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Abstract
In this paper, we propose a novel absorber that combines a multi-layer film structure with
graphene. The proposed structure is delicately simulated using a commercial finite element
method. We combine an equivalent circuit model with parameter inversion to achieve a new
method of analyzing the physical mechanism of selective absorption. The results show that four
gradually decreasing peaks of ultra-high absorption are formed within 0–1.1 THz, and the
maximum absorptance is near 100%. Numerical simulation and theoretical calculation are in
good agreement. Due to the symmetry of the structure and the locality of surface plasmon
resonance, the proposed structure is insensitive to the incident angle and the polarization state of
incident light. By changing the Fermi level of the graphene, the coordination of the device is
realized. By changing the height of the dielectric material to change the resonance frequency,
the working frequency band is increased from 0–1.1 THz to 0–1.9 THz, and the four absorption
peaks become three, which are used as sensor applications. The sensitivity of the sensors is
50 GHz RIU−1, the coefficient of the determination value (R2) obtained by linear fitting is
0.9989, and the value of the limit of detection is 5.9 × 10−5 RIU. The results show that our
proposed devices have great potential in the practical application of terahertz technology
absorbers and refractive index sensors.

Keywords: metamaterials, graphene-based, multi-band absorption, refractive index sensor,
parameter inversion method

(Some figures may appear in color only in the online journal)

1. Introduction

Surface plasmon polaritons (SPPs) are non-radiative electro-
magnetic (EM) waves that are generated by the interaction

∗
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title of the work, journal citation and DOI.

of incident photons and free electrons on a metal surface’s
and propagate along the interface between the metal and the
medium [1]. They decay exponentially in the vertical dir-
ection of the interface between the metal and the medium
[2, 3]. In 1998, Ebbesen et al [4] found that enhanced light
transmission occurs when incident light passes through the
etched holes or hole arrays. This phenomenon, caused by sur-
face plasmon resonance (SPR), breaks the diffraction limit
and can control sub-wavelength light to propagate on the
surface of the material. Metamaterials are artificially struc-
tured materials that can have negative permittivity and/or
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permeability, which can be achieved through periodic metal-
dielectric arrays or multi-layer film structures [5–9]. By arran-
ging and combining the structural units of metamaterials, an
ultra-thin two-dimensional array is formed, which we call a
metasurface. It can flexiblymanipulate the phase, polarization,
propagation mode, and other characteristics of EM waves.
Therefore, it can realize novel functions that are difficult to
achieve with traditional materials, such as negative refraction
[10], perfect absorption [11], and metalenses [12, 13].

As a new type of two-dimensional metamaterial, graphene
has optical properties similar to metals [14–18]. The SPPs in
graphene interact with the photons of the incident light through
the collective resonance of surface electrons, so that the elec-
tric and magnetic fields of the incident light can be better
localized on the surface of the material, thereby enhancing
the absorption of incident light [19–22]. Therefore, the use of
this interaction between graphene SPPs and optical matter can
produce many applications, including plasma-based graphene
modulators [23–28] and sensors [29–32].

A device designed as an absorber is realized by a peri-
odic metal-dielectric array that uses the strong interaction
between the planar metal element array and the incident light
to enhance the absorption of EM fields [33–36]. When the
incident light is in contact with the surface metal resonant ele-
ment array, these SPP-based metasurface absorbers [37–41]
have a common problem; that is, they have a smaller absorp-
tion spectrum. This greatly limits their application in sensing
and imaging equipment. Besides, the resonance frequency of
these absorbers is closely related to the shape and parameters
of the patterned metal element. Therefore, we can use the two-
dimensional material graphene instead of metal and combine
it with the multi-layer film structure to achieve a multi-spectral
absorber independent of the pattern structure. Graphene-based
multiple resonance excitation will form high-order plasmon
modes, forming multiple channels and dispersion of multiple
plasmon resonances [42–45]. Compared with single-spectrum
absorbers, a graphene-based multi-spectral absorber has better
tunability and can also reduce the interference of the environ-
ment on detection accuracy.

In this article, we propose a novel absorber that has the
characteristics of multi-band absorption and insensitivity to
the incident angle. The absorber is based on a periodic stack
of graphene and two dielectric materials. We use gold as a
ground plane to reflect EM waves. On top of the gold are
five periodic stacks composed of Si and polydimethylsilox-
ane (PDMS). The uppermost PDMS layer is between a mono-
layer of graphene and a patterned graphene layer. We simulate
the proposed structures using the commercial finite element
method (FEM) solver COMSOL Multiphysics. We use an
equivalent circuit model (ECM) and parameter inversion to
analyze the physical mechanism of selective absorption. Four
gradually decreasing absorption peaks within 0–1.1 THz are
obtained, and the maximum absorptance is almost 100%. The
ECM and parameter inversion perfectly explain the reason
for the four absorption peaks. Due to the high symmetry of
the structure and the locality of the SPR, our proposed struc-
tures are insensitive to the incident angle and the polarization
direction. In order to obtain greater sensitivity, the structural

parameters are changed to obtain three gradually decreas-
ing absorption peaks within 0–1.9 THz, in which case the
absorptance of the smallest absorption peak is 90%, and the
sensor sensitivity at this time is 50 GHz RIU−1. Using linear
fitting to estimate the linear approximation of the frequency
shift, we get R2 = 0.9989. The limit of detection (LOD) of the
sensor is 5.9 × 10−5 RIU.

2. Structure and theoretical analysis

A three-dimensional diagram of the proposed structure is
shown in figure 1(a), where the red arrow is the incident TE
wave, and the incident plane is X–Z. The red cuboid, yellow
cuboid, and blue cuboid are gold, Si, and PDMS with thick-
nesses of dAu, dSi, and dPDMS, respectively. The two black
parts represent single-layer graphene and single-layer pat-
terned graphene, respectively. The air thickness of the cover
layer is denoted as dcover. Within the working frequency of
this article, the refractive index of PDMS [46] can be set to
1.4. The relative permittivity of the gold [47] and Si [45] can
be described by the Drude model:

ε(ω) = ε∞ −
εp

ω2 + iωγ
, (1)

where ω∞, εp, and γ are the permittivity at infinite fre-
quency, plasma frequency, and collision frequency repres-
enting loss, respectively. These values for gold and Si are
1, 1.38 × 1016 rad s−1 and 1.23 × 1013 s−1, and 11.7,
4.94 × 1013 rad s−1 and 1.177 × 1013 s−1, respectively. In
addition, ω is the incident light angular frequency. Periodic
boundary conditions in the x and y directions are set and the
unit period is P. The widths of the upper graphene are w1

and w2, respectively. We have the following absorber struc-
ture parameters: P = 100 µm, dAu = 0.5 µm, dSi = 22 µm,
dPDMS = 22 µm, dcover = 5 µm, w1 = 25 µm, and w2 = 10 µm.

The surface current density is utilized to simulate themono-
layer graphene in the COMSOL simulation because of the
smaller thickness of themonolayer graphene.We use the Kubo
formula to describe the surface conductivity of the graphene
layers [48–50]:

σgra = σinter +σintra =
2e2kBT
πℏ2
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where σinter and σintra are expressed as the interband and intra-
band transition contributions, respectively. kB, ℏ, and e rep-
resent the Boltzmann constant, reduced Plank constant, and
electron charge, respectively. ω is the angular frequency of the
incident radiation, Ef is the graphene Fermi energy level set to
0.2 eV, τ is the electron–phonon relaxation time set to 0.1 ps,
and T is the ambient temperature. As we only consider highly
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Figure 1. (a) Three-dimensional diagram of the proposed structure; (b) top view; and (c) side view.

doped graphene, we should take into account that Ef ≫ kBT
and Ef ≫ ℏω. Therefore, the Kubo equation can be simplified
to a Drude-like equation [51, 52]:

σgra =
e2Ef

πℏ2
i

(ω+ i/τ)
. (3)

Then we use a combination of ECM and parameter inver-
sion methods to explain the physical mechanism of the pro-
posed structure, as shown in figure 2. Figure 2(a) is the
ECM of the proposed structure. In the whole structure, the
impedances of gold, Si, and PDMS are denoted as ZAu, ZSi,
and ZPDMS, respectively. The graphene plate and patterned
graphene are represented by RCL circuits, and their imped-
ance is Zg1 and Zg2, respectively. Because the uppermost cov-
ering layer is air at this time, its impedance is neglected.
Figure 2(b) is a simplified model of the equivalent circuit.
Because S21 = 0 in this structure, it can be considered that
ZAu is short-line. At the same time, for the convenience of
formula expression, we set the equivalent impedance of the
multi-layer material between the graphene plate and Au as
Zequ.

At this point we can get the total impedance expression
[43]:

Z1 = jZdsi · tan(βddSi) (4)

Z2 =
Z1 ·Zg1
Z1 +Zg1

(5)

Z3 = ZdPDMS

Z2 + jZdPDMS · tan(βddPDMS)

ZdPDMS + jZ2 · tan(βddPDMS)
(6)

Ztotal =
Z3 ·Zg2
Z3 +Zg2

, (7)

where βd is the propagation constant of the propagating tera-
hertz waves in the dielectric substances, ZdSi = Z0(120π)/εdSi
is the impedance of silicon, and ZdPDMS = Z0/εdPDMS is the
impedance of PDMS, where Z0 is the free space impedance.

Then we let Ztotal be the normalized impedance of the pro-
posed structure, and the absorber is considered to be a uni-
form layer with material parameters µ1 and ε1, as shown in
figure 2(c). The upper and lower layers are air with mater-
ial parameters µ0 and ε0. According to the EM field intensity
expression [51] in the conductive medium and the boundary
conditions of the EM wave on the discontinuous interface, the
scattering parameters can be obtained [52]:

S11 =
Γ1(1− (e−jk2d)

2
)

1− (Γ1e−jk2d)
2

S21 =
1−Γ1

2

1− (Γ1e−jk2d)
2 e

−jk2d

, (8)

where k2 = nk0 is the wave number of the equivalent medium
in figures 2(c) and (d) is the height of the equivalent medium,
Γ1 = (Ztotal − 1)/(Ztotal + 1) are the reflection coefficients
between medium 1 and medium 2, and S21 = 0. According
to the selection of the sign [53, 54]. As a result, we can derive:
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Figure 2. (a) ECM of the proposed structure. (b) Simplified circuit model. (c) Equivalent impedance model.

Figure 3. Normalized impedance obtained by an inversion
algorithm.

Ztotal =±

√
(1+ S11)

2 − S21
2

(1− S11)
2 − S21

2
=

1+ S11
1− S11

. (9)

For an absorber, the closer its equivalent impedance to
the free space impedance (the real part is close to one
and the imaginary part is close to zero), the higher its
absorptance. In figure 3, the four vertical dashed lines indic-
ate the four resonance frequency positions. The normalized
impedance obtained at the resonance frequency of 0.139 THz,
0.415 THz, 0.685 THz, and 0.931 THz are 1.0228+ 0.0019 j,
1.0812+ 0.0128 j, 1.1152− 0.1714 j, and 1.1156− 0.3587 j,

respectively. Therefore, it can be said that, at these four res-
onance frequencies, the normalized impedance of the struc-
ture is close enough to the impedance of free space, so four
resonance absorption peaks appear. And as the resonance fre-
quency increases, the difference between the four equival-
ent impedance values and the normalized impedance gradu-
ally becomes larger, so the absorptance of the four absorption
peaks gradually decreases. This information is useful when
optimizing the internal structure of the absorber as well as its
composition with the purpose of minimizing reflectance and
transmittance.

Figure 4 shows the absorption spectrum and reflection spec-
trum of the proposed structure. There are four absorption
peaks in the working frequency of this absorber. The reson-
ance frequencies are 0.139 THz, 0.415 THz, 0.685 THz, and
0.931 THz. As the frequency increases, the absorptance of the
four absorption peaks gradually decreases. The first two can
be considered as perfect absorption, and the absorptance of the
lowest one is 95.3%. This result is also in perfect fit with the
equivalent impedance we obtained earlier; that is, the closer
the imaginary part of the equivalent impedance is to zero and
the closer the real part is to one, the greater the absorptance.

3. Simulation results and discussion

An electric field diagram of the proposed structure at the res-
onance frequency is shown in figure 5. All electric field values
are between 1 × 105 and 5 × 105 V m−1. From left to right,
figure 5 shows the electric fields distribution at 0.139 THz,
0.415 THz, 0.685 THz, and 0.931 THz, where (a)–(d) are the
top views of the electric fields, and (e)–(h) are the side views
of the electric fields. It can be seen that, at 0.139 THz, the
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Figure 4. Absorption and reflection spectra of the proposed structure.

Figure 5. Electric field diagram of the proposed structure at the resonance frequency, where (a)–(d) are top views and (e)–(h) are side views.

electric field is mainly located at the edge of the patterned
graphene. This is because the interaction between the pat-
terned graphene and the incident light excites the SPR of the
graphene, so a part of the electric field is localized on the edge
of the patterned graphene, thereby enhancing the absorption.
At the multi-layer film, the electric field gradually decreases as
the incident depth increases. As the frequency increases, the
local electric field of the patterned graphene layer gradually

diffuses around, and the local electric field gradually enters
the multi-layer film. Not only that, the multi-layer film gradu-
ally shows the change between the high and low electric field
values (figures 5(f)–(h)).

Then we change the parameters of the structure to modulate
the absorptance of the absorber. As shown in figure 6(a), we
change the period, P, of the structure, and we can see that the
change in the structure period has little effect on the overall
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Figure 6. (a)–(d) Absorption spectra analysis with varying P, m, dsi, and dPDMS, respectively. Other parameters are set as default. m is the
overall magnification of the graphene parameters of the patterned graphene layer.

absorptance. Next, we magnify the overall parameters of the
patterned graphene by m times. As shown in figure 6(b), we
can see that the change of m has little effect on the absorp-
tion peak of the absorber. This shows that our structure does
not have great requirements for the accuracy of the unit period
and for the parameters of patterned graphene during the man-
ufacturing process. Figure 6(c) shows the effect of silicon
layer thickness changes on the structure absorptance (note:
the thickness of each layer of silicon is the same and changes
simultaneously). It can be seen that, with the increase of dSi,
the resonance frequency moves toward the low frequency dir-
ection, and the absorptance gradually increases. Figure 6(d)
shows the influence of the thickness of the PDMS layer on
the absorptance (note: the thickness of each layer of PDMS is
the same and changes simultaneously). With the increase of
dPDMS, the resonance frequency moves in the low frequency
direction, and the absorptance of each absorption peak remains
basically unchanged.

From the above analysis, we can see that the two most
important parameters that affect the absorption peak and
absorptance of the proposed structure are dSi and dPDMS. P
and m have little effect on the structure. Hence, we discuss
the influences of the graphene plate and patterned graphene on
the entire structure. In figure 7, the black curve is the absorp-
tion spectrum of the structure without the graphene layer. It
can be seen that, although there are four absorption peaks

Figure 7. The influence of graphene structure on absorptance. The
black curve is the structure without graphene, the red curve is the
structure with only patterned graphene, and the blue curve is both
patterned graphene and the graphene plate.

when there is no graphene layer, the absorptance is extremely
small, which is basically close to zero. When there is only an
upper layer of patterned graphene, as shown in the red curve,
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Figure 8. Comparison of electric field distribution diagrams at the resonance frequency, where (a)–(d) are only the upper layer of graphene
and (e)–(h) are the original structure.

the four absorption peaks are increased, but only by about
30%. When the graphene plate is added, the smallest absorp-
tion peak among the four absorption peaks is above 95%, as
shown by the blue curve. Therefore, the patterned graphene
and the lower graphene mainly play a role in improving the
absorptance of the overall structure.

Figures 5(a)–(d) show that the enhancement of the struc-
ture absorptance of the upper graphene is mainly reflected in
the formation of local SPR. In order to study why the lower
graphene enhances the structure’s absorptance, we compared
the side view of the electric field with and without the lower
graphene, as shown in figure 8. Taking figures 8(d) and (h)
as an example, it can be seen that, at the same frequency,
the structure with the lower graphene can better localize the
electric field between the lower graphene and the underlying
metal. This is because the lower graphene, the multi-layer film
structure, and the underlying gold form a symmetrical Fabry–
Pérot cavity. The multiple reflections of incident light in the
formed cavity enhance the absorption of incident light by the
structure.

Figure 9 shows the absorption spectrum of the absorber
when the Fermi level of graphene is changed. We can see
that, for Ef = 0.1 eV, the four absorption peaks gradually
decrease, and the absorptance of the largest absortion peak
is less than 90%. As Ef increases to 0.2 eV, the first two
absorption peaks reach perfect absorption at this time, the
absorption peaks still maintain a gradual downward trend, and
the minimum absorptance is greater than 95%. As Ef con-
tinues to increase, the changing trend is reversed, and the
absorption peak becomes larger with the increase of the res-
onance frequency. At this time, the resonance frequency of
the perfect absorption peak will move towards being higher.
Therefore, we can select the resonance frequency for per-
fect absorption by changing the Fermi level of graphene.

Figure 9. Absorptance as a function of the incident frequency and
Fermi level.

In this article, we choose Ef = 0.2 eV to describe our
device.

Next we explore the influences of the polarization angle and
incident angle of the incident light on the absorption of the
structure, as shown in figure 10. It is clear from figure 10(a)
that the proposed structure is not sensitive to the polariza-
tion direction of the incident wave. This is due to the high
symmetry of the proposed structure and the locality of the
SPR. It can be seen from figure 10(b) that the proposed
structure is not sensitive to the incident angle of the incid-
ent wave ranging from 0◦ to 60◦. After exceeding 60◦, the
surface plasmon of graphene cannot be sufficiently coupled
with incident photons to form SPR, resulting in a decrease in
absorption.

In order to simulate the sensing application, we apply a
dielectric layer on the patterned graphene. Figure 11 shows

7
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Figure 10. (a) Absorptance as a function of the incident frequency and the polarization angle. (b) Absorptance as a function of the incident
frequency and the incidence angle.

Figure 11. The absorption spectrum when the dielectric refractive index of the test object is changed. Among the changes,
dSi = dPDMS = 9.5 µm, but other structural parameters remain unchanged.

the absorption characteristics of the dielectric layer with dif-
ferent refractive indices. In order to achieve high sensor sens-
itivity, we reduce dSi and dPDMS. At this time, dSi = 9.5 µm,
dPDMS = 9.5 µm, and other structural parameters remain
unchanged. We can see that, as the refractive index increases,
the resonant frequency shifts in the high-frequency direc-
tion, thereby providing usable sensitivity. In this structure,
we choose the operating frequency of the thirrd absorp-
tion peak as the operating frequency of the refractive index
sensor.

We can calculate the sensitivity, S, of the proposed struc-
ture through the calculation formula S = ∆f /∆n, where ∆f
and ∆n represent the frequency shift and the change of the
refractive index, respectively. In figure 12, the black solid
line represents the relationship between the frequency shift
and the refractive index obtained by the simulation calcu-
lation. The red solid line represents the sensitivity calcu-
lated by the above formula. The blue dashed line represents
the relationship between the frequency shift and refract-
ive index change obtained by linear fitting. From this, we
can see that the relationship obtained by linear fitting is
y = 0.05x + 1.54, R2 = 0.9989. The obtained value of R2

indicates that that the sensor has a good linearity and a good
degree of fit. Therefore, the final sensitivity of the refractive
index sensor is 50 GHz RIU−1. Then we can calculate the
sensor’s LOD according to the regression equation [55, 56]
LOD = 3α/S, where α is the output uncertainty. The LOD

Figure 12. Frequency shift and sensitivity as a function of the
refractive index.

is the lowest level detected with a fidelity of 99%. By consid-
ering the output uncertainty of 1%, the LOD of the sensor is
5.9 × 10−5 RIU. Table 1 shows the comparison between the
structure proposed here and the previously reported device.
It can be clearly seen that the absorber proposed here has
a more impressive sensitivity and number of absorption
peaks.
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Table 1. Comparison of the proposed multi-band device with previously reported devices.

References Operating
Number of
absorption peaks Sensitivity

[45] 0.1–2.25 THz Five 41.9 GHz RIU−1 (fitting)
[57] 1.2–2.0 GHz Two 77.25 nm RIU−1

[58] 0.1–100 THz Two 1200 nm RIU−1

[59] 0.49–0.51 THz One 23.08 GHz RIU−1

[60] 1.8–2.1 THz One 37.88 GHz RIU−1 (polar liquids)
Proposed 0.1–1.9 THz Three 50 GHz RIU−1 (fitting) (∼5753 nm RIU−1)

4. Conclusions

In summary, we have investigated graphene-based Si/PDMS
multi-layer film structures. Four gradually decreasing absorp-
tion peaks were obtained in the range of 0–1.1 THz, with a
maximum peak value near 100% and a minimum peak value
exceeding 95%. A combination of an ECM and parameter
inversion was used to explain the four absorption peaks. Due
to the symmetry of the structural design and the locality of the
graphene SPR, the absorbers were not sensitive to the polariz-
ation state and incident angle of the incident light. In addition,
the resonance frequencies of the absorbers were not sensitive
to the cell period and the parameter changes of the patterned
graphene, which greatly increases the allowable manufactur-
ing error. The resonance frequencies of the absorbers mainly
depend on the height of the absorbers. Therefore, changing the
thickness of Si and PDMS in the structures can form a three-
band absorption refractive index sensor with a sensitivity of
50 GHz RIU−1 within 0–1.9 THz. The value of R2 obtained
by linear fitting was 0.9989, and the value of the LOD was
5.9 × 10−5 RIU. Due to the above characteristics, the pro-
posed devices have inestimable potential in practical applic-
ations in absorbers and refractive index sensors for terahertz
technology.
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