 0.9 98.2 ± 0.4 
fine-tuning DenseNet [37] 97.8 ± 0.4 98.0 ± 0.3 
fine-tuning ResNet [38] 97.3 ± 0.2 97.5 ± 0.3 
AlexNet (+IA module) 97.5 ± 0.1 97.6 ± 0.2 
InceptionV4 (+IA module) 98.4 ± 0.4 98.5 ± 0.3 
VGG16bn-Net (+IA module) 98.5 ± 0.3 98.6 ± 0.4 
DenseNet (+IA module) 98.5 ± 0.3 98.6 ± 0.2 
ResNet (+IA module) 98.4 ± 0.2 98.5 ± 0.1 
IAPP-CNN -based AlexNet 98.3 ± 0.1 98.4 ± 0.2 
IAPP-CNN -based Inception V4 99.1 ± 0.2 99.1 ± 0.1 
IAPP-CNN -based VGG16bn-Net 99.2 ± 0.2 99.3 ± 0.2 
IAPP-CNN -based DenseNet 99.2 ± 0.2 99.3 ± 0.2 
IAPP-CNN -based ResNet 99.2 ± 0.1 99.2 ± 0.2 

Note: We reported the average performance for 5 random initializations. Here, 
IA and IUE represent input-aware module and integrated uncertainty estimates 
module, respectively. 

Fig. 6. ROC curve for the IAPP-CNN and other state-of-the-art methods on train dataset and test dataset respectively.  
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For the first group, previous works were trained on our chromosome 
classification dataset, and reached a similar performance with the fine- 
tuning CNN groups. In fine-tuning CNN groups, the fine-tuning AlexNet 
achieved the lowest accuracy of 96.2% and the lowest F1-score of 
95.8%. Fine-tuning VGG16bn achieved the highest accuracy of 98.2% 
and the highest F1-score of 97.9%. All methods based on fine-tuning on 
well-known CNNs for chromosome image classification were limited to 
98% or less in accuracy and F1-score. Therefore, the fully developed 
classification networks are still lacking to meet the need for high accu-
racy and high robustness for chromosome classification tasks. Next, the 
method of adding an input-aware module based on Alexnet significantly 
improved the accuracy and F1-score. Other methods after adding the 
input-aware module based on CNNs were also improved, with the ac-
curacy and F1-score reaching more than 98%. Finally, when the inte-
grated uncertainty estimates module was introduced, the accuracy and 
F1-score reached their highest value. Both the accuracy and F1-score 
of the method based on Inception V4, VGG16bn, DenseNet, and 

ResNet all exceeded 99%. It can be seen that although the method based 
on state-of-the-art CNNs obtained good results relying on its powerful 
feature extraction ability, it still has limitations. 

The introduction of the input-aware module and the integrated un-
certainty estimates module greatly improved the performance of the 
chromosome classification task. Through experimental verification, the 
proposed IAPP-CNN showed high accuracy and robustness and was able 
to meet the preliminary clinical requirements. 

Furthermore, a receiver operating characteristic (ROC) curve and the 
corresponding area under curve (AUC) was employed for performance 
analysis. The ROC curve and AUC are universal evaluation metrics in 
binary classification problems. However, they must be modified in order 
to support multi-classification problems. ROC analysis per class using a 
one-vs-all scheme was used, with higher AUC values denoting better 
performance. In Fig. 6, all ROC curves are plotted and the AUC for the 
state-of-the-art methods and our proposed method were calculated on 
the train and test chromosome dataset. The results show that the pro-
posed IAPP-CNN outperformed the state-of-the-art methods with the 
least false positive predictions and the highest true positive rates. This 
demonstrates that in the case of using the state-of-the-art feature 
extractor, our designed input-aware module and integrated uncertainty 
estimates module could further improve the performance of chromo-
some classification. 

4.4.2. Evaluation results 
To analyze the impact of our method on the classification perfor-

mance of each class of the chromosomes, adopting resnet50 as the 
feature extractor, the fine-tuning resnet50 on the chromosome dataset 
was compared to our proposed IAPP-CNN. The accuracy, recall, and F1- 
score of each category were reported. The F1-score can reflect the 
robustness of the model prediction. As shown in Table 3, for the fine- 
tuning resent50, type 8, type X, and type Y were less than 96%, and 
other types ranged from 96% to 98%. The IAPP-CNN increased type 8, 
type X, and type Y by 3%, and other types also increased by about 2%, 
with most types of chromosomes reaching more than 99%. 

To be able to observe the classification results of each category more 
clearly, we observed the confusion matrix by selected one test result 
randomly. The confusion matrix of fine-tuning resent50 and the confu-
sion matrix of our IAPP-CNN were calculated on the test dataset. The 
tested datasets, included 300 images for each type of 1 ~ 22 chromo-
somes, 200 images of type X chromosome, and 100 images of type Y 
chromosome. In Fig. 7, the row represents the true label and the column 
represents the predicted label. The left image is the confusion matrix of 
the fine-tuning resnet50, the evaluation results of type 4, type 6, type 8 
type 9, and type 16 show that there were more than 10 prediction errors 
in 300 tested images; for type X, there were 10 prediction errors in 200 
tested images and for type Y, there were 7 prediction errors in 100 tested 
images. The right image is the confusion matrix of IAPP-CNN, in which 
the classification results of all chromosome categories remain relatively 
stable. For type 4 there were 7 prediction errors in 300 tested images and 
no prediction errors for the remaining categories or only 1 to 4 incorrect 
predictions. Therefore, from the classification results of each category, 
the proposed IAPP-CNN substantially improved the classification effect 
of each type, lowered the error rate, and proved more robust, in com-
parison to the fine-tuning resent50. 

4.5. Ablation study 

4.5.1. Availability of input-aware module 
To assess the effectiveness of the proposed input-aware module, the 

experimental results were observed by choosing different scales. The 
input-aware module presented in our work can extract global-scale, 
object-scale and part-scale images using an effective and intuitive 
method. In this part, one or multiple scales were selected to observe the 
model performance using two metrics on the test dataset, without 
adding the integrated uncertainty estimates module. 

Table 3 
The precision, recall, and F1-score of each category of the chromosome.  

Class 
(NO.) 

Precision (%) Recall (%) F1-score (%) 

1 97.68 ±
1.23 

99.67 ±
0.33 

97.87 ±
1.13 

99.93 ±
0.27 

97.77 ±
0.59 

99.80 ±
0.30 

2 93.70 ±
1.13 

98.42 ±
1.1 

99.07 ±
0.27 

99.60 ±
0.27 

96.31 ±
0.75 

99.01 ±
0.49 

3 97.61 ±
1.28 

99.20 ±
0.52 

94.87 ±
0.86 

99.60 ±
0.27 

96.21 ±
0.78 

99.40 ±
0.26 

4 96.49 ±
2.15 

99.13 ±
0.53 

96.47 ±
0.20 

98.73 ±
0.60 

96.47 ±
0.99 

98.93 ±
0.43 

5 97.58 ±
1.41 

99.13 ±
0.20 

96.47 ±
1.13 

98.80 ±
0.20 

97.02 ±
1.13 

98.96 ±
0.20 

6 97.26 ±
1.06 

99.33 ±
0.66 

96.60 ±
0.73 

99.27 ±
0.40 

96.92 ±
0.73 

99.30 ±
0.37 

7 98.14 ±
0.72 

99.80 ±
0.20 

98.60 ±
0.60 

99.53 ±
0.53 

98.37 ±
0.46 

99.67 ±
0.33 

8 95.27 ±
1.97 

98.99 ±
0.33 

96.40 ±
1.07 

98.73 ±
0.40 

95.82 ±
0.84 

98.87 ±
0.20 

9 97.29 ±
0.73 

99.00 ±
0.33 

95.87 ±
0.45 

98.67 ±
0.67 

96.58 ±
0.42 

98.83 ±
0.17 

10 97.04 ±
0.75 

99.14 ±
0.52 

98.07 ±
0.60 

99.60 ±
0.40 

97.55 ±
0.44 

99.37 ±
0.36 

11 98.99 ±
0.01 

99.45 ±
0.21 

98.67 ±
0.66 

99.60 ±
0.27 

98.83 ±
0.34 

99.53 ±
0.13 

12 99.13 ±
0.60 

99.67 ±
0.1 

98.53 ±
0.53 

99.27 ±
0.26 

98.83 ±
0.34 

99.46 ±
0.13 

13 97.01 ±
0.60 

98.94 ±
0.59 

97.13 ±
1.47 

99.27 ±
0.40 

97.07 ±
0.92 

99.10 ±
0.43 

14 99.05 ±
0.39 

99.80 ±
0.47 

97.67 ±
0.67 

98.87 ±
0.20 

98.35 ±
0.37 

99.33 ±
0.17 

15 97.48 ±
0.84 

99.40 ±
0.27 

97.80 ±
0.20 

99.13 ±
0.53 

97.64 ±
0.51 

99.26 ±
0.27 

16 98.98 ±
0.54 

99.40 ±
0.39 

96.47 ±
0.87 

99.53 ±
0.53 

97.70 ±
0.61 

99.47 ±
0.37 

17 97.89 ±
1.11 

99.47 ±
0.53 

98.80 ±
0.53 

99.67 ±
0.01 

98.34 ±
0.66 

99.57 ±
0.26 

18 99.33 ±
0.81 

99.53 ±
0.47 

98.13 ±
1.47 

99.27 ±
0.27 

98.72 ±
0.61 

99.40 ±
0.27 

19 98.00 ±
0.72 

99.53 ±
0.20 

98.00 ±
0.33 

98.87 ±
0.20 

98.00 ±
0.66 

99.20 ±
0.13 

20 97.43 ±
0.82 

98.81 ±
0.52 

98.53 ±
0.87 

99.40 ±
0.27 

97.98 ±
0.63 

99.10 ±
0.23 

21 99.26 ±
0.53 

99.60 ±
0.36 

98.67 ±
0.99 

99.87 ±
0.20 

98.96 ±
0.64 

99.73 ±
0.23 

22 98.29 ±
0.72 

98.94 ±
0.58 

99.33 ±
0.33 

99.80 ±
0.47 

98.81 ±
0.30 

99.37 ±
0.30 

X 94.58 ±
1.60 

98.31 ±
0.79 

95.70 ±
2.20 

98.40 ±
0.9 

95.13 ±
0.87 

98.35 ±
0.60 

Y 93.64 ±
3.32 

98.99 ±
1.01 

92.60 ±
1.40 

96.80 ±
2.2 

93.08 ±
1.34 

97.87 ±
0.63 

Note: The left of each metric is the result of fine-tuning based on resent50, and 
the right side is the result of IAPP-CNN. We reported the average performance 
for 5 random initializations. 
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To observe the classification ability of the model intuitively, we 
illustrate typical examples of correctly classified chromosomes, as 
shown in Fig. 8. It can be seen that the IAPP-CNN can precisely zoom 
from the global-scale image into an object-scale image and capture the 
discriminable part-scale image automatically. 

As shown in the odd rows of Table 4, an F1-score of 97.3% and an 
accuracy of 97.5% can be achieved, by using global-scale branch only. 
When the object-scale branch or part-scale branch was introduced, ac-
curacy and F1-score increased by about 0.8%. In addition, the results 
show that the model showed the same performance when introducing 

the object-scale or part-scale branch. The combination of all three scales 
produced the optimal result. Compared with the works which only used 
the global-scale and part-scale, our designed input-aware module dis-
played a better performance. 

4.5.2. Availability of integrated uncertainty estimates module 
The integrated uncertainty estimates module employed a dynamic 

probabilistic parameter λ to assign a confidence score to the prediction 
result, making the chromosome type prediction more robust. In the 
above part, the performance of the input-aware module was analyzed. 
To assess the performance of the integrated uncertainty estimates 
module, the input-aware module was fixed to make a comparative 
experiment about probabilistic parameter λ. In Table 4, the even rows 
provide the results of comparative experiments. According to Formula 
(15), when the global-scale branch is only used, the use of probabilistic 
parameter λ presented no effect on the prediction results. When using 
two scales, whether it was the combination of global-scale and object- 
scale or part-scale, the accuracy improved by 0.5% and the F1-score 
improved by 0.6% with the addition of the probabilistic parameter. 
When three scales are introduced, using the probabilistic parameter 
made the prediction accuracy reach 99.2% and the F1-score reach 
99.1%. Experiments proved that the introduction of the integrated un-
certainty estimates module allowed the model to reach optimal 
performance. 

Fig. 7. Confusion matrix ((a) confusion matrix of the fine-tuning resnet50; (b) confusion matrix of IAPP-CNN).  

Fig. 8. Example of correctly classified samples. Global-scale, object-scale, and part-scale images are displayed to visually assess the IAPP-CNN.  

Table 4 
Evaluation of the input-aware module and integrated uncertainty estimates 
module for average F1-score and accuracy.  

parameters F1-score Accuracy 

Global scale 97.3 ± 0.2 97.5 ± 0.3 
Global scale (+IUE module) 97.3 ± 0.2 97.5 ± 0.3 
Global scale + Object scale 98.2 ± 0.1 98.3 ± 0.2 
Global scale + Object scale + IUE module 98.8 ± 0.1 98.9 ± 0.1 
Global scale + Part scale 98.1 ± 0.2 98.3 ± 0.2 
Global scale + Part scale + IUE module 98.7 ± 0.2 98.8 ± 0.1 
Global scale + Object scale + Part scale 98.4 ± 0.2 98.5 ± 0.1 
Global scale þ Object scale þ Part scale þ IUE 

module 
99.1 ± 
0.1 

99.2 ± 0.2 

Note: We reported the average performance for 5 random initializations. Here, 
IUE represents integrated uncertainty estimates module. 
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4.5.3. Visualization 
In the above part, the proposed IAPP-CNN was quantitatively 

analyzed. The feature embedding representations learned are visualized 
in Fig. 9. By using the t-SNE [46] method, the dimension of the feature 
was reduced to two. Fig. 9(a), (b), and (c) are the t-SNE visualizations of 
the resnet50, resnet50 with the input-aware module and IAPP-CNN, 
respectively. It can be seen that compared with fine-tuning ResNet50, 
IAPP-CNN makes the samples of the same class gather closely and in-
creases the between-class distance. 

5. Conclusions 

To further improve the performance of the chromosome classifica-
tion task, a comprehensive study on automatic chromosome classifica-
tion was performed in this study. First, a novel automated method to 
create a Giemsa staining chromosome classification dataset that effec-
tively reduces manual participation was proposed. Then, based on this 
dataset, the current state-of-the-art methods were analyzed and an 
efficient IAPP-CNN was proposed, using a different approach for the 
input image and output prediction of the CNNs. The proposed model 
included an input-aware module, which automatically extracted multi- 
scale images from coarse to fine, and an integrated uncertainty esti-
mates module, which employed a dynamic probabilistic parameter to 
evaluate the reliability of prediction. The two designed modules 
designed are modular and can be applied to other medical image 
recognition scenarios and other tasks. Extensive experiments on the 
chromosome classification dataset demonstrated that our proposed 
IAPP-CNN surpassed the performance of a competitive baseline created 
by state-of-the-art methods. 

In future work, we will attempt to exploit ways to reduce the model 
parameters, while ensuring the accuracy of the classification. 
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