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Abstract: Occulters with multiple-disk structure are commonly used for mitigating the diffrac-
tion light from specific incident angles in external coronagraphs. In the design phase of
coronagraphs, it is of great importance to calculate the diffraction propagation of the occulters
with high accuracy and high efficiency. In this paper, an analytical method is proposed for the
diffraction analysis of multiple-disk occulters based on uniform boundary wave (BDW) diffraction
theory. First, an analytical propagator with Fresnel functions is derived for single-disk case, of
which the accuracy and efficiency are demonstrated by a numerical example. Then it is proved
that the propagator in multiple-disk case was just the iterative use of the single-disk one when
neglecting the gradient diffraction term. The analytical propagator presents much improvement
on simplification and efficiency compared to former numerical propagators, and hence, is of
great significance to future external coronagraph design and analysis.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Occulters with multiple-disk structure are commonly used for mitigating the diffraction light
from specific incident angles in external coronagraphs. First proposed in [1], multiple-disk
external occulters were successfully used in former solar exploration missions, such as the SMM
[2], LASCO-C2 [3] and SECCHI-COR2 [4]. The performance of coronagraphs is mainly subject
to the constraint brought by the halo of diffraction from the direct sunlight [5]. During the initial
design phase, calculating the diffraction propagation with high accuracy and high efficiency will
contribute to better evaluation of the performance and shorten the time of iterative designs.

To achieve this goal, various methods have been proposed for the analysis of diffraction
effects by external occulters in solar coronagraphs, which can be roughly divided into two types.
The first one is based on Fresnel-Kirchoff wavelet integral. In circular symmetric case, the
Fresnel-Kirchoff integral can be expressed as a 1-dimensional integral with Bessel functions
[6]. Recently, Aime proposed the analytical expression of Fresnel-Kirchoff integral in two-disk
diffraction case and gave a numerical demonstration [7]. An analytical propagator for three or
more disks diffraction, which is the same goal of this paper, was given but was not numerically
demonstrated since the form is much too complex. Another method is based on boundary wave
(BDW) diffraction theory. In [8], Lenskii derived the expression of boundary wave integral
for the case of multiple-disk external occulters, and provided the solution at the on-axis point
instead of a feasible numerical algorithm for general diffraction fields. In [9], Rougeot and Aime
proposed a BDW integral representation for serrated external occulters. In stellar coronagraph,
BDW theory has been also successfully used for diffraction analysis [10][11]. High order BDW
formulation over multiple apertures has been theoretically and experimentally studied in [12] and
[13]. However, this formulation cannot be used in the multiple-disk case.
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According to BDW theory, the diffraction fields can be described as the sum of two terms, i.e.,
the boundary diffraction waves along the occulter’s boundary in the form of 1D integral, and the
geometrically incident wave depending on the situation. In the sense of mathematics, the boundary
wave integral is equivalent to the Fresnel-Kirchoff integral with the Stokes transformation [14].
In most cases, using BDW theory to calculate diffraction effects is more efficient, as proved
by Rougeot [5], due to the existence of one oscillating term ejkS in the 1D integral. While the
nature of Fresnel-Kirchoff integral is 2D, and when being simplified to 1D it will induce another
oscillating term Bessel function. Calculation efficiency is more important in multiple-disk
diffraction due to the fact that the calculation process will be iteratively used for several times.
Nevertheless, an intrinsic problem prevents BDW theory from being widely used, that is, the
integral is divergent at the exact boundary positions and leads to false results.

To solve this problem, in [15], Umul proposed the so-called uniform BDW theory by introducing
a field parameter and provided a uniform expression of BDW integral for the case of semi-infinite
half plane. In this paper, uniform BDW theory was used to solve the diffraction problem of
multiple-disk occulters in external coronagraphs. The theory of BDW and uniform BDW theory
were briefly introduced in Section 2, and an analytical propagator in single-disk diffraction case
was approached using uniform BDW theory in Section 3 as a preparation; besides, the results
were compared with Fresnel-Kirchoff integral method to prove the accuracy and efficiency. In
Section 4, the case of multiple-disk diffraction was dealt with. The secondary diffraction wave
was generated by non-planar diffraction field, which will result in an additional term called the
gradient diffraction wave. We derived the expression of gradient diffraction wave and proved on
numerical basis that its influence was too small to be included. Thus, we obtained an analytical
propagator for multiple-disk diffraction by iterative utilization of the single-disk diffraction
propagator.

2. Brief review of uniform BDW theory

In this section, the BDW diffraction theory and the improved version - uniform BDW theory will
be briefly reviewed [15]. The BDW theory describes the diffraction wave field at observation
point P as ⎧⎪⎪⎨⎪⎪⎩

U(P) = UG(P) + UB(P), P in illuminated region

U(P) = UB(P), P in shadow region
, (1)

where UG(P) refers to the geometrical propagation wave, and UB(P) represents the boundary
wave. Considering a point source illuminating an aperture (shown in Fig. 1), the geometric
propagation wave at point P can be expressed as a spherical wave,

UG(P) =
exp(jkr)

r
, (2)

where k refers to the wave number and r represents the distance from the point source to the
observation point. The boundary wave can be expressed as the following integral along the edge
contour [16],

UB(P) =
1

4π

∮
C

ejk(r0+Re)

r0Re
·

sinα
1 − cosα

· sin(r0, dl)dl, (3)

In Eq. (3), r0 refers to the distance from the point source to the aperture edge; Re refers to
the distance from the edge to the observation point P, and α represents the angle between the
shadow boundary and the boundary wave from the edge to the observation point. From the
mathematics point of view, the BDW expression is equivalent to Huygens principle due to the
Stokes integral transformation. Nevertheless, when the observation point is located exactly at the
shadow boundary, there will be α = 0 and the integral will be infinite, leading to a false result.
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Fig. 1. Scheme of the diffraction of a point source by an aperture

The uniform BDW theory is proposed by introducing a new parameter [15]

V =
∂

∂k
[e−jkR0R0UB(P)]. (4)

In Eq. (4), R0 has the value of r0 + Re(α = 0). Then the diffraction field can be expressed in an
integral form,

UB(P) =
ejkR0

R0

∫∞

k
V(η)dη. (5)

Substituting (3) into (4), we obtain the expression of V as

V =
jR0
4π

∫
C

ejk(r0+Re−R0)

r0Re
·
(r0 + Re − R0) sinα

1 − cosα
· sin(r0, dl)dl. (6)

Suppose that the edge contour of C is continuous or the limits of the integral are infinity.
Considering that there is only one exponential oscillating term in the integral, the stationary
phase method is available for the approximate solution [16]. Denote the phase function as

g(l) = r0 + Re − R0. (7)

The stationary phase points locate at g′(l) = 0, denoted by ls. Then near the stationary phase
point we make a 2nd order Taylor expansion and get

g(l) ≈ g(ls) +
1
2

g′′(ls) · (l − ls)2. (8)

Using this expansion, Eq. (6) can be also expanded near ls,

V ≈
jR0
4π

·
ejkg(ls)

r0sRes
·

g(ls) · sinαs

1 − cosαs
· sin(r0s, dls)

∫∞

−∞

ejk g′′(ls)
2 (l−ls)2dl, (9)

where the subscript s denotes the value at ls. If g(l) has more than one stationary phase points
within the integral limit, we should expand (6) at each point and the final result will be the sum.
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The integral of Gaussian function on infinity intervals can be analytical expressed. Therefore, we
get

V =
ejπ/4R0

2
√

2π
·

ejkg(ls)

r0sRes
√︁

kg′′(ls)
·

g(ls) · sinαs

1 − cosαs
· sin(r0s, dls). (10)

Substituting (10) into (5), we can obtain the diffraction field in the form of integral about the
wavenumber k,

UB(P) =
ejπ/4 · ejkR0

2
√

2π
·

g(ls)
r0sRes

√︁
g′′(ls)

·
sinαs

1 − cosαs
· sin(r0s, dls) ·

∫∞

k

ejηg(ls)
√
η

dη. (11)

The integral can be analytically expressed using Fresnel function after making a variable
transformation as

π

2
t2 = ηg(ls), (12)

and the integral is∫∞

k

ejηg(ls)
√
η

dη =

√︄
2π

g(ls)
·

∫∞

ξs

ej π2 t2dt =

√︄
2π

g(ls)
· [

1
2
− Fc(ξs) +

1
2

j − j · Fs(ξs)], (13)

where ξs =
√︂

2kg(ls)
π . Fc and Fs denote the Fresnel cosine and sine functions respectively. Then

we get the analytical expression of the diffraction field as

UB(P) =
ejπ/4 · ejkR0

2
√
π

·

√︁
g(ls) · sinαs · sin(r0s, dls)

r0sRes
√︁

g′′(ls) · (1 − cosαs)
· [

1
2
− Fc(ξs) +

1
2

j − j · Fs(ξs)]. (14)

In the derivation process, the only assumption made is that the exponential term ejkg(l) is a fast
oscillating term and the integral result is only related with the stationary phase point, which
means g(l) should be much larger than the wavelength. In the case that g(l) is too small compared
with the scale of the wavelength, the stationary phase approximation cannot be tenable and
an alternative simplification should apply. In the next section, we will show this in specific
conditions.

3. Diffraction by a single disk

The diffraction by a single disk presents a rather fundamental problem in physical optics. In this
section, uniform BDW theory as above will be used to derive an analytical propagator, which is
the basis of multiple-disk case. Fresnel-Kirchoff integral method has been proved to be available
for good prediction in this case, therefore, it was employed as a comparing method to demonstrate
the accuracy and efficiency of this propagator.

The scheme is shown in Fig. 2. Suppose the incident light is in parallel with the z-axis. The
radius of the disk is Rb, and the observing plane is at z = z0. The occulter is supposed to be totally
absorptive and reflective so the incident field within the occulter’s range is zero. For convenience
in circular symmetric case, polar coordinate is utilized in this paper where the boundary point is
denoted by (Rb cos θ0, Rb sin θ0, 0) and the observing point P is (r cos θ, r sin θ, z0). Thanks to
the circular symmetry, it is only needed to calculate the diffraction field along one direction. In
that case, we suppose θ = 0.

Here we express the parameters in the integral of Eq. (3) in vector form for convenience since
the coordinate can be directly used and the need to calculate a series of angles is thus saved.

UB(r) =
1

4π

∫
ejkS

S
·

p⃗ × s⃗
1 − p⃗ · s⃗

· dl⃗. (15)

p⃗ represents the unit vector of the geometrically incident ray. The p⃗ vector is (0, 0, 1)T since the
incident light is supposed to be along z-axis. S represents the distance from the source point at
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Fig. 2. Scheme of the diffraction of a single disk

the edge of the disk to the observation point, with s⃗ as the corresponding unit vector,

S =
√︂

R2
b + r2 − 2Rbr cos θ0 + z2

0, s⃗ =
1
S

⎛⎜⎜⎜⎜⎝
r − Rb cos θ0
0 − Rb sin θ0

z0

⎞⎟⎟⎟⎟⎠
. (16)

The differential element dl⃗ can be expressed as

dl⃗ = Rb · dθ0 · ( sin θ0, − cos θ0, 0 )T . (17)

Substituting (16) and (17) into (15), we obtain

UB(r) =
1

4π

∫ 2π

0

ejkS

S
·

Rb(r cos θ0 − Rb)

S − z0
dθ0. (18)

Then the field parameter V given by Eq. (4) is

V =
j

4π

∫ 2π

0

ejk(S−z0)

S
·Rb(r cos θ0 − Rb)dθ0. (19)

The limit of the integral in (19) is not infinity, but stationary phase approximation is still available
to be utilized here when extending the integral limit by the periodicity of cosine function, as what
have been done in stellar coronagraphs [11]. The derivation of S − z0 about θ0 is expressed as:

∂(S − z0)

∂θ0
=

Rbr sin θ0
S

. (20)

The critical points are θ0 = 0 and θ0 = π, which are along the radial direction of the observation
from the same side and the opposite side respectively. The second order derivations at these two
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points are expressed as: ⎧⎪⎪⎨⎪⎪⎩
∂2(S−z0)

∂θ2
0
=

Rbr
S , θ0 = 0

∂2(S−z0)

∂θ2
0
=

−Rbr
S , θ0 = π

. (21)

Thus, the analytical solution of Eq. (19) under stationary phase approximation is obtained as:

V =
j

4π
ej π4 ejkz0 [

√︃
2πS1
kRbr

·
Rbr − R2

b
S1

· ejkS1 +

√︃
−2πS−1

kRbr
·

Rbr + R2
b

S−1
· ejkS−1 ], (22)

where
S1 =

√︂
z2
0 + (Rb − r)2, S−1 =

√︂
z2
0 + (Rb + r)2. (23)

Substituting (22) and (23) into (5), we can get the diffraction field in the form of integral about
the wavenumber k

UB(r) =
jej π4

4π
ejkz0

√︃
2π
Rbr

· [

∫∞

k

√︄
1
ηS1

·
Rbr − R2

b
S1

· ejη(S1−z0)dη

+

∫∞

k

√︄
−1
ηS−1

·
Rbr + R2

b
S−1

· ejη(S−1−z0)dη]

(24)

Using the same method in Section 2, the analytical expression of the integral in (24) can be
obtained by means of Fresnel cosine and sine functions, that is,∫∞

k

√︄
1
ηS1

·ejη(S1−z0)dη =
√︃

2π
S1 − z0

· [
1
2
+

1
2

j − Fc(
√︃

2k
π
(S1 − z0)) − j · Fs(

√︃
2k
π
(S1 − z0))]

=

√︃
2π

S1 − z0
I1

(25)
and∫∞

k

√︄
1
ηS−1

·ejη(S−1−z0)dη =
√︃

2π
S−1 − z0

· [
1
2
+

1
2

j − Fc(
√︃

2k
π
(S−1 − z0)) − j · Fs(

√︃
2k
π
(S−1 − z0))]

=

√︃
2π

S−1 − z0
I−1

(26)
We hereby denote the expression as I1 and I−1 for short. Substituting (25) and (26) into (24), the
analytical expression of the diffraction field can be obtained as

UB(r) =
jej π4

2
√

Rbr
ejkz0 · [

Rbr − R2
b√︁

S1(S1 − z0)
I1 +

Rbr + R2
b√︁

S−1(S−1 − z0)
I−1]. (27)

Equation (27) seems still to be singular at the edge when r = Rb, where S1 = z0 and 1√
S1−z0

→ ∞.
However, the term of Rbr − R2

b also equals to zero and their production is provided with a finite
value. Denote the angle between p⃗ and s⃗1 as β1, and there is

|r − Rb | = S1 sin β1, z = S1 cos β1. (28)

Then we will get
Rbr − R2

b√︁
S1(S1 − z0)

= ±
RbS1 sin β1

S1
√︁

1 − cos β1
= ±

√
2Rb cos

β1
2

. (29)

Equation (29) is positive when r ≥ Rb and negative when r<Rb, which means discontinuity exists
at the edge. This is logical and necessary since BDW theory defines the diffraction field in a
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discontinuous form at the edge contour by adding a geometrical propagation term. Therefore, the
BDW term should also be discontinuous at the edge to make the total diffraction field continuous.
By means of the same simplification to the other stationary phase point, we have

Rbr + R2
b√︁

S−1(S−1 − z0)
=
√

2Rb cos
β−1
2

, (30)

where β1 refers to the angle between p⃗ and s⃗−1. No sign marker is in Eq. (30) since Rb and r are
always positive. Therefore, the diffraction field of a single disk can be analytically expressed as

U(r) =
⎧⎪⎪⎨⎪⎪⎩

jej π4 ejkz0
√

2Rbr [−RbI1 cos β1
2 + RbI−1 cos β−1

2 ], r<Rb

jej π4 ejkz0
√

2Rbr [RbI1 cos β1
2 + RbI−1 cos β−1

2 ] + ejkz0 , r ≥ Rb

. (31)

Unfortunately, singularity still exists in Eq. (31) at r = 0 due to the stationary phase approximation
employed in the derivation. As stated in Section 2, when r is very small compared with the
scale of wavelength, or in another word, when the field at the central point and neighboring
positions are calculated, the stationary phase approximation cannot give good accordance without
the characteristics of highly oscillating. In paraxial region, S can be expressed in Fresnel
approximation as follows,

S =
√︂

z2
0 + r2 + R2

b − 2Rbr cos θ0 ≈ z0 +
r2 + R2

b − 2Rbr cos θ0
2z0

. (32)

To keep the stationary phase approximation tenable, there should be

kRbr
z0

≫ 1, (33)

or
r ≫

z0
kRb
=
λz0

2πRb
. (34)

Considering the scale of wavelength, this threshold is usually very small. As a comparison, the
first zero-point of Arago spot is 1.53λz0

2Rb
, which is 4.8 times of this value. This means that the

diffraction field at most points can be calculated by (31). However, in external solar coronagraphs,
the radial sampling should be much tighter than Arago spot for the following calculation of
propagation in the optical system based on Shannon’s criteria [5]. In this case, we should date
back to the original boundary wave integral Eq. (18). Since r is small, there will be r cos θ0 ≪ Rb
and Eq. (18) will be approximated as follows:

UB(r) ≈
1

4π

∫ 2π

0

ejkS

S
·
−R2

b
S − z0

dθ0. (35)

Using Fresnel approximation to S, (35) can be further simplified as

UB(r) ≈ −
1

2π
ejkz0ejk

r2+R2
b

2z0

∫ 2π

0
e−j krRb

z0
cos θ0dθ0

= −
1

2π
ejkz0ejk

r2+R2
b

2z0 J0(
krRb

z0
),

(36)

where J0(x) is the 1st class Bessel function, and Eq. (36) is also an analytical expression in a very
clear form. It is available to artificially definite a boundary, at which Eq. (36) is used for smaller
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r and Eq. (31) is used for larger r. Typically, for example, we can just choose the zero-point of
Arago spot as the boundary. Finally, so far, we obtain the analytical solution for the diffraction by
means of a single disk based on uniform BDW theory

U(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
− 1

2π ejkz0ejk
r2+R2

b
2z0 J0(

krRb
z0

), r< 1.53λz0
2Rb

jej π4 ejkz0
√

2Rbr [−RbI1 cos β1
2 + RbI−1 cos β−1

2 ], 1.53λz0
2Rb

≤ r<Rb

jej π4 ejkz0
√

2Rbr [RbI1 cos β1
2 + RbI−1 cos β−1

2 ] + ejkz0 , r ≥ Rb

. (37)

From the mathematics point of view, this propagator is not perfect due to the fact that it induces
discontinuity to the diffraction field at the zero-point of Arago spot. However, in practice, it is
available to present accurate results if only the diffraction field at discrete positions is concerned.

Equation (37) is derived in the case that the incident light propagates along the z-axis. In the
case of off-axis, the diffraction field is the lateral shift compared to the on-axis light, as proved in
[6]. Suppose the incident light is at the tilt angle of (α, β) with x-axis and y-axis respectively, the
diffraction field is described by

U(x, y,α, β) = e−jk(αx+βy)e−j kz0
2 (α2+β2)U(x + z0 tanα, y + z0 tan β, 0, 0). (38)

The holding condition of the propagator is discussed here since during the derivation process,
two approximations have been used. The first one is the stationary phase approximation to the
uniform BDW integral Eq. (19). The holding condition is that the integrand is exponentially fast
oscillating within the integration range as expressed in Eq. (33). In another word, this propagator
is more appropriate for high Fresnel number systems. For example, if we want the approximation
is valid at r>Rb/1000, the Fresnel number should be much larger than 160. Actually, it is an
easily satisfied condition for actual coronagraph systems (usually much higher than 1000). The
second approximation is the Fresnel approximation, employed in the derivation of the central
region field, and the holding condition is the same as used in Huygens-Fresnel principle.

A numerical demonstration was implemented to prove the accuracy of the analytical propagator,
and the results were compared with those obtained with Fresnel-Kirchoff integral method. Here,
the design of solar coronagraph ASPIICS was used, given in [5] since it is most close to the actual
usage. The radius of the external occulter is Rb = 710mm, and the distance between the occulter
to the entrance pupil is z0 = 144.348m. Besides, the wavelength is 550 nm, corresponding to the
Fresnel number of 6349.5. Other parameters of the optical system are left unused in this paper
when only the diffraction was calculated with the external occulter.

Fresnel-Kirchoff theory provides the solution of circular diffraction in a radial Hankel
transformation term [6],

U(r) = 1 −
ejλz0ej kr2

2z

jλz0

∫ R

0
2πρ · ej kρ2

2z · J0(
kρr
z

) · dρ. (39)

The integral was analytically calculated with the sum of Lommel series. 50 terms were used in
general regions while 2000 terms were used near the shadow boundary due to the much slower
convergence of Lommel series at this region. In the radial direction, 105 discrete points were
sampled between r = 0 to 1.2Rb. The field intensity based on the two propagators and their
differences in logarithmic scale was shown in Fig. 3, and the two results matched perfectly. In
the shadow region, the differences were typically below 10−5 scale while the actual intensities
were 10−3∼10−4, while in the illuminated region, the field intensity was oscillating around 1 and
the differences were at 10−3 scale. Nevertheless, the difference near the shadow boundary is
still obviously higher than that of other regions (shown in Fig. 3(c)). Therefore, we numerically
calculated the Fresnel-Kirchoff integral by adaptive Gauss-Kronrod (15th and 7th order formulas)



Research Article Vol. 29, No. 3 / 1 February 2021 / Optics Express 2961

method. The calculation results and the difference with uniform BDW theory were showed in
Fig. 3(d), which showed better accuracy and no divergence at the transition between shadow and
illuminated regions. This indicates that the difference in Fig. 3(c) was mainly caused by the
cut-off error of Lommel series, not the uniform BDW theory (We tried to increase the order to
10000 but the “peak” of the difference still exists). The convergence at the transition point proved
the most important improvement of uniform BDW theory compared with the traditional BDW
theory.

Fig. 3. The diffraction fields calculated by the analytical propagator of uniform BDW theory
and Fresnel-Kirchoff integral method. Panel a: full range, in logarithmic scale. Panel b:
zoom in the Arago bright spot in the central region, in logarithmic scale. Panel c: zoom
in the transition region around the edge, in logarithmic scale. Panel d: comparison of the
results given by uniform BDW theory and adaptive numerical solution of Fresnel-Kirchoff
integral in the transition region

In the central region showed in Fig. 3(b), the relative difference within the Arago spot, which
is calculated by Fresnel approximation of original BDW integral, is obviously smaller, than the
outer region, which is calculated by the propagator given by uniform BDW theory. Nevertheless,
no matter which propagator, the relative difference to Fresnel-Kirchhoff integral is below 10−3,
which shows good accordance.

Although a little less convenient, the propagator within the Arago spot is a necessary supplement
to the final analytical propagator since the telescope is usually located at the center in coronagraphs.
However, the Arago spot of external occulters is usually small and make the influence actually
small. Take the design of solar coronagraph ASPIICS as an example, the radius of Arago spot
at 550 nm wavelength is 0.085mm, compared to the 25mm radius entrance pupil. That means
most of the diffraction fields will be calculated by the uniform BDW propagator. In stellar
coronagraphs, the Fresnel number will be much higher than that of solar coronagraphs since the
inner working angle is only the scale of 0.01∼0.1 arcsec, which will make the Arago spot even
smaller.



Research Article Vol. 29, No. 3 / 1 February 2021 / Optics Express 2962

In the premise of good accuracy, when comparing the calculation efficiency, the uniform BDW
theory still shows higher calculation efficiency, although both propagators are analytical. It takes
about 4 minutes to calculate 105 points using Lommel series solution of Fresnel-Kirchoff integral
on a general PC, while the same calculation by BDW propagator only needs about 1.5 minutes,
which is faster by more than 2 times. It is easy to understand since the calculation of high order
Lommel series near the boundary is more time-consuming.

In Fig. 4, the contribution of the two stationary phase points was shown respectively. The
diffraction field induced by θ0 = 0 showed the highest values near the shadow boundary, and
decreased rapidly when the observation points got far away. The opposite side stationary phase
point should follow the same tendency. Therefore, the two diffraction fields were of almost the
same scale near the central region, while the contribution of the same side stationary phase point
was 2∼5 orders higher when r was larger. Near the boundary region, the diffraction field was
almost totally induced by θ0 = 0.

Fig. 4. Diffraction fields induced by the two stationary phase points

4. Diffraction by multiple-disk occulter

The propagator for multiple-disk diffraction based on the analytical propagator for single disk
diffraction will be proposed in this section. The classical three-disk occulter was used as an
example, and the scheme was shown in Fig. 5. The second disk is located in the shadow region of
the first disk, and the third disk is in the shadow of the second one. Therefore, the following disks
will diffract the light for one more time and hence lower the energy projected to the entrance
pupil plane. In practice, the radius of the sun disk should be considered, however, in this paper,
we maintain the assumption that the incident light is along the z-axis as what we did in Section 3,
and hence the scheme is still circular asymmetric. The radius of the three disks are denoted by
R1, R2 and R3 respectively, and the distance between the disks is denoted by d. The observation
point is located at the entrance pupil plane of the coronagraph with the coordinate of z = z0;
besides, α1, α2 and α3 are the occulting angles of the disks, which represent the angle between
the shadow boundary and the connection line of the disk edge.

The propagation process in the case of three-disk can be regarded as three successive diffractions,
which propagate from disk-1 to disk-2, from disk-2 to disk-3 and from disk-3 to the entrance
pupil plane of the coronagraph. The diffraction field at disk-2 plane can be accurately calculated
using Eq. (37). However, the calculation of the second and third diffractions is more complicated
since the incident light at disk-2 and disk-3 plane is a non-planar wave in the illuminated region.
According to the extension theory of BDW raised by Suzuki [17], when the incident light is not a
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Fig. 5. Scheme of the diffraction of a three-disk occulter

planar wave, every point where the gradient is not zero will be the origin of a secondary wave
besides the BDW and geometrical wave. This diffraction wave contributes another term in the
expression of the diffraction field, which is called gradient diffraction wave.

Anyhow, the boundary diffraction term will be derived first. Using BDW theory as diffraction
propagator, no matter in scalar form (See Eq. (3)) or vector form (See Eq. (15)), and the direction
of the incident light needs to be determined as a precondition. As per BDW theory, in the shadow
region, the diffraction field is caused by the edge of the occulter and the main contribution is from
the two stationary phase points. Referring to the edge point at disk-2 Q2(R2, 0, d), the stationary
phase points at the edge of disk-1 are denoted by Q1(R1, 0, 0) and Q′

1(−R1, 0, 0) respectively. We
hereby define

UQ1Q2 =
−jej π4 ejkd
√

2R1R2
R1 cos

α1
2
[
1
2
+

1
2

j − Fc(
√︃

2k
π
(SQ1Q2 − d)) − j · Fs(

√︃
2k
π
(SQ1Q2 − d))], (40)

and

UQ′
1Q2 =

jej π4 ejkd
√

2R1R2
R1 cos

α1
′

2
[
1
2
+

1
2

j−Fc(
√︃

2k
π
(SQ′

1Q2 − d)) − j ·Fs(
√︃

2k
π
(SQ′

1Q2 − d))], (41)

to represent the two fields propagated from Q1 and Q′
1. Then the diffraction field at Q2 is

expressed as:
UB(Q2) = UQ1Q2 + UQ′

1Q2 . (42)

As demonstrated in Section 3, near the shadow boundary, the contribution of the opposite side
stationary phase point is much smaller than that of the same side one. Therefore, we make the
approximation that

UB(Q2) ≈ UQ1Q2 , (43)

and hence the diffraction light at Q2 propagates along the orientation of QQ1. In another word,
the diffraction light at the edge point of disk-2 propagates from the corresponding stationary
phase point at the same side of disk-1.

The BDW field at the edge of disk-3 can be calculated at given direction of incident ray.
Unfortunately, Eq. (37) cannot be directly used here since the incident light is in different
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orientations at different edge points. Therefore, we should go back to the vector form of the BDW
integral Eq. (15).

The coordinate of the edge point Q3 at disk-3 is (R3, 0, 2d), and the source point at the edge of
disk-2 is denoted by (R2 cos θ2, R2 sin θ2, d). The unit vector of the incident ray is expressed as:

p⃗ = (sinα1 cos θ2, sinα1 sin θ2, cosα1)
T . (44)

The propagation vector from the source point to the observation point is expressed as:

s⃗ =
1
S

⎛⎜⎜⎜⎜⎝
R3 − R2 cos θ2
0 − R2 sin θ2

d

⎞⎟⎟⎟⎟⎠
, S =

√︂
R2

2 + R2
3 − 2R2R3 cos θ2 + d2. (45)

The differential element dl⃗ can be expressed as

dl⃗ = R2 · dθ2 · ( sin θ2, − cos θ2, 0 )T . (46)

Substituting (44) ∼ (46) into (15), we obtain

UB(Q3) =
UB(Q2)

4π

∫ 2π

0

ejkS

S
·

R2d sinα1 + R2
2 cosα1 − R2R3 cos θ2 cosα1

S − d cosα1 + R2 sinα1 − R3 sinα1 cos θ2
dθ2. (47)

Despite of the fact that the expression seems more complicated, the following procedure is exactly
the same as what we did in Section 3, except that we neglect the opposite side stationary phase
point Q′

2. We hereby give the final result only as follows:

UB(Q3) = UB(Q2) ·
−jej π4 ejk[d cosα1+(R3−R2) sinα1]

√
2R2R3

R2 cos
α2
2
[
1
2
+

1
2

j − Fc(ξ1) − j · Fs(ξ1)], (48)

where
ξ1 = {

2k
π
[

√︂
d2 + (R3 − R2)

2 − d cosα1 − (R3 − R2) sinα1]}
1
/2. (49)

Compared with the normal incidence case, the only difference in Eq. (48) is the substitution of
the vertical distance d with a tilt factor d cosα1 + (R3 − R2) sinα1.

Now we turn to the gradient diffraction wave term. To make it simple, we directly use the
conclusion of Suzuki (Eq. (13) and (14) in [17]). The gradient diffraction wave can be expressed
as

UT (Q3) =
1

4π

∫∫
(∇U2(r) × w⃗) · n⃗dSI , (50)

where SI refers to the input aperture surface, or the illuminated region at disk-2 plane in another
word, and n⃗ refers to the normal vector of SI . U2(r) represents the diffraction field at disk-2 plane,
and w⃗ refers to the vector form integrand in Eq. (15)

w⃗ =
ejkS

S
·

p⃗ × s⃗
1 − p⃗ · s⃗

, (51)

where all parameters are defined in the same way. Denote the coordinate of the source point as
(r2 cos θ2, r2 sin θ2, d), then we get the expression of the parameters as follows:

p⃗ =
⎛⎜⎜⎜⎜⎝

sinα1 cos θ2
sinα1 sin θ2

cosα1

⎞⎟⎟⎟⎟⎠
, s⃗ =

1
S

⎛⎜⎜⎜⎜⎝
R3 − r2 cos θ2
0 − r2 sin θ2

d

⎞⎟⎟⎟⎟⎠
, S =

√︂
r2
2 + R2

3 − 2r2R3 cos θ2 + d2. (52)



Research Article Vol. 29, No. 3 / 1 February 2021 / Optics Express 2965

U2(r2) refers to a circular symmetric function, therefore, the gradient is along the radial direction.
Denote that

∇U2(r2) = U′
2(r2) · (cos θ2, sin θ2, 0)T , (53)

and then the scalar form of (50) can be obtained as:

UT (Q3) =
1

4π

Ro∫
R2

2π∫
0

ejkS

S
·

(R3 cos θ2 − r2) cosα1 − d sinα1
S − d cosα1 − (R3 cos θ2 − r2) sinα1

· U′
2(r2)r2dr2dθ2, (54)

where Ro represents the outside radius of the input aperture. Equation (54) has to be further
simplified due to the fact that it is difficult to implement numerical calculation against the 2D
oscillating integral. The integration about θ2 is similar to the BDW integral, and stationary phase
approximation can be employed to simplify the 2D integral to 1D. Similar to the derivation in
Section 3, the stationary phase points are θ2 = 0 and θ2 = π. Then we get

UT (Q3) =
1

4π

Ro∫
R2

√︃
λ

r2R3

{︃
[(R3 − r2) cosα1 − d sinα1]ejkS23

√
S23[S23 − d cosα1 − (R3 − r2) sinα1]

+
j[(R3 + r2) cosα1 + d sinα1]ejkS−23

√
S−23[S−23 − d cosα1 + (R3 + r2) sinα1]

}︃
· U′

2(r2) · r2 · dr2,

(55)

where
S23 =

√︂
d2 + (R3 − r2)

2, S−23 =

√︂
d2 + (R3 + r2)

2. (56)

In Eq. (55), the stationary phase method is not directly available to determine the integral about
r2 on an analytical basis due to the fact that U′

2(r2) is also a highly oscillating function along the
radial direction based on the Fresnel function in U2(r2). Considering the specific expression of
the derivation of the Fresnel function,

∂[Fc(r2) + jFs(r2)]

∂r2
=
∂

∂r2

∫ r2

0
ej π2 (

√︂
2k
π (SQ1r2−d))

2

dr2 = ejk(SQ1r2−d) (57)

is also an exponential term, the integrand in Eq. (55) only has exponential oscillating term

ejk(S23+SQ1r2), ejk(S−23+SQ1r2) (58)

and the condition for using stationary phase approximation to evaluate the integration is meet.
The derivations of the phase term are

∂(S23 + SQ1Q2 )

∂r2
=

r2 − R3
S23

+
r2 − R1
SQ1r2

,
∂(S−23 + SQ1Q2 )

∂r2
=

r2 + R3
S−23

+
r2 − R1
SQ1r2

, (59)

and the stationary phase points of the two derivations are

rs1 =
R1 + R3

2
, rs2 =

R1 − R3
2

(60)

respectively. Both stationary phase points are smaller than R2, which is beyond the integration
interval. For the points on the third disk with r<R3, the stationary phase point will be even smaller
which is also beyond the integration interval. Therefore, under stationary phase approximation
the integration result will be zero. In actual case, the integration will certainly not be exactly
zero but we can make the inference that the value of the gradient diffraction field is very small,
and can be neglected in the following calculation.
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A numerical example was made to prove this inference, and similar parameters were used for
better comparison, as in Section 3. The radius of disk-1 is R1 = 865mm, the distance between the
disks is d = 50mm, and the occulting angles are supposed to be α1 = 18 arcmin,α2 = 20 arcmin
and α3 = 22 arcmin respectively. The radius of disk-1 is larger than that of Section 3 since the
three-disk design is with a larger occulting angle. The integration (55) was calculated by by
adaptive Gauss-Kronrod (15th and 7th order formulas) method due to its high efficiency on the
quadrature of oscillating integrands. The radius of following disks can be calculated according to
the geometrical relationship shown in Fig. 5. The distance between the occulter to the entrance
pupil is also supposed to be the same value, i.e., z0 = 144.348m, and the outside radius of the
aperture is Ro = 1300mm, which is supposed to be 1.5 times more than the occulter. Figure 6
shows the results of the BDW field and gradient diffraction field at disk-3 plane in logarithm scale.
Being more than the edge point Q3 and at the whole plane actually, the gradient diffraction field
is 10−6 ∼10−3(at the boundary) smaller than the BDW field, which means that in the diffraction
propagation from disk-2 to disk-3, the total diffraction field is determined by BDW (as shown in
Eq. (48)) and the gradient diffraction term can be neglected.

Fig. 6. Comparison of BDW field and gradient diffraction field at disk-3 (in logarithm scale)

With U(Q3) known, diffraction from disk-3 to the entrance pupil plane for the third time is
easy to be known using similar method as above. Different from Eq. (48), the opposite side
stationary phase point should also be considered for higher accuracy. In the range of

1.53λ(z0 − 2d)
2R3

≤ r<R3 − (z0 − 2d) tanα3, (61)

which means that in the shadow region and far from the center, the diffraction field is

U(r) = UB(Q3) ·
jej π4
√

2rR3
R3[−ejkz′ cos

α3
2

I1 + ejkz′ cos
α′3
2

I−1], (62)

where
z′ = (z0 − 2d) cosα2 + (r − R3) sinα2, (63)

I1 =
1
2
+

1
2

j − Fc(ξ1) − j · Fs(ξ1), (64)
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I−1 =
1
2
+

1
2

j − Fc(ξ−1) − j · Fs(ξ−1), (65)

ξ1 = {
2k
π
[

√︂
(z0 − 2d)2 + (r − R3)

2 − (z0 − 2d) cosα2 − (r − R3) sinα2]}
1
/2, (66)

ξ−1 = {
2k
π
[

√︂
(z0 − 2d)2 + (r + R3)

2 − (z0 − 2d) cosα2 − (r − R3) sinα2]}
1
/2. (67)

In the derivation of U(Q3), the divergence near the central point is not considered since only the
diffraction field at the edge is concerned for the following calculation. However, at the whole
entrance pupil plane, the central point is also important for evaluating the occulting effects.
Similar as Section 3, Fresnel approximation is also employed to S in the original BDW integral
expression (Eq. (47) with the symbols changed) and an analytical propagator is obtained with
Bessel function.

U(r) =
UB(Q3)

4π

∫ 2π

0

ejkS

S
·
(z0 − 2d)R3 sinα2 − R2

3 cosα2 − rR3 cos θ3 cosα2

S − (z0 − 2d) cosα2 + R3 sinα2 − r sinα2 cos θ3
dθ3

≈
UB(Q3)

4π

∫ 2π

0
ejk(z0−2d)ejk

r2+R2
3

2(z0−2d) e−jk krR3
z0−2d cos θ3

·
(z0 − 2d)R3 sinα2 − R2

3 cosα2

S[S − (z0 − 2d) cosα2 + R3 sinα2]
dθ3

≈
UB(Q3)

2π
ejk(z0−2d)ejk

r2+R2
3

2(z0−2d) J0(
krR3

z0 − 2d
) ·

(z0 − 2d) sinα2 − R3 cosα2
R3

(68)
The first order approximation about α2 is also used here. Equation (68) is similar to the normal
incidence expression Eq. (37) except for an additional coefficient containing the tilt factor α2.
Eventually, the analytical solution of the diffraction by a three-disk occulter based on uniform
BDW theory is obtained.

U(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
UB(Q3)

2π ejk(z0−2d)e
jk

r2+R2
3

2(z0−2d) J0(
krR3

z0−2d ) ·
(z0−2d) sin α2−R3 cos α2

R3
, r< 1.53λ(z0−2d)

2R3

UB(Q3) ·
jej π4
√

2rR3
R3[−ejkz′ cos α3

2 I1 + ejkz′ cos α′
3

2 I−1],
1.53λ(z0−2d)

2R3
≤ r<R3 − (z0 − 2d) tanα3

. (69)

where z′, I1 and I−1 are defined in Eq. (63)–(67), and UB(Q3) can be analytically determined by
Eq. (40),(43),(48). For multiple-disk occulters with more than 3 disks, the propagator Eq. (68) is
also applicable when UB(Q3) is changed by UB(Qn) and Eq. (48) is iteratively used to calculate
the propagation from UB(Qn−1) to UB(Qn). Although the derivation process is more complicated,
the propagator in multiple-disk case is just the iterative utilization of the propagator (36) with
an additional tilt factor when the gradient diffraction wave is neglected actually. As to the
holding condition, the only additional approximation than that of (36) is the stationary phase
approximation used in the prove of neglecting the gradient term. So the holding condition for
this inference is the same as that of stationary phase approximation, as we stated in Section 3,
high Fresnel number system like coronagraphs satisfies the holding condition.

The numerical results with this propagator are shown in Fig. 7. As a comparison, the result
of single-disk is plotted with the same radius. Both results show similar distribution along the
radial direction, this is because that the propagators are in similar form except for the tilt factor.
The field intensity of three-disk occulter is lower than that of a single-disk occulter by101∼102,
and the decreasing extent is in accordance with the former experience [8]. From the calculation
efficiency point of view, the time consumed by Eq. (68) is not more than that for the single-disk
case, since 2 more points, i.e., Q2 and Q3 are calculated. In the case that Fresnel-Kirchoff integral
is used to analyze the three-disk diffraction, the calculation of the radial Hankel transformation
has to be repeated for three times while Lommel series cannot be used in the following diffraction
of non-uniform incident field, which will be much more time-consuming.

To prove the validation of the propagator, we compared it to the solution given by Fresnel-
Kirchoff integral. Applying Fresnel-Kirchoff integral to the on-axis diffraction problem of
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Fig. 7. Field intensity at the entrance pupil by single-disk and three-disk occulters

two-disk system has been successfully demonstrated in [7]. An example of two-disk system
is employed here, which is sufficient for demonstrating the accuracy of the propagator for the
secondary diffraction, since the third diffraction in 3-disk system is just one more time use of
the propagator. The 3-disk system parameters of ASPIICS coronagraph used in this section
indicates a large Fresnel number of over 27 million, which will cost tremendous time to calculate
the Fresnel-Kirchoff integral. For simplification, we employ similar scheme and parameters
with [7]. The radius of the two disks are assumed to be 2 mm and 1.5 mm respectively, the
distance between the two disk and the second disk to the observation plane are equally 100 mm,
indicating the shadow boundary at the observation plane is at the radius of 1 mm. The working
wavelength is still assumed to be 550 nm. The Fresnel numbers of the two diffraction process are
72.7 and 40.9. Both the stationary phase approximation and Fresnel approximation are usable
under this condition. Since the Fresnel number is not very large, we just made numerical sum of
discrete samplings to calculate the Fresnel-Kirchoff integral of the secondary diffraction with a
sampling distance of 10 nm (1/50 wavelength) while the field of the first diffraction was given by
sum of Lommel series. When using uniform BDW theory, the contribution of the opposite side
stationary phase point is also included as we did in the diffraction from disk-3 to the entrance
pupil in three-disk system above. The diffraction field in the shadow region given by the two
propagators and their differences in logarithmic scale was shown in Fig. 8, and the two results
showed good accordance. The difference is usually below 10−3 while the diffraction field is at
the level of 10−2 to 10−3. The relative difference has a slightly increasing tendency near the
boundary location to at most ∼30%. An interesting and puzzled phenomenon is that the obvious
higher relative difference compared to the case of single-disk is not due to the difference of the
field intensity, but indeed the axial position of the “peak” and “valley” of the two results has a
difference of ∼5 µm or so. This is probably owing to the different approximations which will
be deeply explored further in the future. Another possible reason is that the stationary phase
approximation needs a highly oscillating exponential phase term, corresponding to a high Fresnel
number and the small Fresnel number system in this example weakens the performance. Anyhow,
the tiny difference of the axial position and field intensity at this scale will actually not influence
the application on coronagraphs where we only care the scale of the diffraction field. On the
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other hand, comparing the calculation efficiency, the uniform BDW theory is no doubt better than
the Fresnel-Kirchoff integral. On a normal PC, in this example with only Fresnel number less
than 100, calculating 2000 points using the Fresnel-Kirchoff integral of the secondary diffraction
cost about 3 minutes, while the uniform BDW theory finished the calculation within 1 second.

Fig. 8. The diffraction fields of a two-disk system calculated by the analytical propagator of
uniform BDW theory and Fresnel-Kirchoff integral method.

5. Summary

In conclusion, an analytical propagator Eq. (68) is proposed in this paper for the diffraction
analysis of multiple-disk occulters in external coronagraphs based on uniform BDW theory. The
case of single-disk is first analyzed and an analytical propagator was obtained. This propagator
is available to avoid the divergence of original BDW theory at the exact edge. Although a
discontinuity is induced at the zero-point of Arago spot, the propagator is proved to have good
accuracy compared with the results from Fresnel-Kirchoff integral in a numerical example. It is
also verified by this numerical example that the analytical propagator was slightly more efficient
than Fresnel-Kirchoff integral, compared to the well-known analytical propagator based on
Lommel series. The propagator in the case of multiple-disk is just the iterative utilization of
Eq. (37) with an additional tilt factor, when we proved that the gradient diffraction wave was
to be neglected. The analytical propagator presents lots of improvement on simplification and
efficiency than former numerical propagators, and hence, is of great significance to future external
coronagraph design and analysis, especially the initial design process with less time-consuming.
Nevertheless, the work in this paper only gives the solution for on-axis diffraction case. For
application in solar coronagraphs, further extension of the propagator to off-axis case should be
developed. These developments are left for a further study.
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