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This paper proposes a design method for an off-axis reflective anamorphic optical system (ORAOS). This method
first applies vector aberration theory to establish a mathematical model to balance the aberration of an ORAOS. It
then builds the error function of structural parameters and constraints through spatial ray tracing and grouping
design. Next, it introduces automatic adjustment of weight factors for dynamic balance of aberrations and con-
straints. A particle swarm simulated annealing algorithm is used to iteratively calculate the initial structure of the
ORAOS. Finally, we use an extreme ultraviolet (EUV) lithographic projection objective with off-axis six-reflective
anamorphic mirrors (βx = 1/4, β y = 1/8) as an example to verify the effectiveness of this method. We obtain an
EUV lithographic anamorphic objective with a numerical aperture of 0.55 and a root mean square wavefront error
better than 1/30λ (Î�= 13.5 nm). ©2021Optical Society of America

https://doi.org/10.1364/AO.427713

1. INTRODUCTION

An anamorphic optical system is made from double-curvature
surfaces that have two mutually perpendicular planes of sym-
metry, so the system has a different magnification in the two
symmetry planes [1–6]. Anamorphic systems have been used in
cinema scopes to capture a wide-screen image onto a standard-
sized film frame since the 1950s, in laser beam profile control
since the 1970s, in semiconductor chip inspection since the
1990s, in 3D displays since 1997, in distortion control of pano-
ramic lenses since 2005, and in high-performance spectrometers
since 2008 [6–10]. As a result of the rapid development of the
semiconductor industry, lithographic technology has entered
the 5 nm level, and extreme ultraviolet (EUV) lithography has
attracted considerable attention for use in large-scale integrated
circuit processing. The EUV lithographic projection objective,
which is the core component of an EUV lithographic system, is
a microscopic objective that requires very high imaging quality.
Resolution is determined by the Rayleigh resolution criterion,
R= k1

λ
NA . To achieve higher resolution, the numerical aperture

(NA) of the EUV objective optical system needs to be increased.
For high-NA optical systems, it is no longer feasible to maintain
4× reduction, a full field of view, and a 6 in. mask. High-NA
optical systems introduce a sharply increasing incident angle,
which increases the shadow effect and reduces the aerial image
contrast. The solution is to reduce the mask incident angle and
increase the demagnification of the projection objective. To

combine the full field of view of a 26× 33 mm2 image plane
with a 6 in. mask, an anamorphic optical system is used to
provide the required demagnification in two mutually per-
pendicular planes. An anamorphic projection objective with a
4× /8× demagnification in the X/Y direction can use a 6 in.
mask to achieve a 26× 16.5 mm2 half-field exposure, provid-
ing the best productivity and resolution [11–16]. The EUV
lithographic projection objective strongly relies on aberration
balancing, which poses major challenges to optical designers.
Using software to optimize design strongly depends on selecting
the initial structure. The construction of this initial structure
therefore plays the most important role in designing the optical
system [17,18]. For a non-rotationally symmetric system with
high imaging quality and multiple constraints, it is essential to
construct an initial structure that satisfies the dynamic balance
between aberration and multi-constraint control requirements.

Over the past years, the main method for designing an
anamorphic optical system has been using a paraxial model to
calculate the first-order aberrations of the optical system exhaus-
tively. However, a paraxial search cannot control the constraints
effectively. Furthermore, the values that satisfy the constraints
can be too small, which strongly affects the calculation effi-
ciency, and the ability of the method to balance aberration is
too weak. Wynne, Burfoot, Sands, Yuan, etc. calculated and
analyzed the third-order aberration of an anamorphic optical
system but did not give specific design examples [1–3,6]. For an
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EUV anamorphic optical system, Hans applied group design
to an EUV anamorphic optical system by dividing the optical
system into two groups but did not provide a specific design
method [19]. Li’s group proposed combining curvatures for an
anamorphic magnification EUV lithographic objective [20].
This method takes a series of control measures to design two
coaxial spherical systems to ensure the rationalities of the initial
structure and the surfaces after they are combined. The image
quality of the anamorphic initial structure is optimized through
a gradual process. The constraints of this method are too strict,
and the aberration balance problem is not considered; the
method completely relies on optical design software to correct
aberrations. This has three effects. First, the curvature combina-
tion method may filter out numerous qualified solutions, reduce
the structural diversity, and make other constraints too tight.
Second, the software optimization process may produce large
disturbances, leading the structure to deviate too far from the
initial structure and making the constraints difficult to control.
Finally, the optimization process used by optical design software
to balance aberration may increase the residual values of both
low-order and high-order aberrations and then increase the
residual values of the design.

To solve the problems of aberration balance and constraint
control in the anamorphic optical system, this paper pro-
poses a design method for ORAOS. First, this method derives
and calculates the third-order aberration of the anamorphic
optical system using vector aberration theory. The third-
order aberration of the anamorphic optical system is used not
only for analysis but also for aberration control during the
initial construction. Second, we apply spatial ray tracing to
characterize and control constraints, and parameterize the
structural parameters, aberration coefficients, and constraints.
Third, we introduce automatic adjustment of weight factors to
dynamically balance the aberration coefficients and constraint
parameters, and establish mathematical models to calculate the
corresponding parameters for the ORAOS. A particle swarm
simulated annealing algorithm is used to calculate the initial
structural parameters. Fourth, a variable step strategy is used
to make the optimization converge smoothly and prevent the
results from deviating too much from the initial structure.
Finally, we complete the design of an off-axis six-reflective
anamorphic optical system that is feasible and gives a root mean
square (RMS) wavefront error of better than 1/30λ, where λ is
the operating wavelength.

2. DESIGN METHOD

A. Group Design

As shown in Fig. 1, we divide the ORAOS into two groups, the
objective lens group and the image lens group. The parameters
of the optical system mainly include the magnifications in the X
and Y directions, βx and βy ; the center object height y ; the cen-
ter image height y im ; the numerical apertures of the object side
in the X and Y directions NAOx and NAOy ; and the image side
numerical aperture NA, from which we can obtain y im = y/βy ,
NAOx =NA/βx , and NAOy =NA/βy . The objective lens
group and the image side lens group are spliced together at the
intermediate image position, which should obey the principles

Fig. 1. Schematic of ORAOS.

of object–image matching, pupil matching, and demagnifica-
tion matching. In the design of an anamorphic optical system,
the ratio of the object side numerical apertures for the X and
Y directions is 2:1, so the entrance pupil is no longer circular,
but elliptical, and the ratio of the entrance pupil diameters for
the X and Y directions is 2:1. In the group design, the objective
lens group is set as an anamorphic group, and the image side
lens group as a fixed lens group. The rays are emitted from the
elliptical entrance pupil via the objective lens group to the inter-
mediate image point, forming a rotationally symmetric system.
Then, rays are emitted from the intermediate image point via
the image lens group to the circular exit pupil. The objective lens
group in this study has the anamorphic conic surface expression

Z =
c x x 2
+ c y y 2

1+
√

1− (1+ kx )c 2
x x 2 − (1+ ky )c 2

y y 2
, (1)

where c x and c y represent the curvatures of the X Z plane and
the Y Z plane, respectively, and kx and ky represent the cones
of the X Z and Y Z planes, respectively. From the above prin-
ciples, ensuring rays in the X/Y direction of the front lens
group intersect at the intermediate image point requires an
X/Y magnification ratio of 2:1 for the objective lens group,
and an entrance pupil diameter ratio of 2:1 for the X and Y
directions. Then, the structural parameters of the objective lens
and image lens groups are parameterized, and the third-order
aberration of the deformable optical system is calculated using
vector aberration theory. Spatial ray tracing is applied to control
the constraints, including obscurations, lens distances, image
telecentricity, lens apertures, the obscuration ratio, and angles of
incidence. We then parameterize these constraints.

B. Aberration Analysis

1. AberrationAnalysis of theAnamorphicOptical System

The transfer and refraction equations of an anamorphic optical
system can be written as [6]



Research Article Vol. 60, No. 16 / 1 June 2021 / Applied Optics 4559


x j − x j−1

ux , j−1
=

y j − y j−1

u y , j−1
= t j−1

n j ux , j − n j−1ux , j−1

c x , j x j
=

n j u y , j − n j−1u y , j−1

c y , j x j
=−(n j − n j−1)

, (2)

where c x , j = 1/rx , j , c y , j = 1/r y , j represent the curvatures of surface j of the X Z and Y Z planes, respectively;
(x j−1, y j−1), (x j , y j ) represent the coordinates of the intersection points between the ray and surfaces j − 1 and j , respectively;
(ux , j−1, u y , j−1), (ux , j , u y , j ) represent the direction cosines of the ray between surfaces j − 1 and j and between surfaces j and j + 1,
respectively; t j−1 represents the distance between surfaces j − 1 and j ; and (n j−1, n j ) represent the refractive indices between surfaces
j − 1 and j and between surfaces j and j + 1, respectively.

In the paraxial region, an anamorphic system can be replaced by two independent rotationally symmetric optical systems (RSOSs),
each associated with one symmetry plane. In each associated RSOS, we know there are only two independent non-skew paraxial rays,
normally taken to be the marginal and chief rays, and any other paraxial ray in the RSOS can be written as their linear combination. It
is evident that any skew paraxial ray in an anamorphic system can be fully specified by four non-skew paraxial rays, namely, the x and y
marginal rays, the x and y chief rays, and the corresponding x and y RSOS. The proportionality constants of each linear combination
are the normalized object and stop coordinates of the arbitrary skew paraxial ray:

¯̄x j = ρx h x , j + Hx h̄ x , j

¯̄ux , j = ρx ux , j + Hx ūx , j

¯̄y j = ρy h y , j + Hy h̄ y , j

¯̄u y , j = ρy u y , j + Hy ū y , j

, (3)

where ( ¯̄x j , ¯̄ux , j , ¯̄y j , ¯̄u y , j ) represents the parameters of an arbitrary paraxial ray in the anamorphic optical system; (h x , j , ux , j ),
(h̄ x , j , ūx , j ) represent the height and angle of a paraxial marginal ray and chief ray in the x direction on surface j , respectively;
(h y , j , u y , j ), (h̄ y , j , ū y , j ) represent the height and angle of a paraxial marginal ray and chief ray in the y direction on surface j ,
respectively; and (Hx , Hy ), (ρx , ρy ) represent the normalized object and stop coordinates.

2. Third-Order AberrationAnalysis

Our third-order aberration analysis is based on vector wave aberration theory [1–5,21,22]:

Wklm =
∑

j

∑
p

∑
n

∑
m

(wklm) j

(
⇀

H ·
⇀

H
)p(

⇀
ρ ·

⇀
ρ
)n(⇀

H · ⇀ρ
)m

=

∑
j

∑
p

∑
n

∑
m

(wklm) j

[(
⇀

Hx +
⇀

Hy

)
·

(
⇀

Hx +
⇀

Hy

)]p[(
⇀
ρx +

⇀
ρy

)
·

(
⇀
ρx +

⇀
ρy

)]n
[(

⇀

Hx +
⇀

Hy

)
·

(
⇀
ρx +

⇀
ρy

)]m

=

∑
j

∑
p

∑
n

∑
m

(wklm) j

(
H2

x + H2
y

)p(
ρ2

x + ρ
2
y

)n(
Hx · ρx + Hy · ρy

)m
, (4)

where k = 2p +m, l = 2 n +m, and k + l = 4. The aberration of the anamorphic optical system depends on object coordinates
(Hx , Hy ) and stop coordinates (ρx , ρy ), and is composed of the six invariants H2

x , H2
y , ρ2

x , ρ2
y , Hxρx , Hyρy . There are a total of 21

fourth-degree terms, including three piston terms (H4
x , H4

y , H2
x · H

2
y ), two terms calculated twice, and 16 anamorphic third-order

aberrations terms:

W
(
Hx , Hy ; ρx , ρy

)
= {D1ρ

4
x + D2ρ

4
y + D3ρ

2
xρ

2
y }

+ {D4 Hxρ
3
x + D5 Hyρ

2
xρy + D6 Hxρxρ

2
y + D7 Hyρ

3
y }

+ {D8 H2
x ρ

2
x + D9 H2

y ρ
2
y + D10 H2

y ρ
2
x + D11 H2

x ρ
2
y + D12 Hx Hyρxρy }

+ {D13 H3
x ρx + D14 H3

y ρy + D15 Hx H2
y ρx + D16 H2

x Hyρy }. (5)

The third-order aberration coefficients of the anamorphic optical system are expressed as
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

D1 =−
1
8

k∑
j=1

{[
Ax , j (h x , j1u2

x , j + c x , j h2
x , j1ux , j )

]
+ (c 3

x , j − c 3
3, j )h

4
x , j1n j

}
=−

1
8 SIx

D2 =−
1
8

k∑
j=1

{[
A y , j (h y , j1u2

y , j + c y , j h2
y , j1u y , j )

]
+ (c 3

y , j − c 3
5, j )h

4
y , j1n j

}
=−

1
8 SIy

D3 =−
1
4

k∑
j=1

{[
Ax , j (h x , j1u2

y , j + c y , j h2
y , j1ux , j )

]
+ (c 2

x , j c y , j − c 3
4, j )h

2
x , j h

2
y , j1n j

}
D4 =−

1
6

k∑
j=1

{[
Ax , j (h̄ x , j1u2

x , j + c x , j h2
x , j1ūx , j + 2h x , j1ux , j ūx , j + 2c x , j h x , j h̄ x , j1ux , j )−ψx1u2

x , j

+ 3(c 3
x , j − c 3

3, j )h
3
x , j h̄ x , j1n j

]}
=−

1
2 SIIx

D5 =−
1
2

k∑
j=1

{[
Ax , j (h x , j1u y , j ū y , j + c y , j h y , j h̄ y , j1ux , j )+ (c 2

x , j c y , j − c 3
4, j )h

2
x , j h y , j h̄ y , j1n j

]}
D6 =−

1
2

k∑
j=1

{[
Ax , j (h̄ x , j1u2

y , j + c y , j h2
y , j1ūx , j )−ψx1u2

y , j + (c
2
x , j c y , j − c 3

4, j )h x , j h̄ x , j h2
y , j1n j

]}
D7 =−

1
6

k∑
j=1

{[
A y , j (h̄ y , j1u2

y , j + c y , j h2
y , j1ū y , j + 2h y , j1u y , j ū y , j + 2c y , j h y , j h̄ y , j1u y , j )−ψy1u2

y , j

+ 3(c 3
y , j − c 3

5, j )h
3
y , j h̄ y , j1n j

]}
=−

1
2 SIIy

D8 =−
1
4

k∑
j=1

{[
Ax , j (h x , j1ū2

x , j + c x , j h̄2
x , j1ux , j + 2h̄ x , j1ux , j ūx , j + 2c x , j h x , j h̄ x , j1ūx , j )− 2ψx1ux , j ūx , j

+ 3(c 3
x , j − c 3

3, j )h
2
x , j h̄

2
x , j1n j

]}
=−

1
4 (3SIIIx + SIVx )

D9 =−
1
4

k∑
j=1

{[
A y , j (h y , j1ū2

y , j + c y , j h̄2
y , j1u y , j + 2h̄ y , j1u y , j ū y , j + 2c y , j h y , j h̄ y , j1ū y , j )− 2ψy1u y , j ū y , j

+ 3(c 3
x , j − c 3

3, j )h
2
x , j h̄

2
x , j1n j

]}
=−

1
4 (3SIIIy + SIVy )

D10 =−
1
4

k∑
j=1

{[
Ax , j (h x , j1ū2

y , j + c y , j h̄2
y , j1ux , j )

]
+ (c 2

x , j c y , j − c 3
4, j )h

2
x , j h̄

2
y , j1n j

}
D11 =−

1
4

k∑
j=1

{[
A y , j (h y , j1u2

x , j + c x , j h2
x , j1u y , j )

]
+ (c x , j c 2

y , j − c 3
4, j )h̄

2
x , j h

2
y , j1n j

}
D12 =−

k∑
j=1

{[
Ax , j (h̄ x , j1u y , j ū y , j + c y , j h y , j h̄ y , j1ūx , j )−ψx1u y , j ū y , j + (c 2

x , j c y , j − c 3
4, j )h x , j h̄ x , j h y , j h̄ y , j1n j

]}
D13 =−

1
2

k∑
j=1

{[
Ax , j (h̄ x , j1ū2

x , j + c x , j h̄2
x , j1ūx , j )−ψx1ū2

x , j + (c
3
x , j − c 3

3, j )h x , j h̄3
x , j1n j

]}
=−

1
2 SVx

D14 =−
1
2

k∑
j=1

{[
A y , j (h̄ y , j1ū2

y , j + c y , j h̄2
y , j1ū y , j )−ψy1ū2

y , j + (c
3
y , j − c 3

5, j )h y , j h̄3
y , j1n j

]}
=−

1
2 SVy

D15 =−
1
2

k∑
j=1

{[
Ax , j (h̄ x , j1ū2

y , j + c y , j h̄2
y , j1ūx , j )−ψx1ū2

y , j + (c
2
x , j c y , j − c 3

4, j )h x , j h̄ x , j h̄2
y , j1n j

]}
D16 =−

1
2

k∑
j=1

{[
A y , j (h̄ y , j1ū2

x , j + c x , j h̄2
x , j1ū y , j )−ψy1ū2

x , j + (c
2
x , j c y , j − c 3

4, j )h̄
2
x , j h y , j h̄ y , j1n j

]}

, (6)


Ax , j = n j ux , j + n j h x , j c x , j

Āx , j = n j ūx , j + n j h̄ x , j c x , j

A y , j = n j u y , j + n j h y , j c y , j

Ā y , j = n j ū y , j + n j h̄ y , j c y , j

,


c 3, j =

3
√
(1+ kx , j )c 3

x , j

c 4, j =
3
√

1
2 [(1+ kx , j )c 2

x , j c y , j + (1+ ky , j )c x , j c 2
y , j ]

c 5, j =
3
√
(1+ ky , j )c 3

x , j

,

{
ψx = n j (h̄ x , j ux , j − h x , j ūx , j )

ψy = n j (h̄ y , j u y , j − h y , j ū y , j )
. (7)

3. AberrationAnalysis of theObjective LensGroup (Group1)

As shown in Fig. 2, the center object height is y , and the paraxial marginal ray angle of the object is u1. Rays are emitted from the object
point via M1, M2, M3, M4 to the intermediate image points. The quantities are defined as follows: d1, d2, d3, d4 represent the lens
thicknesses from M1 to each respective intermediate image point; h x ,1, h x ,2, h x ,3, h x ,4 and h y ,1, h y ,2, h y ,3, h y ,4 represent the paraxial
marginal ray heights of the X Z and Y Z planes at M1, M2, M3, M4, respectively; rx ,1, rx ,2, rx ,3, rx ,4 and r y ,1, r y ,2, r y ,3, r y ,4 represent
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Fig. 2. Schematic of the Group 1 configuration.

the radii of curvature of the X Z and Y Z planes at M1, M2, M3, M4, respectively; kx ,1, kx ,2, kx ,3, kx ,4 and ky ,1, ky ,2, ky ,3, ky ,4

represent the cones of the X Z and Y Z planes at M1, M2, M3, M4, respectively; lx ,1, lx ,2, lx ,3, lx ,4 and l y ,1, l y ,2, l y ,3, l y ,4 represent the
object distances of the X Z and Y Z planes at M1, M2, M3, M4, respectively; and l ′x ,1, l ′x ,2, l ′x ,3, l ′x ,4 and l ′y ,1, l ′y ,2, l ′y ,3, l ′y ,4 represent
the image distances of the X Z and Y Z planes at M1, M2, M3, M4, respectively.

Next, we introduce the following parameters on the basis of the paraxial approximation:


αx1 =

lx2

l ′x1
≈

h x2

h x1

αx2 =
lx3

l ′x2
≈

h x3

h x2

αx3 =
lx4

l ′x3
≈

h x4

h x3

,



αy 1 =
l y 2

l ′y 1
≈

h y 2

h y 1

αy 2 =
l y 3

l ′y 2
≈

h y 3

h y 2

αy 3 =
l y 4

l ′y 3
≈

h y 4

h y 3

,



βx1 =
l ′x1

lx1

βx2 =
l ′x2

lx2

βx3 =
l ′x3

lx3

βx4 =
l ′x4

lx4

,



βy 1 =
l ′y 1

l y 1

βy 2 =
l ′y 2

l y 2

βy 3 =
l ′y 3

l y 3

βy 4 =
l ′y 4

l y 4

. (8)

For a reflective optical system, n1 = n′2 = n3 = n′4 = 1 and n′1 = n2 = n′3 = n4 =−1. We can obtain the structural parameter
expression:


h x1 = lx1ux1

h x2 = αx1lx1ux1

h x3 = αx1αx2lx1ux1

h x4 = αx1αx2αx3lx1ux1

,


h y 1 = l y 1u y 1

h y 2 = αy 1l y 1u y 1

h y 3 = αy 1αy 2l y 1u y 1

h y 4 = αy 1αy 2αy 3l y 1u y 1

,



rx1 =
2βx1lx1

1+ βx1

rx2 =
2αx1βx1βx2lx1

1+ βx2

rx3 =
2αx1αx2βx1βx2βx3lx1

1+ βx3

rx4 =
2αx1αx2αx3βx1βx2βx3βx4lx1

1+ βx4

,



r y 1 =
2βy 1l y 1

1+ βy 1

r y 2 =
2αy 1βy 1βy 2l y 1

1+ βy 2

r y 3 =
2αy 1αy 2βy 1βy 2βy 3l y 1

1+ βy 3

r y 4 =
2αy 1αy 2αy 3βy 1βy 2βy 3βy 4l y 1

1+ βy 4

,


d1 = β1l1 − α1β1l1

d2 = α1β1β2l1 − α1α2β1β2l1

d3 = α1α2β1β2β3l1 − α1α2α3β1β2β3l1

d4 = α1α2α3β1β2β3l1

. (9)

Because G1 is an anamorphic group, it should satisfy the following conditions: rays intersect at the intermediate image point in the
X/Y direction of G1, the ratio of the X/Y magnifications of G1 is 2:1, and the ratio of the entrance pupil diameters for the X and Y
directions is 2:1. Therefore, at least three free variables need to be applied to achieve these conditions. We apply M1 as a rotationally
symmetric cone to simplify the calculation. Then, the thickness of G1 is fixed. To achieve the above conditions, we simplify the expres-
sions of some parameters as follows:

α1 = 1−
d1

β1l1

α2 = 1+
d2

β2d1 − β1β2l1

α3 =
d4

d3 + d4

,


β3 =−

d3 + d4

β2d1 + d2 − β1β2l1

β4 =−
(d2 + β2(d1 − β1l1))βG1

β1β2(d3 + d4)

, (10)

whereβG1 represents the magnification of G1.
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4. AberrationAnalysis of the ImageLensGroup (Group2)

We will not distinguish the difference in the X/Y directions in
G2 because it is an RSOS. As shown in Fig. 3, the center object
height of the image lens group is y5, the center image height
of the image lens group is y im , the stop is located between M5

and M6, and the object paraxial marginal ray angle of the image
lens group is u5. Rays are emitted from the intermediate image
point via M5 and M6 to the image point. The other quantities
are defined as follows: d5 and d6 represent the lens thicknesses
from M5 to M6 and M6 to the image plane, respectively; h5

and h6 represent the paraxial marginal ray heights at M5 and
M6, respectively; r5, r6 and k5, k6 represent the radii of curva-
ture and the cones of M5 and M6, respectively; l5, l6 and l ′5, l ′6
represent the object distances and image distances of M5 and
M6, respectively.

On the basis of the paraxial approximation, we now introduce
the following parameters:

α5 =
l6

l ′5
≈

h6

h5
,


β5 =

l ′5
l5

β6 =
l ′6
l6

. (11)

For a reflective optical system, n5 = n′6 = 1, n′5 = n6 =−1,
and h5 = l5u5, h6 = α1l5u5.

According to paraxial optical theory, we can also obtain the
following expressions for the radii of curvature and thicknesses:

r5 =
2β5l5

1+ β5

r6 =
2α5β5β6l5

1+ β6

,

{
d5 = β5l5 − α5β5l5

d6 = α5β5β6l5
. (12)

The expression for the distance between the entrance pupil
position and M5 in Group 2 is

lenpG2 =
β5l5(−1− β6 + α5)

α5(1+ β5)− β5(1+ β6)
. (13)

C. Group Matching

From the principles of object–image matching, pupil matching,
and demagnification matching, we can obtain the following
expressions:

Fig. 3. Schematic of the Group 2 configuration.


βx = βx1βx2βx3βx4β5β6

βy = βy 1βy 2βy 3βy 4β5β6

y5 =
y im

β5β6

u5 =
u1

β1β2β3β4

. (14)

Compared with the rotationally symmetric system, some
parameters cannot be expressed using the simplified formula.
The structural parameters are more complicated than those
of the anamorphic optical system. Therefore, we solve the
mathematical model numerically instead of analytically.

3. ERROR FUNCTION CALCULATION FOR THE
INITIAL STRUCTURE USING AN IMPROVED
PARTICLE SWARM SIMULATED ANNEALING
ALGORITHM

Using the aberration theory presented above, we obtain the
structural parameters and the third-order aberration coefficients
of an ORAOS. We then apply real ray tracing and calculate the
optical system constraints, including obscurations, lens thick-
nesses, image telecentricity, lens apertures, the obscuration ratio,
and angles of incidence. To balance the third-order aberrations
and control constraints, we introduce automatic adjustment
of weight factors, and then establish a mathematical model of
the above parameters. The error function of the model can be
expressed as

F = f (αx1...x5, αy 1...y 5, βx1...x6, βy 1...y 6, kx1...x6, ky 1...y 6)

=

16∑
i=1

|ωi · Di | + |constraints|

=

16∑
i=1

|ωi · Di | + |ω j ,1 ·Obscuration|

+ |ω j ,2 · BWD| + |ω j ,3 ·TEL| + |ω j ,4 · RATIO|

+ |ω j ,5 · APE| +ω j ,6 · AOI| +ω j ,7 ·DIS|, (15)

where constraints in the equation represent the constraints
listed above; Obscuration, BWD, TEL, RATIO, AOI, APE,
and DIS represent the obscurations, back working distance,
image telecentricity, obscuration ratio, maximum aperture,
maximum angle of incidence, and distances of mirrors of the
optical system, respectively; and ω represents the weight fac-
tors. The error function F reflects the value of the third-order
aberrations of the optical system and the ability of the system to
control these constraints. A smaller value of F indicates smaller
third-order aberrations in the initial structure, better control of
the constraints, and greater potential to achieve high imaging
quality.

Therefore, the essential approach to solve for the initial
structure depends on the method used to solve for the mini-
mum value of the error function, and the physical process of
solving for the structural parameters of the optical system is
thus transformed into a mathematical process to solve for the
minimum value of the parameter error function. The main goal
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is to determine how to solve for the minimum values of the high-
dimensional non-linear parameter equations, which include
constraints. A particle swarm simulated annealing algorithm
offers the following advantages: fast convergence, an ability to
jump out of local minima effectively, and a global optimization
scheme that does not rely on the initial values and is thus suitable
for high-dimensional non-linear optimization [18,23,24].

In this paper, there are 16 third-order aberration terms for the
anamorphic optical system. To balance the third-order aberra-
tion, each term should be controlled to remain small enough.
It is difficult to directly find the exact solution that satisfies the
constraints using the particle swarm simulated annealing algo-
rithm. We introduce weight factors to get a smaller F and keep
the third-order aberration small enough (1E-2), but it is also
difficult to find the exact weight factor to calculate the model.
The key to solving this model is to find the weight factor that sat-
isfies the above constraints. An auto-adjustment weight factor is
applied to calculate the model. If any third-order aberration or
constraint term has not satisfied its condition, we auto-increase

Fig. 4. Flow chart for the improved particle swarm simulated
annealing algorithm.
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Fig. 5. Convergence curve of the evaluation function for each
weight adjustment.

the weight of this term in the next iteration. Using this method,
we can get the initial structure that satisfies the constraints of the
mathematical model. As shown in Fig. 4, the main algorithm for
the design process is as follows:

Step 1: Calculate the parameters of the off-axis six-mirror
optical system and randomly initialize the positions and
velocities of the particles in the population.

Step 2: Assign weights to all constraints in the model.
Step 3: Set the initial temperature. A higher initial tem-

perature increases the probability of obtaining a high-quality
solution, but the time required also increases. Therefore, the
process for determining the initial temperature should consider
both the calculation efficiency and the optimization quality.

Step 4: Evaluate the fitness of each particle and calculate the
individual best value and the global best value; the individual
best value represents the best solution found for each particle.
Then find a global value from these best solutions, which is
called the global best value solution.

Step 5: Use the simulated annealing algorithm and the parti-
cle swarm algorithm to update the position and the velocity of
each particle.

Step 6: On the basis of the fitness value, update the individual
best value and the global best value solution for each particle.

Step 7: This is the cooling stage. As T decreases, the algorithm
becomes stable, and the probability of selecting a poor solution
thus decreases. Finally, T drops to the condition required to ter-
minate the iteration.

Step 8: This is the termination condition. If the termination
condition is met (i.e., the error is good enough or the maximum
number of cycles has been reached), then exit; otherwise, return
to step 4.

Step 9: Calculate the values of the current structural parame-
ters and constraints. If the termination condition is met (i.e., the
constraints satisfy the conditions or the maximum number of
cycles has been reached), then exit; otherwise, return to step 2.

Step 10: From the calculation results based on the algorithm,
we obtain the initial structural parameters of the ORAOS.

The initial structure of the ORAOS is solved using the
improved particle swarm simulated annealing algorithm. The
main parameters for this algorithm are the number of particles,
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Fig. 6. Distribution of maximum third-order aberration
coefficients for each weight adjustment.

Fig. 7. Schematics of the initial ORAOS structures.

N = 2000; the learning factors, c 1 = 2.05 and c 2 = 2.05; the
annealing constant, 0.42; and the maximum number of itera-
tions, M = 100. Figure 5 shows the convergence curve of the
evaluation function for each weight adjustment. Each point
in the curve is the global best error at the specified iteration in
each cycle. The error function decreases after 19 cycles (1900
iterations) and converges to a low value close to zero. Figure 6
shows the distribution of the maximum third-order aberration
coefficients for each weight adjustment. The third-order aberra-
tion is controlled in the first 15 cycles, but other constraints do
not satisfy the conditions. There is a dynamic balance between
aberrations and constraints from the 15th to the 19th cycle. The
diagram of the initial structure is shown in Fig. 7.

4. OPTIMIZATION AND PERFORMANCE

We use an anamorphic aspherical surface to further optimize
the designs of the initial structures shown above. We first add
high-order coefficients to the anamorphic aspherical surfaces,
and then we control the steps for the disturbances for each vari-
able during the optimization process (where a step that is too
large may skip an extreme value, and a step that is too small may
fall into a local minimum). Using these principles, we optimize
the above-mentioned initial structures, but the image quality
is too poor. To get more degrees of freedom of optimization,
we expand the anamorphic aspherical coefficients to the 16th

Fig. 8. Schematic of the optimized ORAOS structure.

Table 1. ORAOS Specifications

Parameter Performance

Wavelength (nm) 13.5
Numerical Aperture NA 0.55
Field of View (mm×mm) 26× 0.5 Rectangle
Reduction Ratio Mx = 4, My = 8
Wavefront Error RMS (λ) 0.031
Chief Ray Angle on Mask (◦) 5.35
Max Distortion (nm) 2
Max Image Telecentricity (mrad) 0.35
Total Track (mm) 1667
Obscuration ratio 27%

order, but it is still difficult to achieve a high-quality anamorphic
optical system design.

To get more degrees of freedom to balance the asymmetric
aberration, an X Y polynomial surface is applied to optimize
further. The expression is

Z =
c r 2

1+
√

1− (1+ k)c 2r 2
+

66∑
j=2

C j x m y n,

j =
(m + n)2 +m + 3n

2
+ 1. (16)

We first convert the initial structures to an X Y polyno-
mial and perform a Taylor expansion of Eq. (1) to keep the
third-order aberration fixed. The object field size is
104 mm× 8 mm, and the length in the X direction is much
larger than in the Y direction. The coefficients of odd orders
of x are set to zero to simplify the optimization process and
improve its efficiency. Using the X Y polynomial surface, we
obtain an ORAOS design with high imaging quality. Figure 8
shows the design layout for this ORAOS, and the specific system
parameters are given in Table 1. Figure 9 shows the distribu-
tion of distortions in the full image field. Figure 10 shows the
distribution of the RMS wavefront error in the full image field.

Figure 11 shows the modulation transfer function curve
which is close to the diffraction limit.
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Fig. 9. Distribution of distortions in the full image field.

Fig. 10. Distribution of the RMS wavefront error in the full image
field.

5. CONCLUSIONS

This paper has proposed a fast and effective method of designing
an off-axis reflective anamorphic optical system. First, we cal-
culated the third-order aberration of the ORAOS using vector
aberration theory, and then used spatial ray tracing and group
design to parameterize the structural parameters, aberration
coefficients, and constraints of the anamorphic optical system.
Second, automatically adjusted weighting factors were intro-
duced to dynamically balance the aberrations and constraints.
A mathematical model to calculate the ORAOS parameters was
established. A particle swarm simulated annealing algorithm
was used to iteratively solve the error function, quickly and
effectively realizing the initial structural design for aberration
balance and multi-constraint control. Finally, we completed the
design of the ORAOS with suitable engineering feasibility to
give an RMS wavefront error of better than 1/30λ.

To obtain more degrees of freedom, vector aberration theory
was applied to an off-axis tilted component optical system.
This method can be extended to an off-axis tilted component
multi-reflection anamorphic optical system. The method can
realize an initial structure of such a system that satisfies aberra-
tion balance and multi-constraint control. This provides a good
starting point for achieving very high imaging quality for the
off-axis tilted component multi-reflection anamorphic optical
system.
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