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Abstract: Probabilistic shaping (PS) is a promising technique to approach the Shannon limit. In
this paper, we design a practical coded modulation scheme based on PS to improve the capacity
of coherent free-space optical (FSO) links with quadrature amplitude modulation (QAM), where
the fading channel follows the Gamma-Gamma distribution. The aim of this paper is to optimize
the probability mass function (PMF) of the QAM signal points to achieve the maximum channel
capacity. Due to the complexity of the objective function, the heuristic algorithm was employed to
solve the optimization problem. To the best of the authors’ knowledge, the closed-form pairwise
error probability (PEP) is first derived with the non-uniform signals under the turbulence channel. In
addition, we measure the average symbol error rate (SER) and post-FEC bit error rate (BER) by the
Monte Carlo simulation method. The numerical simulation results of both capacity and BER show
that the proposed PS scheme is better than the uniform distribution. The post-FEC BER results show
that the proposed PS scheme provides significant gains compared with the uniform scheme.

Keywords: probabilistic shaping; gamma-gamma channel; pairwise error probability

1. Introduction

Free-space optical (FSO) communication has attracted more and more attention due
to its large capacity, high security, high data rates and license-free operation [1–3]. Never-
theless, the demand for data transmission has shown an explosive growth in the past few
years, as a result of the emergence of big data-related technologies. In order to confront
this trend, the FSO communication system needs to continuously increase its capacity to
provide higher performance. Compared with the intensity modulation and direct detection
(IM/DD) systems, the coherent free space optical communication provides impressive
performance enhancements, for instance, the quadrature amplitude modulation (QAM),
even though their implementation is more complex.

There are several technologies that can significantly improve the channel capacity
in an FSO system, for instance, high-level modulation formats [4], wavelength division
multiplexing [5], space division multiplexing [6], and angular momentum multiplexing [7].
However, the gap between the capacity of an FSO system and Shannon limit still exists.
Recently, probabilistic shaping (PS) has been widely investigated as a means to approach
the Shannon limit. The emergence of PS provides enhanced flexibility for FSO systems,
without increasing their complexity. To be specific, PS changes the probabilities of the
points based on off-the-shelf constellations, hence, incurring no additional complexity in
system design and implementation [8–10].

With the deepening of research on PS, researchers mainly focus on four aspects. Firstly,
under different channels, the input distributions are designed to be suitable for various con-
ditions [11,12]. Yao et al. [11] optimized the input distributions by the modified alternating
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optimized method under the Rayleigh fading channel. In [12], Wang et al. proposed two
succinct PS schemes over 16QAM FSO systems, which are based on mapping rules. Sec-
ondly, various distribution matching schemes applied to PS have been presented [13–16].
For instance, constant composition distribution matching (CCDM) [13], hierarchical dis-
tribution matching (HiDM) [14], multiset-partition distribution matching (MPDM) [15]
and multi-level distribution matching (MLDM) [16]. Thirdly, the design of forward er-
ror correction (FEC) codes suitable for PS schemes were proposed [17,18]. Meanwhile,
Sheikh et al. [17] proposed a coded modulation scheme based on binary staircase codes as
the FEC code, and achieved 0.56–1.55 dB gains of generalized mutual information (GMI)
using only a single staircase code. In [18], Git et al. designed protograph-based low-density
parity-check (LDPC) codes for PS techniques.The tailored protograph-based LDPC codes
have a significant improvement over the standard schemes. Lastly, the structure of the
PS implementation was discussed [19]. In [19], Böcherer et al. proposed the probabilistic
amplitude shaping (PAS) scheme, which concatenates the distribution matching and FEC
code, without distorting the shaped distribution and has no additional error bursts. In this
paper, we mainly focus on designing the input distributions suitable for FSO system to
improve their capacity.

To the best of the authors’ knowledge, there are two main kinds of methods to find
the optimal distribution that maximizes capacity. First, the researchers choose the objective
function (the mutual information or the achievable information rate) and optimize the
input distributions by convex optimization [11,20]. The mutual information is discussed
as the objective function in [11] and the alternating optimization is developed. In order to
achieve the capacity and capacity-achieving distribution by the interior-point algorithm,
the achievable information rate under the FSO channel is utilized in [20]. Secondly, the
optimization algorithms based on machine learning are proposed [21,22]. Fallahpour et al.
adopted a known sequence, solving the optimization problem based on error counting at
the receiver [21]. While Stark et al. introduced a machine learning method to solve the
optimization problem of PS in [22]. The Gumbel-Softmax trick is used to train a sampling
mechanism for symbols drawn from the finite set.

Motivated by the above methods, we propose a coded modulation scheme based
on the probabilistic shaped QAM signal to achieve the capacity of the FSO channel. We
choose the heuristic algorithm to optimize the probability mass function (PMF) of the
discrete constellations for maximizing the achievable information rate (AIR) of bit-metric
decoding (BMD) in a coherent FSO system, which is modeled as a Gamma-Gamma channel
for the first time. Considering the reliable communication, the transmission rate should
be less than the AIR of the coded modulation scheme and the AIR depends on the input
distribution of the QAM signal, hence the input distribution should be optimized to
maximize the AIR. Furthermore, to measure the performance of the PS scheme under a
Gamma-Gamma channel, we also simulate the average symbol error rate (SER) and the
bit error rate after the FEC decoder (post-FEC BER). Different from [11], we consider the
PS scheme under the Gamma-Gamma channel instead of the Rayleigh fading channel.
Moreover, in [20], Elzanaty et al. also discussed the capacity of the PS scheme for an
FSO channel, which is modeled as a Gamma-Gamma channel. They adopted the pulse
amplitude modulation (PAM) signals under the assumption of IM/DD. Distinguishing this
with [20], we consider the optimal input distribution of the capacity under the coherent
FSO system.

The main contributions of this manuscript are twofold. First, under the FSO system,
the heuristic algorithm is proposed to optimize the PMF of the constellation signal points
and maximize the AIR. Secondly, we theoretically analyze the error performance of the
PS scheme for the turbulence fading channel. We derive a closed-form pairwise error
probability (PEP) expression for the non-uniform signal sets under the Gamma-Gamma
channel for the first time.

The structure of this paper is as follows. In Section 2, the system model is described.
We present the achievable information rate of bit-metric decoding and optimize the input
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distributions of the turbulence fading channel in Section 3. The error performance analysis
is provided in Section 4. The simulation results are demonstrated in Section 5, and Section 6
gives the conclusion.

Notations: Random variables are denoted by capital italic letters and their realizations
with small italic letters. Scalars and vectors are distinguished using normal and bold fonts.
E[·] denotes expectation. The entropy of random variables is denoted by H[·].

2. System Structure

The FSO communication system based on a rectangular QAM with probabilistic
shaping is adopted in this paper, as shown in Figure 1. In the transmitter section, the
uniform bitstream is reshaped into the desired distribution by the PS encoder, which will
be illustrated in detail in Section 5. After that, the shaped bits encoded by the LDPC codes
are mapped to QAM symbols. A Mach-Zehnder modulator (MZM) is used to modulate the
laser. The in-phase and quadrature branches of the MZM are driven by the QAM electric
signals. The modulated optical signal is amplified by an erbium-doped fiber amplifier
(EDFA) and transmitted in the turbulence channel.

Figure 1. The system structure of the QAM-based PS scheme for the FSO fading channel.

To simulate the turbulence channel, the Gamma-Gamma turbulence model is adopted
in our work for emulating the turbulence conditions from weak to strong. Its probability
distribution function (PDF) is given by [23]:

f (g) =
2(αβ)(α+β)/2

Γ(α)Γ(β)
g(α+β)/2−1Kα−β(2

√
αβg), (1)

where Γ(•) denotes the Gamma function and Kn(•) is the modified Bessel function of the
second kind of order n. The parameters α and β represent the effective numbers of large
scale and small scale turbulence eddies, respectively, which can be expressed as a function
of Rytov variance σ2

R. Considering plane waves, we have [23]:

α =

[
exp

(
0.49σ2

R

(1+1.11σ12/5
R )

7/6

)
− 1

]−1

, (2)

β =

[
exp

(
0.51σ2

R

(1+0.69σ12/5
R )

5/6

)
− 1

]−1

, (3)

In the coherent receiver, the received optical signals are mixed with a local oscillator.
The output signals are detected by two balanced photodetectors (BPD). The corresponding
electrical in-phase and quadrature signals are further processed by high-speed digital
signal processing (DSP). Eventually, the bit streams are obtained by an LPDC decoder and
a PS decoder. The coherent detection currents can be expressed as [2]:

I[t] = 2η
√

PLPS cos
{

θsig + θIF + θh
}
+ nI

Q[t] = 2η
√

PLPS sin
{

θsig + θIF + θh
}
+ nQ

, (4)



Appl. Sci. 2021, 11, 9805 4 of 12

where η represents the responsivity of the photodiode and PL is the optical power of the
local oscillator beams. PS stands for the received optical power in the present turbulence.
θsig denotes the modulation phase of the received signal. θIF is the phase difference between
the local oscillator and transmitter laser. θh represents the phase fluctuation caused by
atmospheric turbulence. nI and nQ are the compound additive white Gaussian noise.

Perfect channel state information (CSI) is assumed at the receiver and the system is
not affected by intersymbol interference. Considering the equivalent baseband model, we
define the input X to be complex QAM symbols after a bit mapper block. The value of
the non-equiprobable QAM symbols are taken from χ = [x1, . . . , xi, . . . , xM], i = 1, . . . , M
according to PMF PX = [PX(x1), . . . , PX(xi), . . . , PX(xM)], where PX(xi) stands for the
probability when the signal xi is transmitted. The corresponding electrical signal Y before
demapper block is given by:

Y = GX + N, (5)

where N is the complex zero mean Gaussian noise with variance σ2 and G is intensity
attenuation related to atmospheric turbulence.

3. Problem Formulation and Solution

In this section, we aim to search for the optimal PMF of the discrete constellations
under a Gamma-Gamma channel. We compute the AIR of the proposed scheme with
bit-metric decoding, for various symbol to noise ratios (SNRs).

In the following, we review the basic principle of probabilistic shaping. We mainly
focus on the AIR of the BMD, rather than symbol-metric decoding (SMD) due to the higher
computational complexity of SMD. In this scheme, the input signal X is composed of m bit
levels B = B1, . . . , Bm. The BMD rate is defined as follows [24]:

RBMD =

[
H(X)−

m

∑
i=1

H(Bi | Y, G)

]+

=

[
H(X)−

m

∑
i=1

E[log2{1 + exp[−(1− 2Bi)Li]}]
]+

,

(6)

where [•]+ means the largest number of • and 0, namely max(•, 0). H(Bi | Y, G) calculates
the uncertainty between Bi at i-th position and the channel output Y under the turbulence
condition. These log-likelihood ratios (LLRs) are computed with the auxiliary channel as:

Li = log
pBi |Y(0 | y)
pBi |Y(1 | y)

= log

∑
x∈X0

i

qY|X(y | x, g)PX(x)

∑
x∈X1

i

qY|X(y | x, g)PX(x)
, (7)

where X0
i and X1

i denote the sets of PS-QAM symbols whose i-th bit is 0 and 1. In an
auxiliary channel, the condition probability qY|X(Y | X, g) in Equation (7) can be given by:

qY|X(Y | X, g) =
1√
πσ

exp

(
(y− gx)2

σ2

)
, (8)

The AIR depends on the distribution of the input signal X, for various SNRs. Hence,
the objective function at the specified SNR can be written as:

C = max
PX(x)
{RBMD}

= max
PX(x)

[
H(X)−

m

∑
i=1

E[log2{1 + exp[−(1− 2Bi)Li]}]
]+

,
(9a)
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s.t.〈PX = [PX(x1), . . . , PX(xi), . . . , PX(xM)]〉 = 1;

0 ≤ PX(xi) ≤ 1.
(9b)

where 〈•〉 represents the summation formula. The value of PMF is a non-negative number
less than one with a sum of one. As mentioned above, the objective function RBMD is a
lack of the closed-form expression. Furthermore, we have to calculate the BMD rate by
Monte Carlo simulations. Thus, finding an efficient algorithm that finds the optimal PMF
is difficult. Under these circumstances, we adopt the heuristic algorithm to maximize the
BMD rate to derive the optimal PMF of PS-QAM signals.

In the following, we will introduce the heuristic algorithm. The first stage of the algo-
rithm is initializing the population. We produce individuals with the size of Ppop. In this
algorithm, each individual contains two vectors, namely position and velocity. Considering
the symmetric property of the 2-dim 16-ary QAM constellation, we can initialize the popu-
lation with 2-dim searching space instead of 16-dim. That is, each position represents the 2-
dim probability p2 dim, which can correspond to the PMF of 16QAM. Generalized p2 dim =

[p1 p2], then PX can be expressed as PX =
[
p1 p2 p1 p2

]′ × [p1 p2 p1 p2
]
, where

× denotes the matrix product. We take p2 dim = [0.25, 0.25] as an example, then PX =
[0.625, . . . , 0.625]. The velocity is also a 2-dim vector formed by the change of each position
p2 dim in the previous and subsequent iterations. Besides, we can initialize the position
of the population individuals near the Gaussian distribution in order to achieve faster
convergence. We set f lag = 0 as the identification of the iteration. Conversely, the iteration
terminates when f lag = 1.

For each SNR, there is an optimal PMF to maximize the BMD rate RBMD. In this
situation, the position needs to be measured with the fitness function < in each iteration
at the specified SNR. This means that the fitness function can be used to evaluate the
performance of each individual. Obviously, individuals who can make the BMD rate
higher should have a larger fitness value and greater possibility to be retained in the
subsequent iteration process. Considering the Monte Carlo simulation of N samples,

the fitness function <n of the n-th iteration can be calculated by 1
N

N
∑

k=1
[−log2PX(xk)]−

1
N

N
∑

k=1

m
∑

i=1
[log2{1 + exp[−(1− 2Bi)Li]}]. The individual optimum fitness and population

optimum fitness is determined in each individual fitness value. Specifically, if the fitness
value of the new p2 dim is better than the historical individual optimal fitness, the p2 dim
is updated to the latest position; if there is a individual in the entire population whose
position is better than the global optimal position, the vector is updated to the global
optimal position.

Since the iterative process leads to a stochastic manipulation of velocities and positions
according to the best experiences of the swarm to search for the global optimum in solution
space, it is of vital importance to update the position and velocity, which will directly affect
the convergence speed of this heuristic algorithm. Hence, the stochastic inertia weight is
employed in this algorithm, which can avoid the lack of local search ability in the early
stage of iteration. It can also avoid the lack of global search ability in the late iteration,
and its convergence speed and global convergence are significantly improved compared
with the normal inertia weight. We adjust the weight through normal random variables to
achieve the best balance between the global and local searches.

We introduce the mutation δ in the population so that it may escape from a local
optimum. In this algorithm, we choose the number of iteration G as a sign of whether to
terminate the algorithm. The detailed algorithm is shown in Table 1.
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Table 1. Pseudo-code of heuristic algorithm.

Input: SNR; position and velocity of the individuals
Output: p2 dim

1 Initialize:
2 Produce initial population with Ppop individuals.
3 Initialize the position and velocity of the individuals.
4 Set the iteration identification f lag = 0.
5 Set mutation probability δ = 0.85.
6 Set the genetic iteration number G = 0.
7 while ( f lag == 0).
8 Reproduction:.
9 Update the velocity and position.
10 Calculate individual fitness function <n.
11 Determine the individual optimum fitness and the population optimum fitness.
12 Mutation:
13 if rand > δ
14 Update the velocity and position.
15 if G = 100 update f lag = 1.
16 Output: return the optimum value p2 dim.

4. Error Performance Analysis

After depicting the optimization in Section 3, the average SER under the desired PMF,
which is optimized by the heuristic algorithm, needs to be discussed. Therefore, in this
section, we will evaluate the error performance of the PS scheme under the Gamma-Gamma
fading channel. For a BICM system, PEP is applied to derive the union bound in SER. The
upper bound of the average SER can be expressed as [25]:

Ps ≤
M

∑
j=1

∑
i 6=j

P
(
oij
)

P(xi), (10)

where PEP P
(
oij
)

represents the probability of choosing xj as a transmitted signal, when in
fact xi was transmitted. Under the assumption of the perfect CSI available at the receiver,
the PEP concerning turbulence attenuation, is given by:

P
(
oij|G

)
= EG

Q

 σ2 ln PX(xi)

PX(xj)
+‖g(xi−xj)‖2

√
2σ2‖g(xi−xj)‖2


, (11)

where ‖•‖ denotes the norm operation of a vector. Q(x) = 1√
2π

∫ ∞
x e−y2/2dy is Gaussian Q

function. Based on Q(x) ≈ 1
12 e

−x2
2 + 1

4 e
−2x2

3 , we obtained:

Q

 σ2 ln PX(xi)

PX(xj)
+‖g(xi−xj)‖2

√
2σ2‖g(xi−xj)‖2


≈ 1

12
e−ζe

− 1
2

(
µ

g2 +υg2
)
+

1
4

e−
4
3 ζ e
− 2

3

(
µ

g2 +υg2
)

,

(12)

For the convenience of representation, we define three variables, namely ζ = 1
2 ln PX(xi)

PX(xj)
,

µ = σ2

2(xi−xj)
2 ln2 PX(xi)

PX(xj)
, υ =

(xi−xj)
2

2σ2 . The PDF of the intensity attenuation H is given in

Equation (13) by means of rewriting the Kα−β(2
√

αβg).

We make g1(k) =
(αβ)k+β+1

Γ(α)Γ(β)
Γ(α−β)
(1−v)kk! and g2(k) =

(αβ)k+β+1

Γ(α)Γ(β)
Γ(β−α)
(v+1)kk! . Thus, Equation (11)

can be calculated by Equation (12) and Equation (13), which is shown in Equation (14).
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f (g) =
(αβ)β

Γ(α)Γ(β)
gβ−1

[
Γ(α− β)

(
∞

∑
k=0

√
αβg2k

(1− v)kk!

)
+Γ(β− α)

(
∞

∑
k=0

√
αβg2k

(v + 1)kk!

)]

=
∞

∑
k=0

(αβ)k+β+1

Γ(α)Γ(β)

Γ(α− β)

(1− v)kk!
gk+β−1 +

∞

∑
k=0

(αβ)k+β+1

Γ(α)Γ(β)

Γ(β− α)

(v + 1)kk!
gk+β−1

=
∞

∑
k=0

g1(k)gk+β−1 +
∞

∑
k=0

g2(k)gk+β−1

(13)

P
(
oij|G

)
=
∫ ∞

0
f (g)Q

 σ2 ln PX(xi)

PX(xj)
+‖g(xi−xj)‖2

√
2σ2‖g(xi−xj)‖2

dg

=
∫ ∞

0

(
∞

∑
k=0

g1(k)gk+β−1 +
∞

∑
k=0

g2(k)gk+β−1

) 1
12 e−ζ e

− 1
2

(
µ

g2 +υg2
)
+ 1

4 e−
4
3 ζ e
− 2

3

(
µ

g2 +υg2
)dg

=
∞

∑
k=0

[g1(k) + g2(k)]
[

1
12 e−ζ µ

β+k
4 υ

1
4 (−β−k)K β+k

2
(ζ) + 1

4 e−
4
3 ζµ

β+k
4 υ

1
4 (−β−k)K β+k

2

(
4
3 ζ
)]

(14)

5. Simulation Results
5.1. Simulation

In this section, we design a practical LDPC coded modulation system based on the
PS scheme. The system block diagram is shown in Figure 2. At the transmitter, in order
to generate the 16-ary PS-QAM symbols, the pseudo-random binary sequence (PRBS) is
generated. Therefore, we can see that the uniform distribution binary sequence is divided
into two parts, one of which is fed to the CCDM. The CCDM converts the uniformly
distributed bits into the desired distributed 16-ary QAM symbols. After binary converting,
they are encoded together with the remaining binary bits. We utilize the DVB-S2 LDPC
code, whose code rate is 2

3 . At the receiver, the LLRs are calculated for bit-metric decoding.
We then evaluate the achievable information rate of the signal. We also measure the average
SER and the post-FEC BER.

Figure 2. Simulation. An example for 16QAM.

5.2. Simulation Results

In the following, we will discuss the simulation results of the proposed system. It
has been shown that for each SNR, there is an optimum PMF, which maximizes the RBMD
over the Gamma-Gamma channel. Hence, the distribution of constellation points with
different SNRs and the uniform distributions are illustrated in Figure 3. The specific
probabilities are listed in Table 2. When the probability distribution deviates from the
uniform distribution, the entropy decreases. Moreover, it can be seen that in the case of
lower SNR, the probabilities of the constellation points near the origin are higher than
that far away from the origin. Figure 3 illustrates that the PMF begins as a Gaussian-like
shape; with an increase of the SNR, PMF eventually tends to a uniform distribution. This is
because when the SNR is lower, more probabilistic shaping is required. Specifically, there
is a great difference between the constellation points with high probabilities and those with
low probabilities.
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Figure 3. Signal constellation point distribution. (a) PS at SNR = 2 dB, H = 3.7964. (b) PS at SNR =
10 dB, H = 3.9451. (c) PS at SNR = 18 dB, H = 3.9932. (d) Uniform distribution.

Table 2. Probability of signal constellation point distribution with or without the PS.

Schemes The Probability of Signal Constellation Point Distribution

PS, H = 3.7964
[

0.0247 0.0539 0.0247 0.0539 0.0539 0.1175 0.0539 0.1175
0.0247 0.0539 0.0247 0.0539 0.0539 0.1175 0.0539 0.1175

]
PS, H = 3.9451

[
0.0406 0.0601 0.0406 0.0601 0.0601 0.0892 0.0601 0.0892

0.0406 0.0601 0.0406 0.0601 0.0601 0.0892 0.0601 0.0892

PS, H = 3.9932
[

0.0542 0.0622 0.0542 0.0622 0.0622 0.0713 0.0622 0.0713
0.0542 0.0622 0.0542 0.0622 0.0622 0.0713 0.0622 0.0713

]
Uniform Distribution

[
0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625
]

Theoretically, each SNR has a corresponding optimal PMF. The effect of optimizing
the PMF at a corresponding SNR is shown in Figure 4. The gap to the Shannon limit is
closed by the optimized PS. We compare the performances of the optimized solutions and
uniform distributions under different turbulence conditions. Under week turbulence, the
corresponding optimized PS scheme is closer to the Shannon limit. With the increase of the
SNR, the shaping gain between the optimized PS and the uniform distribution decreases
gradually. Eventually, the PMF approaches the uniform distribution. These phenomena
are consistent with the tendency of the constellation with the input distribution, shown in
Figure 3. The PMF tends to a uniform distribution, as the effect of the noise is decreasing.
Hence, the shaping gain obtained by the optimized PS becomes smaller.
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Figure 4. RBMD, optimized entropy at each Es/N0.

The result of applying PS with a fixed entropy is shown in Figure 5. It can be seen
that the PS with H = 3.7964 (resp. PS with H = 3.9451) outperforms the uniform distri-
bution by 0.4 dB (resp. 0.3 dB) at the achievable information rate of about 1.8 bit/symbol.
Furthermore, the PS with H = 3.9451 is superior to others at the medium SNR. When the
Es/N0 is about 8 dB, the performance of the PS with H = 3.9451 is better than the PS with
H = 3.7964. Besides, after 16 dB, the uniform distribution has more outstanding perfor-
mance than others. In addition, we compare the performance of the Maxwell-Boltzmann
(MB) distribution with fixed entropy. As we can see, when the Es/N0 is less than 6 dB ,
there is little difference between the PS scheme and MB distribution, however when Es/N0
is greater than 6 dB , it can be seen that the PS scheme performance is gradually better
than MB distribution. As we can see, the PS with H = 3.7964 is worst at a higher SNR.
This is because its PMF has a marked difference with the uniform distribution. To make a
tradeoff between the complexity and performance, we can use only three PMFs under the
unique SNR with no need to adjust the input distribution under the conditions that a small
reduced shaping gain can be accepted.

2 4 6 8 10 12 14 16 18 20

E
s
/N

0

1

1.5

2

2.5

3

3.5

4

R
B

M
D

shannon limit

uniform

PS,H=3.7964

PS,H=3.9451

MB Distribution

Figure 5. RBMD for PS-16QAM over the Gamma-Gamma channel with fixed entropy for each line.

As discussed in Equation (14), the input distribution has a significant impact on
the error performance. The average SER upper bound from Equation (10) and from
the Monte Carlo simulation are shown in Figure 6. As the entropies of the probability
distributions increase, the performance of the SER gradually deteriorates. This is because
increasing entropies increase the probabilities of the outermost constellation points, which
are dominant sources of errors. Moreover, the gain between the two PS schemes and the
uniform distribution increases with the increase of the SER. As we can see, the PS scheme
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with H = 3.7964 achieves about 1.5 dB gains over the uniform distribution at an SER
of 4× 10−1. It is shown that the theoretical curves and simulation curves are basically
consistent, because PEP is calculated to approximate the average SER. This result shows
that the PS schemes outperform the uniform distribution with the performance of the
average SER.
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Figure 6. Average SER from Equation (10) and Monte Carlo simulations versus Es/N0 with or
without the PS.

To further investigate the performance of PS schemes, we also evaluate the post-FEC
BER under the turbulence channel in Figure 7, which is consistent with the trend of the
average SER. Compared with the average SER, post-FEC BER falls sharply when its value
is about 4× 10−2. The post-FEC BER would converge asymptotically as the BERs approach
zero. As we can see, the PS with H = 3.7964 firstly approaches the falling region. It can
also be concluded that the smaller the entropy of the PS, the earlier the curves converge. At
the post-FEC BER of 1× 10−2, the proposed PS scheme with H = 3.7964 (resp. H = 3.9451)
obtains nearly a 1.3 dB (resp. 0.5 dB) gain over the uniform QAM. The reason is that the
PS with H = 3.7964 increases the probability of the constellation points with better BER
performance to a greater extent, and reduces that with poorer BER performance.
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Figure 7. Post-FEC BER versus Es/N0 with or without the PS.

6. Conclusions

In this paper, the PS technique is investigated for a coherent FSO communication
system. We aim to optimize the PMF of the input QAM signal over the Gamma-Gamma
channel. To begin with, we first present the BMD rate RBMD. After that, the optimal PMF
was obtained by the heuristic algorithm, in order to maximize the RBMD. Correspondingly,
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the achievable information rate is simulated by a Monte Carlo simulation. Compared
with the uniform distribution, PS has a larger gain in the low SNR than that in the high
SNR. The results show that in the low SNR regime, the PS with H = 3.7964 could offer
the best performance, which has an approximate 0.4 dB gain, while the optimal PMF
tends to be a uniform distribution in the high SNR regime. In addition, it can be seen
from the results that in each case of the SNR, the desired optimal PMFs are different. In
addition, we derived a closed-form expression of the PEP for a non-uniform signal under
the condition of the Gamma-Gamma channel. Finally, we evaluate the performance of the
average SER and post-FEC BER. An approximately 1.3 dB shaping gain was achieved by
PS with H = 3.7964, which proves the effectiveness of the proposed scheme in a coherent
FSO communication system.
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