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Abstract: Parameters mismatching between the real optical system and phase retrieval model
undermines wavefront reconstruction accuracy. The three-dimensional intensity position is
corrected in phase retrieval, which is traditionally separated from lateral position correction
and axial position correction. In this paper, we propose a three-dimensional intensity position
correction method for phase diverse phase retrieval with the cross-iteration nonlinear optimization
strategy. The intensity position is optimized via the coarse optimization method at first, then
the intensity position is cross-optimized in the iterative wavefront reconstruction process with
the exact optimization method. The analytic gradients about the three-dimensional intensity
position are derived. The cross-iteration optimization strategy avoids the interference between
the incomplete position correction and wavefront reconstruction during the iterative process. The
accuracy and robustness of the proposed method are verified both numerically and experimentally.
The proposed method achieves robust and accurate intensity position correction and wavefront
reconstruction, which is available for wavefront measurement and phase imaging.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Coherent diffraction imaging (CDI), which directly retrieves the phase information from diffractive
intensities by using a simple experimental arrangement, is an attractive wavefront sensing and
imaging method. The CDI technique has been applied for super-resolution [1–4], wavefront
sensing [5–9], phase imaging [10–13], optical encryption [14–17], etc. The iterative phase
retrieval (PR) method [18], as an implementation of the CDI, has good accuracy and robustness
for complex field reconstruction. The PR method estimates the desired wavefront via iteratively
propagation calculation between the desired plane and the collected intensity planes based on a
pair of Fourier transform operations. According to the number of the collected intensities, the
PR method can be classified as the single-image PR method and the multiple-image PR method
[19]. Compared with the single-image PR method, the multiple-image PR method, called phase
diverse phase retrieval (PDPR), accelerates the convergence of the iterative algorithm and has
higher robustness by using several intensity images [20]. The PDPR method is an effective
quantitative optical method in the context of its high accuracy and good robustness, which is
suitable for image reconstruction [21,22] and wavefront sensing [23–27].

The accurate model matching between the phase retrieval model and the real optical experiment
system is the imperative procedure for the iterative phase retrieval method. The three-dimensional
intensity position is the main systematic error, which would degrade the quality of the wavefront
reconstruction. In the previous literature, the three-dimensional position error which is classified
by lateral position error and axial position error is corrected, respectively. On the one hand,
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for the lateral position error correction, the researcher proposed cross-correlation calibration
methods to estimate the oblique angle of incident light and correct lateral position errors, which
are induced by tilt illumination [28,29]. In addition, for wavefront sensing, the small lateral
positions can be corrected via estimating Zernike coefficients, which is suitable for single-image
phase retrieval or sub-aperture stitching phase retrieval algorithm [30]. On the other hand, axial
uncertainty for the position of the intensity including the absolute distance error for all intensities
offset and the relative distance error among the measured planes. The small absolute distance
error resulting in a small focus term is easily removed, while the relative distance errors would
damage the accuracy of wavefront reconstruction [19]. Searching for the optimal axial position of
the measured plane is an autofocusing procedure. The imaging produced by a specially fabricated
phase plate [31] and a double pinhole interference pattern is applied for autofocusing [30].

However, the three-dimensional intensity position error should be simultaneously corrected,
since only correcting the axial error or lateral error would not achieve the accurate intensity
position matching between the numerical model and the experimental model. Besides, the
position correction is carried out according to the estimated value, traditionally. Considering
that the initial estimated value of the desired plane is very different from the ground truth, so the
estimated intensity position is not very precise according to the initial value of desired plane.
The accurate three-dimensional intensity position correction phase retrieval method is essential
to achieve accurate wavefront reconstruction.

In this paper, we develop a novel method to achieve stable three-dimensional intensity position
correction and wavefront reconstruction based on the cross-iteration nonlinear optimization
strategy. By optimizing common error metrics, correcting intensity position error and retrieving
complex field are cross-iteratively implemented, which would alleviate accuracy loss induced
by the interference between the incomplete position correction and wavefront reconstruction.
The analytic gradients for the intensity position in different directions are also derived. In
addition, the characteristic of reconstruction error produced by intensity position error is analyzed.
Furthermore, the proposed method can be applied to correct intensity position error for the
single-image phase retrieval or sub-aperture stitching phase retrieval models.

The remainder of this paper is organized as follows. Section 2 introduces the PDPR model
and the intensity position errors problem. Section 3 specifically describes the cross-iteration
nonlinear optimization method for position correction and wavefront reconstruction. Section
4 verifies the accuracy and stability of the proposed method through numerical simulations.
Section 5 presents some verified experiments. Section 6 discusses and concludes the paper.

2. Intensity position errors problem for the PDPR model

Our goal is to recover the complex field of the sample and optimize the three-dimensional intensity
position for a stack of intensity images. We first introduce the phase diverse phase retrieval
model, which mathematically describes the forward physical process and establishes the error
metric. Next, we analyze the three-dimensional intensity position error problem. Considering
that the previous researchers solve this problem divided into lateral position correction and axial
position correction, the intensity position errors are also analyzed from these two aspects.

2.1. Optical model and metric error for the phase diverse phase retrieval

The PDPR model is shown in Fig. 1(a), the wavefront crossing the desired plane to the measured
plane can be calculated with

Gj(u, v) = F {Z[gs(x, y)ϕ(x, y, zj)]}, (1)

where Gj(u, v) is the field on the jth measured plane, (u, v) are the coordinates of the measured
plane, gs(x, y) is the desired field, (x, y) are the coordinates of the desired plane, i2 = −1, F []
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denotes the Fourier transform, Z represents zero-padding to match the real optical system,
ϕ(x, y, zj) is the phase diversity for the defocus length zj

ϕ(x, y, zj) =
2π
λ

zj

2f 2 (x
2 + y2) (2)

The intensity on the jth measured plane is

Ij
cal(u, v) = Gj(u, v)G∗

j (u, v), (3)

where the superscript * denotes the complex conjugate operator.

Fig. 1. (a) Experimental configuration for the phase diverse phase retrieval model. The
collimated beam illuminates the sample and aperture stop. The lens is used to converge
the beam. The charge-coupled device (CCD) collects diffractive intensities at different
positions along with the nominal optical axis. z1 ∼ z3 are the measured planes. (b) The
three-dimensional position correction directions for the measured intensity. The x and y axis
are the lateral directions, and the z axis denotes the axial direction.

The error metric of this desired plane reconstruction model is defined as

E2
j =

∑︂
µ,ν

Wj(u, v)
[︃√︂ˆ︁Ij

cal(u, v) −
√︂ˆ︁Ij

mea(u, v)
]︃2

, (4)

whereˆ︁Ij
mea andˆ︁Ij

cal are the normalized intensity of Imea and Ical, respectively, Imea is the measured
intensity, Wj(u, v) is a weighting function that is used to discard the effect of bad or saturated
detector pixels and the pixels with the poor signal-to-noise ratio. The concrete form of the
weighting function would be discussed in another paper in the future. The intensity position error
correction and wavefront reconstruction are both accomplished by optimizing this common error
metric.

2.2. Feature of the lateral position error problem

The influence of the lateral position error of intensity is analyzed. The intensity of image
acquisitions along axis usually is not ideal during the real experimental operation process, as
shown in Fig. 2(a). Off-axis moving CCD leads to a shift of diffraction pattern for amplitude
and adds an extra distance-based matrix modulation for phase, as shown in Fig. 2(b). In fact,
the CCD merely receives the intensity data and the corresponding phase is lost. Thus, the only
impact of CCD off-axis moving lies on the lateral shift of diffraction pattern [29]. The position
coordinates of the measured intensity pattern can be expressed as⎧⎪⎪⎨⎪⎪⎩

uj = u0 + ∆u0 + δuj,

vj = v0 + ∆v0 + δvj,
(5)

where (u0, v0) are the corrected coordinates, (∆u0,∆v0) are fixed offset between the CCD and the
optical axis, and (δuj, δvj) are tilt offset of CCD moving along the optical axis. In the PDPR
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model, the tilt offset could be corrected via optimizing tip and tilt terms when there are only small
shifts of the detector, while the fixed offset for all intensities cannot be corrected via optimizing
them. For convenience, in this paper, the fixed offset and tilt offset are collectively called lateral
errors. If the measured intensity has a relative lateral error with ideal intensity, there is the
departure error relative to the true intensity. The departure error has a ripple-like structure,
as shown in Fig. 3(c). The departure error would directly be reflected on the reconstruction
wavefront. There is a peak in the high-frequency domain of the power spectral density (PSD)
curve, as shown in Figs. 4(c) and 4(f). This phenomenon indicates that the transverse error of the
intensity would impair the wavefront reconstruction in the high-frequency domain. It is vital
for correcting the lateral position error to achieve high-resolution and high-accuracy wavefront
reconstruction.

Fig. 2. The model of CCD off-axis moving. (a) The schematic of diffractive intensities
collected via off-axis moving CCD; (b) The oblique modality in the case of CCD.

Fig. 3. Schematic diagram of lateral position error for intensity. (a) The intensity with 4.4
µm lateral shift error; (b) The intensity without lateral shift error; (c) The difference value
between intensities (a) and (b). All intensities are normalized.

2.3. Feature of the axial position error problem

Another concern of the intensity position with PDPR is to determine the axial position, as
shown in Fig. 5. The axial position error can be classified as the absolute position error for all
measurement planes, which is shown in Fig. 5(b), and the relative position error among the
measurement planes, which is shown in Fig. 5(c). For every measured plane, the defocus length
zj can be expressed as

zj = z0 + ∆z0 + δzj (6)

where z0 is the corrected defocus length, ∆z0 is absolute defocus error for all measured planes,
and δzj is the relative error among the different planes. The influence of the absolute defocus
error for the PDPR is similar for the single-image phase retrieval model, the small absolute
displacement of the planes can be compensated by a simple focus term, as shown in Fig. 5(b).
The relative position error among the measurement planes would undermine the accuracy of the
wavefront, as shown in Fig. 5(c). If the measured intensity has a relative axial error with ideal
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Fig. 4. The influence of CCD off-axis moving for PDPR. (a) The retrieved phase; (b)
The ground truth (actual object) for phase; (c) The PSD curve of phase; (d) The retrieved
amplitude; (e) The ground truth (actual object) for amplitude; (f) The PSD curve of amplitude.
The complex field is retrieved from three different position intensities. The diameter of
desired plane is 70 mm. In the (c) and (f), the blue curve denotes the PSD curve of ground
truth, and the red curve denotes the PSD curve of the retrieved result.

intensity, there is the residual ripple-like error, as shown in Fig. 6(c). This would directly be
reflected on the reconstructed wavefront, which has ripple-like error as shown in Figs. 7(a) and
7(d). And there is a peak in the high-frequency domain of the PSD curve, as shown in Figs. 7(c)
and 7(f).

Fig. 5. The model of axial position error and the retrieved results for different
conditions. z1, z2 and z3 are the defocus length for three measurement planes. The
focus term is removed for all retrieved results. (a) The retrieved result without axial position
errors; (b) The retrieved result only with the fixed axial position error ∆z0; (c) The retrieved
result with random axial position errors including the fixed axial position error ∆z0 and the
relative axial position error δzj.
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Fig. 6. Schematic diagram of axial position error for intensity. (a) The intensity collected
in the plane with 0.64mm axial error; (b) The intensity without axial shift error; (c) The
difference value between intensities (a) and (b).

Fig. 7. The influence of axial error for PDPR. (a) The retrieved phase; (b) The ground truth
(actual object) for phase; (c) The PSD curve of phase; (d) The retrieved amplitude; (e) The
ground truth (actual object) for amplitude; (f) The PSD curve of amplitude.

3. Method

In this Section, the cross-iteration intensity position correction phase retrieval algorithm is
developed. For the gradient calculation of the error metric, Fienup et al. [30,32] proposed a
simple gradient analytic expression based on the Fourier transform. Here, we further extend the
analytic gradient calculation for intensity position optimization. Different from the traditionally
lateral position correction and axial position correction, respectively, the cross-iteration three-
dimensional intensity position correction method for phase diverse phase retrieval algorithm is
established: firstly, the position of every intensity is coarsely optimized according to the initial
value; then the position of every intensity is exactly optimized according to the new estimated
value in the iterative process.

3.1. Intensity position and wavefront reconstruction analytic gradient calculation

In the PDPR model, following the derivation in Ref. [30], the gradient of the error metric with
respect to a real-valued parameter α can be written as

∂Ej

∂α
=
∑︂
x,y

gj
′(x, y)

∂

∂α
[gj(x, y)] + c.c. (7)
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where gj(x, y) is the estimated complex field, gj
′(x, y), which is the inverse propagated from the

jth measured plane, is given by

gj
′(x, y) = Z{F −1[Gw

j (u, v)] · ϕ(x, y,−zj)}, (8)

where F −1
j [] denotes the inverse Fourier transform, Z̄ represents remain the effective value inside

desired plane, and

Gw
j (u, v) = Wj(u, v)[|Fj(u, v)| − |Gj(u, v)|]

Gj(u, v)
|Gj(u, v)|

, (9)

where |Fj(u,v)| =
√︂

Îj
mea.

According to Eq. (7), the pixel-by-pixel gradient values for the desired field (including phase
and amplitude) by using the jth collected intensity can be calculated by⎧⎪⎪⎨⎪⎪⎩

∂Ej
∂θ = 2Im[gj(x, y)g′∗

j (x, y)],
∂Ej
∂a = −2Re[gj(x, y)g′∗

j (x, y)],
(10)

where ∂Ej/∂θ and ∂Ej/∂a represent the gradients about the jth error metric for phase and
amplitude, respectively.

Then we derive the gradient with respect to the effective intensity position (uj, vj). According
to the Fourier optics theory, the tilt part of the phase would induce the shifting of the center of
the sample’s spectrum in the Fourier domain

F {Z[g(x, y) exp(i2π(ujTx + vjTy))ϕ(x, y, zj)]} = G(u − uj, v − vj), (11)

where Tx and Ty denote tilt matrix in x and y directions, respectively. Similar to the gradient
calculation of coefficients for polynomial basis functions, according to Eq. (7), the gradients
about shifts of intensity pattern are calculated with⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂Ej
∂uj
= 4πIm

[︃∑︁
x,y

gj(x, y)Tx(x, y)g′
j
∗(x, y)

]︃
,

∂Ej
∂vj
= 4πIm

[︃∑︁
x,y

gj(x, y)Ty(x, y)g′
j
∗(x, y)

]︃
.

(12)

Finally, the gradient about defocus length is calculated. Equation (1) is rewritten as

Gj(u, v) = F

[︃
2π
λ

zj

2f 2 (x
2 + y2)g(x, y)

]︃
. (13)

According to Eq. (7), the analytic gradient expression about the defocus length zj is calculated
by

∂Ej

∂zj
=

2π
λf 2 Im

[︄∑︂
x,y

gj(x, y)(x2 + y2)gw∗
j (x, y)

]︄
. (14)

3.2. Cross-iteration nonlinear position optimization phase retrieval method

The specific procedure of the gradient calculation about wavefront reconstruction and intensity
position optimization is described in Section 3.1. Next, the cross-iteration nonlinear position
optimization phase retrieval algorithm framework is described, as shown in Fig. 8. In the proposed
algorithm framework, the position error of intensity is corrected via two different optimization
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strategies. Due to the imperfect wavefront of the desired plane, the first optimization could not
find the global optimizing position and would suspend near the optimal position. The first step
position optimization achieves roughly find the position of the diffractive intensity by using
Algorithm 1. It is worth noting that each iteration only advances one pixel to avoid crossing
the global optimal position for lateral position correction during the first position optimization
process. Then the wavefront is reconstructed. When the number of iterations reaches a certain
threshold, the position of the intensity pattern is corrected by using Algorithm 2. For second
position correction, the gradient value of each iteration is superimposed with weight, then the
lateral position of the intensity pattern is optimized according to the geometric relationship
between desired plane and measurement surface. The axial position error is corrected at the
same time. The proposed algorithm corrects the position of each intensity pattern separately and
successively, which is independent of the intensity patterns of other positions.

Fig. 8. Flow chart of the proposed algorithm.

The detailed algorithm has the following procedures:

(1) The iterative number K, the maximum position correction iteration number Np, the iterative
threshold value M, the number of patterns J, the step length for amplitude hamp, phase
hphase, lateral position hc and axial position are set, k = 0. And the reconstruction is started
with a random normalization matrix g0(x, y);

(2) For every intensity pattern, the intensity position is optimized by using Algorithm 1;
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(3) Corresponding gradient functions including ∂Ej/∂ak for the amplitude and ∂Ej/∂θk for
the phase are calculated based on Section 2.2, and the desired field is estimated with⎧⎪⎪⎨⎪⎪⎩

θk(x, y) = θk−1(x, y) + hphase
∂Ej
∂θk

,

|gk | = |gk−1 | + hamp
∂Ej
∂ak

,
(15)

where ∂Ej/∂θk = ∂Ek\J/∂θk and ∂Ej/∂ak = ∂Ek\J/∂ak, and the desired wavefront is
calculated by using

gk = |gk | exp[iθk(x, y)]; (16)

(4) k = k + 1, if rem (k, M) = 1, the intensity position is optimized by using Algorithm 2;

(5) The procedures (3) and (4) are iteratively repeated until the k ≥ K is satisfied.

Algorithm 1: coarse position error correction algorithm

(1) The center point of the diffraction image is chosen as the initial center position of iterative
optimization;

(2) The gradients ∂Ej/∂uj, ∂Ej/∂vj and ∂Ej/∂zj are calculated by using the initial desired
field;

(3) The position of the used intensity pattern is updated via⎧⎪⎪⎨⎪⎪⎩
uj = uj − hu

∂Ej
∂uj

,

vj = vj − hv
∂Ej
∂vj

,
(17)

with hu = du/|∂Ej/∂uj |, hv = dv/|∂Ej/∂vj |, du × dv is the pixel size of CCD;

(4) The defocus length is updated by using

zj = zj + hz
∂Ej

∂zj
; (18)

(5) n = n + 1, if n<Np, return to (2), otherwise, the cut diffraction image and defocus length
are used for iterative wavefront reconstruction calculation.

Algorithm 2: exact position error correction algorithm

(1) The estimated wavefront is filtered by a low-pass filter as g0 and setting coefficients
c0

u,j = 0 and c0
v,j = 0, and step length hc; The low-pass filtering is used to remove the

mid-spatial frequency error induced by the intensity position error;

(2) Calculate the gradients ∂Ej/∂uj, ∂Ej/∂vj and ∂Ej/∂zj;

(3) Update coefficients with ⎧⎪⎪⎨⎪⎪⎩
cn+1

u,j = cn
u,j + hc

∂Ej
∂uj

,

cn+1
v,j = cn

v,j + hc
∂Ej
∂vj

;
(19)

(4) Update the wavefront with

gm+1 = |g0 | exp{j[arg(g0) + cn+1
u,j Tx + cn+1

v,j Ty]}; (20)
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(5) Update the defocus length

zj = zj + hz
∂Ej

∂zj
; (21)

(6) n = n + 1, if n<Np, return to (2), otherwise, update the center point position⎧⎪⎪⎨⎪⎪⎩
uj = uj −

λ(f−zj)

πDdu
cu,j,

vj = vj −
λ(f−zj)

πDdu
cv,j,

(22)

where D is the diameter of the desired plane;

(7) The new diffraction image is cut to be used for iterative calculation as the output result.
The optimized defocus length zj is also output.

4. Simulations

In Section 3, the cross-iteration nonlinear optimization phase retrieval method for position
correction and wavefront reconstruction is proposed. Here, the synthetic intensities with three-
dimensional position errors are applied to verify the effectiveness of the proposed algorithm.
The wavefront sensing and image reconstruction using intensities with position errors are
simulated. The lateral position error and axial position error are jointly optimized for wavefront
sensing and image reconstruction. Then, the robustness of the proposed algorithm is tested
with Monte Carlo simulation. Considering that the tilt offset and the absolute defocus errors
would affect the expression value of intensity position rather than affecting the accuracy of
wavefront reconstruction, the output three-dimensional position values of proposed algorithm
cannot actually indicate the effect of proposed algorithm. Here, the root mean square error
(RMSE) of the reconstructed wavefront is applied to quantitively evaluate the quality of position
correction. When the accuracy of the reconstructed wavefront with intensity position errors
is well in agreement with the reconstructed results without position error, it is proved that the
proposed method is effective.

For all numerical experiments the working wavelength is chosen as 632.8nm and the focal
length is 1079.41mm. The physical side length of square test images is fixed at 70 mm. The truth
defocus distance is taken as 5mm, 7.5mm, 10mm sequentially, the pixel size of the intensity grid
is 4.4× 4.4µm. In this simulation, the threshold of whether running an error correction algorithm
M is set as 200. In order to verify the robustness of the proposed algorithm, the signal-to-noise
ratio is 30dB for every intensity pattern.

4.1. Position errors correction for wavefront sensing

Firstly, the ability of the proposed algorithm to correct lateral and axial position errors
simultaneously is verified. The random axial error δz ∈ [−1, 1] mm and lateral errors
∆u,∆v ∈ [−10, 10] µm are added into every measurement plane. For every intensity, the
intensity position is optimized by using Algorithm 1, then the position is optimized with
cross-iteration strategy by using Algorithm 2. The retrieved results are shown in Fig. 9. After
correcting the position errors (including lateral direction and axial direction), the retrieved results
have good accuracy as comparable as the reconstructed results without position error. It is proved
that the proposed method has good accuracy of position errors correction for wavefront sensing.

4.2. Position errors correction for phase imaging

The PDPR algorithm is popularly applied in wavefront sensing, while it has little been applied
to reconstruct the complex image (including phase and amplitude). Here, the feasibility of
the proposed algorithm for image reconstruction and intensity position errors correction is
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Fig. 9. Numerical experiments to verify the accuracy of intensity position correction. (a)
and (e) are the retrieved results without axial position correction; (b) and (f) are the retrieved
results by using the proposed algorithm; (c) and (g) are the retrieved results without axial
position errors; (d) and (h) are the ground truth of phase and amplitude, respectively.

verified. For every intensity pattern, the random axial error δz ∈ [−1, 1] mm and lateral errors
∆u,∆v ∈ [−10, 10] µm are added into every measurement plane. The reconstructed amplitude
and phase match well with the origin amplitude and phase, as shown in Fig. 10, indicating
that the proposed nonlinear optimization phase retrieval method is effective in reconstructing
both the amplitude and phase of an object. When the intensity position error is not corrected,

Fig. 10. Numerical experiments to verify the accuracy of intensity position correction for
phase imaging. (a) and (e) are the retrieved results without position correction; (b) and (f)
are the retrieved results by using the proposed algorithm; (c) and (g) are the retrieved results
without position errors; (d) and (h) are the ground truth of phase and amplitude, respectively.
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the reconstructed phase image is failed. After running the position correction algorithm, the
reconstructed wavefront is in agreement with the truth value. It is proved that the cross-iteration
position correction is accurate for square image reconstruction.

Monte Carlo simulations are further performed to validate the effectiveness of the proposed
method. To prove that the proposed algorithm can correct large position error, for every intensity
pattern, the random axial error δz ∈ [−1, 1] mm and lateral errors ∆u,∆v ∈ [−100, 100] µm are
added into every measurement plane. The residual RMSE is shown in Fig. 11. The retrieved
results show that the proposed algorithm has comparable correction accuracy for large position
errors.

Fig. 11. Monte Carto simulations for phase imaging with the proposed algorithm. (a) is
residual RMSEs between the recovered phase and original phase; (b) is residual RMSEs
between the recovered amplitude and original amplitude. Compared with Figs. 10(c) and
10(f), we can see that the proposed strategy can be successfully applied to correct the position
error. The blue line represents the RMSE value of the reconstruction phase without position
error. The red line represents the RMSE value of the reconstruction amplitude without
position error.

5. Experiments

The experiments were carried out to verify the feasibility and accuracy of the proposed method.
The collimated beam with λ = 632.8 nm illuminates the plate and a circular aperture stop of
diameter 22.9 mm is placed in front of the sample. A lens with a focal length of 1079.41 mm
is used to focus the beam. The camera, which is a beam profiler (BGP-USB-SP620U) with
12-bit depth and 4.4 × 4.4 µm pixel size, is applied to collect diffraction patterns. The motorized
translation stage (M-LFS100PP), which has high moving precision up to 0.5µm. Although the
axial position is enough to accurate, it is also optimization via the proposed algorithm. In this
experiment, the defocusing distances we selected are 5mm, 10mm, and 20mm, respectively.

Firstly, the plate with manufacturing error is inserted in the PDPR system to test the proposed
method, experimentally. The collected intensities as shown in Fig. 12 have grid size 1200× 1600.
It is obvious that the patterns are the off-center position of the whole image. Here, the proposed
algorithm is applied to extract the effective intensity grid and retrieve the wavefront. The retrieved
results are shown in Fig. 13. As a comparison algorithm, the centroid correction phase retrieval
algorithm [33] is applied to retrieve the wavefront. For all retrieved phase and ZYGO data, the
piston, tip-tilt, and power (PTP) are first removed from the reconstructed wavefront by using a
least-squares fit. The measured result of the proposed algorithm agrees to interferometric data
to 0.1483 rad, RMSE. The accuracy of the phase, which is retrieved by the centroid correction
phase retrieval algorithm, is 0.1702 rad, RMSE. The retrieved amplitude by using the proposed
algorithm is smoother than that of the result by using the centroid correction algorithm, as shown
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in Fig. 13(g) and 13(h). It is proved that the proposed algorithm is effective for correcting the
position errors of intensities.

Fig. 12. The collected intensities using CCD. (a) ∼ (c) The intensities with the nominally
defocus length 20mm, 10mm, 5mm, respectively.

Fig. 13. The retrieved wavefront results for different algorithms. (a) is the retrieved phase
by using the centroid correction algorithm; (b) is the retrieved phase by using the proposed
algorithm; (c) is the ZYGO result as ground truth; (d) and (e) are residual error between the
reconstructed results and ZYGO result; (g) and (h) are the retrieved amplitude.

Second, the USAF resolution target is imaged to quantify the resolution improvement for the
proposed algorithm. The focal length of the lens is 335.28mm and the measured diameter is 22.9
mm. Here we introduce two-step diffraction theory [34] to improve the resolution of the desired
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plane. The effective sampling of the desired plane is 512 × 512. The collected intensities are
shown in Fig. 14. It is obvious that the effective intensity is departed from the center position.
Figure 15 presents the retrieved results by using different algorithms. Figures 15(a)–15(d) show
the full of the USAF target, and Figs. 15(e)–15(h) show the corresponding magnified area of
interest. Compared with the results, as shown in Fig. 15(e) and 15(g), of the centroid correction
phase retrieval algorithm, the proposed algorithm greatly reduces the fringe-like error on the
retrieved results. The resolution of reconstruction results via using the proposed algorithm is far
higher than that of the comparison algorithm.

Fig. 14. The collected intensities using CCD. (a) ∼ (c) The intensities with the nominally
defocus length are 20mm, 15mm, 10mm, respectively.

Fig. 15. The retrieved USAF results for different algorithms. (a) is the retrieved phase
by using centroid correction algorithm; (b) is the retrieved phase by using the proposed
algorithm; (c) is the retrieved amplitude by using centroid correction algorithm; (d) is the
retrieved amplitude by using the proposed algorithm.

6. Discussion and conclusion

In this paper, we propose a three-dimensional intensity position correction method for multi-
image phase retrieval using a cross-iteration nonlinear optimization strategy. The reconstructing
error induced by three-dimensional position error is analyzed and the analytic gradients about
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the three-dimensional intensity position are derived. Two-step correction strategy achieves
exact large-scale three-dimensional position correction. The cross-iteration strategy avoids the
interference for the lateral position correction and wavefront reconstruction via optimizing the
common error metric. The simulations and experiments verify the performance of the proposed
algorithm. The proposed method is a practical and effective tools to correct the intensity position
for PDPR model.

Although we have discussed extensively proposed methods numerically and experimentally,
there are still some interesting issues to think about further. In this paper, the nonlinear
optimization algorithm is the steepest descent method which is the simplest gradient optimization
method. In the future, we will introduce an advanced gradient optimization algorithm to improve
the convergence speed of the algorithm [11]. We must emphasize that the position error correction
is independent among the each intensity pattern in our proposed algorithm, so the proposed
algorithm is also suitable for single-plane phase retrieval model. It is applicable for popular fields
including the quantitative phase imaging model [35–37], image encryption [14,15], ptychography
[38–40], and etc.
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