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ABSTRACT Time-delayed integration (TDI) is a common imaging mode used in airborne cameras to
compensate for image motion. The paper presents an improved Fourier-Mellin transform (FMT)-based
registration method, which can be used to realize the registration-based TDI. It first analyzes the noise
influences on the FMT spectrum by comparing the curve changes in the standard-deviation versus column
plots under the various intensity of noise, then designs a special filter calledWCSDF according to the amount
of variation of each column in the FMT spectrum,which can reduce the noise affection on registration process
to the larger extent. And an improved FMT-based registrationmethod is finally proposed to form a framework
of registration-based TDI. In computer simulations, the proposed method shows a significant improvement
in robustness to noise (noise level up to 40). Compared with the existing method, its low computational
complexity makes the method easy to be implemented in hardware and can estimate the larger relative shifts
among dim noisy images, moreover, the TDI images generated by the proposed framework have higher
quality in the index of information entropy, average gradient, and spatial frequency response.

INDEX TERMS Cross-power spectrum, image registration, TDI-CMOS, correlation function,
Fourier-Mellin transform.

I. INTRODUCTION
While remote sensing cameras acquiring scene images at a
rapid motion, time delay and integration (TDI) is a typical
imaging mode that used to reduce image motions. Recently,
many types of sensors with TDI are demonstrated [1], [2],
and their verifications and applications were also carried
out [3]–[5]. For M-stages TDI, it first captures the mov-
ing signal shortly-exposed from a scene for M times, then
accumulates these signals to obtain high-contrast, reduced
motion-effects TDI images, the signal-noise ratio (SNR) of
which is increased by

√
M times. The TDI is generally used

in the line-scan applications and easily applied on CCD.
Recently, many methods for implementing TDI-CMOS are
presented, both in the analog and digital domain. Refer-
ence [6] reviewed several TDI-CMOS sensors with analog
accumulator, which were designed at the cost of silicon
area for analog accumulator. Reference [7] implemented a
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128-stage TDI-CMOS image sensor with on-chip digital
accumulator, which reduce the cost of silicon area. Refer-
ence [8] proposed an off-chip digital TDI-CMOS, which need
no silicon area, and various functions can be implemented
to satisfy different applications. Reference [9] proposed a
32-stage 15-b digital TDI-CMOS, where the data prediction
switching technique is included. According to the process
of TDI, because of the constantly changes in the attitude
of camera, the motion compensation is required to ensure
that each pixel acquires exactly the same object. Currently,
Methods for compensating image motion can be classified
into three categories:Mechanical, optical, and electronic. The
mechanical or optical methods need high-precision mechan-
ical or optical structure to compensate image motion, [10]
studied a smart structure to control the vibration. However,
this additional structure itself adds additional complexity
and reduce reliability [11], [12]. The electronic methods
compensate image motion by adjusting transfer time, which
can only compensate the along-track-motion of very limited
range. There are also some literatures about anti-vibration
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TABLE 1. Acronyms Used in the Article.

technology on TDI. Reference [13] proposed a dynamic
path accumulation method of digital-domain for TDI-CMOS
image sensors, which can compensate for the image motion
introduced by vibration, but it cannot compensate the image
motion in two-dimensions.

In reality, the image motion is not only composed of
along-track and cross-track motion, but also include the rota-
tional shifts induced by constantly changing in satellites’
attitude(such as roll, yaw or pitch). However, the existing
solutions do not address the issues. To solve these prob-
lems, registration accuracy becomes a critical factor to obtain
a high-SNR TDI images. In order to align images, schol-
ars have proposed various kinds of image registration algo-
rithms from different aspects, which can be roughly classified
into 3 categories [14], [15]: 1) feature-based, 2) area-based,
3) deep learning. Feature-based methods need to detect a
series of blob-like or edge-like features, such as SIFT [16],
SURF [17], and GLOH [18], followed by feature description
and matching. However, its time-consuming nature makes
the methods of this kind not suitable for real-time appli-
cation such as TDI technology. As a method of supervised
learning, deep learning needs complex, handcrafted training
data, to prepare such a training data, considerable expert
knowledge and manpower are needed [19], [20]. Methods
of area-based directly exploit the intensity information of
overlapping area to ensure the accuracy and the stabil-
ity [21]. These methods generally use similarity metrics such
as normalized correlation function, mutual information, etc.

FIGURE 1. Two images with translational shift and theirs Correlation
Function: (a) Reference image; (b) Sensed Image; (c) Fourier transform of
Fig. 1(a); (d) Fourier transform of Fig. 1(b); (e) the correlation function
between these two Fourier spectrum. The amplitudes in Fig. 1(c) and
Fig. 1(c) are shown in logarithmic scale, and in Fig. 1(e), the indicator
peak shows the translational shift of (94,−58) pixels.

In addition, there is another type of area-based algorithm that
uses Fourier transform, it has theoretical high-accuracy, low
time complexity, and robustness to brightness differences and
frequency-related noise. It has been developed rapidly and
applied in many fields, especially in real-time applications.

In this paper, our contributions can be summarized as
follow:

1) We first analyze the noise influences in FMT spec-
trum by observing the changes of the curves in
standard-deviation vs. column plots, then

2) a weighted column standard deviation based fil-
ter (WCSDF) is designed to handle the noise influences
during the process of estimating the relative shifts,
finally

3) an improved Fourier-Mellin cross-power spectrum
based registration is proposed to form a framework
of registration-based TDI, which can directly estimate
the relative shifts among a series of short-exposure
captures, and align them to generate high-SNR TDI
images.
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FIGURE 2. Two images with translational, rotational as well as scaling parallax: the parallax between a reference image f (x, y ) (a) and a sensed
image g(x, y ) (b) contain relative translation of (30,−50), rotation of 20 degrees, and scaling by 1.4×; (c) m(F )(u, v ) and (d) m(G)(u, v ) are the
Fourier transform of (a)(b); (e)m(F )

LP and (f)m(G)
LP are the LPT of (c)(d); (g)(h) are obtained from (c)(d) by applying Gaussian high-pass filter, followed

by LPT; The intensities in (c) to (h) are in logarithmic scale.

Unlike existing methods, the TDI framework proposed in
this paper estimates the relative shifts directly from a series of
short-exposures, then registers and accumulates them to gen-
erate high-contrast TDI images, whereas the existing meth-
ods, such as [8], which calculate the shifts by calculating the
motion velocity.

The following sections are organized as follow: Section II
reviews some related works, and their existing problems
are also described; Some improvements and the proposed
algorithm are explained in Section III; In Section IV, we con-
duct some experiments—both computational and physical—
to verify the effectiveness of the proposed algorithm. Finally,
some conclusions is described in section V.

II. RELATED WORKS
A. THE BASIS
Fourier based registration, especially the well-known
phase-correlation method, was first proposed in [22], and
expanded in [23]. This kind of methods have been employed
in many applications, such as image registration, image
fusion, motion tracking, etc. Assuming that we have two
images with a translational shift: one is viewed as reference
image f (x, y) and the other, g(x, y), called sensed image that
to be registered, then their relation is:

g(x, y) = f (x −1x, y−1y) (1)

where (1x,1y) is their relative translation. In Fourier trans-
form domain, the relation become:

G(u, v) = exp[−2π i(u1x + v1y)] · F(u, v) (2)

where i =
√
−1,F(u, v) andG(u, v) are the Fourier transform

of f (x, y) and g(x, y), respectively. Then the cross-power
spectrum of those two images can be obtained by:

Q(u, v) =
F∗(u, v) · G(u, v)
|F∗(u, v) · G(u, v)|

= exp [−i(u1x + v1y)]

(3)

Then, their correlation function can be obtained by calculat-
ing the inverse Fourier transform of Q(u, v),

C(1x,1y) = F−1{Q(u, v)} ≈ δ(x −1x, y−1y) (4)

Theoretically, it should be an impulse function. Because of
the discrete nature, in ideal, the maximum value of 1 appears
only at (1x,1y) (called indicator peak), and the remaining
are all zeros. However, there must exist some noise, and area
that does not overlap in any two non-identical images, which
will weaken the indicator peak. Nevertheless, the peak is still
significantly higher than elsewhere and always can accurately
reflect the relative displacement. An illustration is shown
in Fig. 1.

The Fourier-based algorithm has an extension that uses
Fourier-Mellin transform (FMT) based cross-power spec-
trum, which can deal with the rotational and scaling differ-
ences by utilizing the log-polar transform (LPT) on regular
Fourier spectrum, as the LPT has the property that the rotation
and scaling in Cartesian coordinate are equivalent to the
translation in log-polar coordinate. According to equation (2),
the spatial translational shifts between images appears as
a phase shift in their Fourier transforms, therefore it can
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FIGURE 3. FMT Correlation function: (a) obtained from Fig. 2(e) and 2(f);
(b) obtained from Fig. 2(g) and 2(h). In (a) there exist two peaks,
the shorter peak (called indicator peak) is showing the correct amount of
shifts between two images, with a rotation of 20◦, and a scaling of
exp(0.34622) ≈ 1.4×, but it is interfered by a higher peak near to the
center, which is caused by the densely distributed low-frequency
components. By applying the high-pass filter, the correlation function will
indicate the amount of shifts correctly, as shown in (b).

be separated by applying norm operation on their Fourier
transforms. For any two images f (x, y) and g(x, y) with rota-
tional shift 1θ and scaling factor s, the relation between
their Fourier transform amplitude spectrums m(F)(u, v) and
m(G)(u, v):

m(G)(u, v) = s−2m(F)[s−1(u cos1θ + v sin1θ ),

s−1(−u sin1θ + v cos1θ )] (5)

can be expressed in log-polar form:

m(G)
LP (λ, θ) = s−2m(F)

LP (λ−1λ, θ −1θ) (6)

where1λ = log s. Then, the rotational and scaling shifts can
be estimated directly by the cross-power spectrum QLP and
the correlation function CLP:

QLP(α, β)

=
M (F)

LP (α, β) ·M (G)
LP (α, β)∣∣∣M (F)

LP (α, β) ·M (G)
LP (α, β)

∣∣∣
= exp [−2π i(α1λ+ β1θ )] (7)

CLP(λ, θ) = F−1 {QLP(α, β)} ≈ δ(λ−1λ, θ −1θ )

(8)

where M (F)
LP and M (G)

LP are the Fourier transform of m(F)
LP and

m(G)
LP , also called the FMT of f (x, y) and g(x, y); QLP(α, β)

is the FMT-based cross-power spectrum; CLP(λ, θ) is the
FMT-based correlation function, the over-line notation such
as M (F)

LP (α, β) denotes its conjugate. The image details is
shown in Fig. 2(a)—(f) and Fig. 3(a). After eliminating the
relative rotation and scaling, the remaining translational shifts
can be estimated by a regular correlation function.

B. OTHER VARIETIES
Further improvements and refinements of FMT-based reg-
istration have been proposed to address different issues.
Reference [24] shows some error sources that affecting the
precision of estimating the shifts, such as densely distributed
low-frequency, and demonstrated constructive techniques for
improving precision and SNR in registration process, as well
as removing spurious high frequency by Blackman window.
[23] handled the issue by applying high-pass filter, as shown
in Fig. 2(g)(h) and Fig. 3(b). Reference [25] presented a
pseudopolar Fourier transform to increase the performance
of the registration algorithms, and expanded the range of
recoverable scales (up to 4). Reference [26] developed exact
algorithms to solve the issue of obtaining discrete Fourier
transform for polar and spherical grids. Reference [27] con-
structed a special grid composed of multiple polar grids
with different scaling factors to further reduce or eliminate
interpolation error in calculating the FMT-based correla-
tion function. In [28], the rotational and scaling shifts are
estimated using the Radon transform, as well as sub-pixel
estimation.

C. THE ESTIMATION ERROR CAUSED BY NOISE
Those aforementioned papers, however, did not address the
problems of registration errors caused by noise, which make
the methods fail to estimate the relative shifts—especially
rotational and scaling—between any two noisy dim images.
Since the probability of photons entering detectors obey Pois-
son distribution, there exists Poisson noise in short-exposure
captures. In the light of this phenomenon, we simulate
two short-exposure captures that have large poisson noise,
as shown in Fig. 4, their FMT-based correlation function
cannot correctly reflect the amount of the shift as the indicator
peak is submerged by the noise. Thus, it is necessary to
suppress the noise influence in estimating the relative shifts
among images.

III. METHODOLOGY
A. PROBLEM ANALYSIS
Due to the nature of short-exposure captures, there are many
types of noise that are not negligible: such as photon shot
noise, Fano noise, fixed pattern noise (FPN), etc. Since the
FPN can be corrected by the previous calibration, other
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FIGURE 4. Reference and sensed images with poisson noise:
(a)Reference image, (b)Sensed image, (c)The FMT correlation function
between two images.

types of noise are random in spatial distribution. To quan-
titatively analyze the effect of the noise on the accuracy
of rotation and scaling estimation, we use additive white
Gaussian noise (AWGN) to simulate these random noise in
computer simulation. In Fig.5, the sensed imageswith various
intensity of AWGN and their log-polar Fourier amplitude
spectrums are presented, from which we can conclude that
the high-frequency components are prone to be interfered
with by the noise compared with low-frequency components,
this can be explained that the energy of high-frequency
components is fainter than that of low-frequency. Since
the high-frequency information is submerged by noise,
the accuracy in estimating the relative shift will be greatly
affected. By observing the middle row in Fig.5, we can
notice that the mid-frequency components have the poten-
tial to estimate the relative shifts for the following reason:
the mid-frequency components are (1) still have significant
intensity variance; (2) less likely to be submerged by noise
compared with high-frequency components. To exploit the
potential, we first define some concepts in section III-B,
wherein the rationality of the proposed method is
described.

B. CONCEPTS DEFINATION
For any given original M -by-N image f and its Fourier
amplitude spectrum m(F), its Fourier amplitude spectrum in

log-polar form, which is noted as m(F)
LP (i, j) is also sampled

by the same size, and we define k as the height in m(F)
LP (i, j)

after cutting the ‘‘wave edge’’, as shown in Fig.6, if we
calculate the column standard deviation (STD) of m(F)

LP (i, j)
according to:

σ (j) =

√√√√1
k

k∑
i=1

[
m(F)
LP (i, j)− µ(j)

]2
(9)

where µ(j) =
∑k

i=1m
(F)
LP (i, j)/k . The STD-vs-column

plots according to the middle row in Fig.5 are shown
in Fig.7

The unaffected STD-vs-column plot is shown in the left
most in Fig.7, but the increasing amount of ‘‘spikes’’ intro-
duced by noise will change the ‘‘curve shape’’.

It is well-known that the high-frequency components have
contribution on column STD to some extent. However,
the mid-frequency components also have non-negligible dis-
tribution on column STD. If an image f is given, we can
calculate the row-band mean (RBM), row-band standard
deviation (RBSD) and row-band relative standard devia-
tion (RBRSD) from a log-polar Fourier amplitude spectrum
m(F)
LP , where the RBM, RBSD and RBRSD are calculated

according to:

RBMf (i) =
1

2Nr

N−1∑
θ=0

λ+r−1∑
λ=λ−r

m(F)
LP (λ, θ) (10)

RBSDf (i) =

√√√√ 1
2Nr

N−1∑
θ=0

λ+r−1∑
λ=λ−r

[
m(F)
LP (λ, θ)− RBM(i)

]2
(11)

RBRSDf (i) = RBSDf (i)/RBMf (i) (12)

where N is the sampled column number, r is the half-
bandwidth, as illustrated in Fig. 6(b). In this way, we plot
the trend of RBSD/RBRSD-vs-Row from Fig. 2(b), as shown
in Fig. 6(c) and 6(d), and the RBSD/RBRSD-vs-Row plots of
many other images also all have the similar trend. We can
see that the high-frequency components have much higher
relative STD (Fig. 6(d)), but Fig. 6(c) indicates that the
mid-frequency components have non-negligible contribution
to column STD. Therefore we need to introduce ‘‘Weighted
Standard Deviation’’ (WSD) to exploit the potential of
mid-frequency components.

Inspired by weighted average, the 1/k in (9) can be seen
as the evenly distributed weights, therefore the WSD is intro-
duced by altering the weights according to the importance of
each component, that is:

σWSD(j) =

√√√√ k∑
i=1

wi
[
m(F)
LP (i, j)− µ(j)

]2
(13)

with a constraint of
∑k

i wi = 1. In practice, there is no need to
satisfy the constraint, as it only brings a constant factor, which
will be canceled in calculating correlation functions. Because
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FIGURE 5. The Noise Influence in Estimating Rotational and Scaling Shifts: From left to right column: the Gaussian noise level are 0, 10, 20, 30, 40; First
row: Sensed images; Second row: Fourier transform amplitude spectrum in log-polar form (The intensities are in logarithmic scale); Last row: the
FMT-based correlation function with reference image (of the same noise level). To save space, their corresponding reference images and the log-polar
form FFTs are not shown.

FIGURE 6. Definitions of some notation and the Plots of RBSD/RBRSD vs. Row: (a) A HPF-filtered log-polar Fourier amplitude spectrum (the same as
in Fig. 2(h)); (b) An unprocessed log-polar Fourier amplitude spectrum (the same as in Fig. 2(f)); In these figures, M and N are the sampled row and
column number, respectively; (c)(d) RBSD/RBRSD vs. Row Plots. In (a), k is the height after cutting the wave-like edge; In (b) r is the half-width of the
band to calculate the RBM(i ), RBSD(i ) or RBRSD(i ) for the corresponding i , where i is the center row in the band. The RBSD/RBRSD are calculated
from the moving band area in an unprocessed log-polar amplitude spectrum.

FIGURE 7. STD-vs-column plots according to the middle row of Fig.5: the amount of ‘‘spikes’’ is increasing as the noise level increases.

of the densely distributed low-frequency components and
severely submerged high-frequency components in a Fourier

amplitude spectrum, we may adopt a Gaussian-like distribu-
tion that assign higher weights tomid-frequency components:
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FIGURE 8. Comparison between STD/WSD-vs-column plots: (a)Log-polar Fourier amplitude spectrum of a noisy image (Noise Level of 30);
(b)STD-vs-column plot; (c)WSD-vs-column plot; (d)WCSDF according to (c).

FIGURE 9. The effects of the filter. First row: the column GWSD plots of log-polar Fourier amplitude spectrum from Fig.5; middle row: the log-polar Fourier
amplitude spectrum filtered by WCSDF; last row: the corresponding correlation functions in log-polar coordination.

wi = exp[−(i − M/2)2/S2], then a Gaussian-distributed
WSD is defined as follow:

σGWSD(j) =

√√√√√ k∑
i=1

[
m(F)
LP (i, j)− µ(j)

]2
exp[(i−M/2)2/S2]

(14)

where M is the height of m(F)
LP , as shown in Fig.6; S is

the standard deviation of the Gaussian-distribution, which
can be adjusted according to noise intensity. Assuming that
S = M/4, for example, there are less ‘‘spikes’’ in the
WSD-vs-column plots compared with the STD-vs-column
plots, and the curve shape is maintained, as shown
in Fig. 8(b)(c). According to the definition of WSD, it not
only exploits the potential of the mid-frequency components,
but also some stronger high-frequency components that are
not completely submerged by noise.

C. WEIGHTED COLUMN STANDARD DEVIATION BASED
FILTER (WCSDF)
With the basis of WSD, we design a filter wS(i, j)
called ‘‘weighted column standard deviation based filter
(WCSDF)’’ by repeating the array of WSDs along row direc-
tion, as shown in Fig. 8(d), since wS(i, j) is invariant to i,
it can be rewritten as wS(j). By replacing M (F)

LP and M (G)
LP in

equation (7) withM (F)
WLP andM (F)

WLP:

QWLP(α, β) =
M (F)

WLP(α, β) ·M
(G)
WLP(α, β)∣∣∣M (F)

WLP(α, β) ·M
(G)
WLP(α, β)

∣∣∣ (15)

where M (F)
WLP = F[m(F)

LP ⊗ w(F)
S ] and M (G)

WLP = F[m(G)
LP ⊗

w(G)
S ]; w(F)

S and w(G)
S are the WCSDF of reference and sensed

images, respectively.⊗ denotes element-wise multiplication.
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Finally the filtered correlation function is obtained by:

CWLP(λ, θ) = F−1 {QWLP(α, β)} (16)

The first row in Fig.9 illustrates the WSD-vs-column plots
of m(G)

LP under different noise levels, from which we can
conclude the WSD plots retained the shape of original curve
compared with STD plots in Fig.7; the filtered log-polar
Fourier amplitude spectrums of sensed images are shown in
the middle row of Fig.9, and the last row of Fig.9 shows
the correlation functions CWLP between reference and sensed
images of various noise levels. Compared withCLP surf-plots
in the last row of Fig.5, in the CWLP, the noisy spikes are
reduced and the indicator peak become obvious, especially
under higher-level of noise. To compare the performance of
CWLP with CLP, we perform the following steps:
1) A 1000-by-800 image is selected as a scene image;
2) the center 360-by-360 image of which is cropped as a

reference image;
3) a series of 200 images with different parallax (by ran-

domly introducing different shifts and rotates, as well
as scales) is generated as sensed images, and a certain
level of AWGN is added;

4) estimate the parallax between the sensed images and
the reference image;

5) compare the estimated parallax with the actual value of
parallax, the estimation accuracy is obtained.

The results are shown in Table 2 and Fig.10, which indicate
that CWLP has significant improvements in robustness to
noise.

TABLE 2. Rotation and Scaling Estimation Accuracy (%) Comparisons
Between CLP and CWLP.

D. THE FRAMEWORK OF REGISTRATION-BASED TDI
With the WCSDF, the improved FMT-based registration
become more applicable in TDI. Herein, we propose a frame-
work of registration-based TDI, which is composed of regis-
tration module and accumulating module. In the registration
module, for any given reference image f (x, y) and sensed
image g(x, y), it first measures their relative rotation1θm and
scale s by calculating their CWLP, during which the quadratic
interpolation to reach the accuracy of sub-pixel level. Then
to eliminate the rotational and scaling shifts of the sensed
image, and half-registered image g′(x, y) is obtained. Further,
the remaining translational shifts can be calculated by regular
correlation function, and the registered sensed image g′′(x, y)
is finally obtained.

FIGURE 10. Plot of Noise Levels vs. Estimation Accuracy with CLP and
CWLP.

The flowchart of registration module is shown in Fig.11,
where the process of calculating the filtered FMT-based
correlation function is included. In parallel to registration,
the accumulating module is working to generate high-SNR
TDI images. The processing steps are as follows:

1) While registering a short-exposure image sized m× n,
an all-ones matrix 1m×n of the same size is initialized;

2) Transform the all-ones matrix according to transforma-
tion parameters determined from the first step, a cov-
erage indicator matrix I (x, y) is obtained, as shown
in Fig. 12(d);

3) When the registration module registered a series of
sensed images, accumulating them to generate an over-
laid image AO(x, y)(Fig. 12(f)). Meanwhile, cover-
age indicator matrixes are also accumulated together
to obtain an accumulating times matrix AT (x, y)
(Fig. 12(g)).

4) Perform element-wise division between the overlaid
image and the accumulating times matrix, and rescale
the intensity from 0 to 2N −1, where N is the bit-depth.

After performing the above steps, a final TDI image of
high-contrast and high SNR is finally generated, as shown
in Fig. 12(h).

In summary, the diagram of the framework is shown
in Fig. 13. and the pseudocode is presented in Algorithm 1.

IV. EXPERIMENTS
To verify our algorithm, the computer simulations are firstly
conducted in section IV-A to determine the limitations of the
improved FMT-based registration method. Finally, physical
experiment is also carried out to verify the effectiveness of
the proposed method and its improvements compared with
other methods.

A. COMPUTER SIMULATIONS
To simulate the continuous acquisition of short-exposure
captures by an airborne TDI-CMOS camera, in each exper-
imental setting, a large image of 1000-by-800 is selected to
simulate as a whole scene, the middle 360-by-360 sub-image
are cropped as a reference image. On this basis, to simulate
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FIGURE 11. Flow Chart of Registration Module.

FIGURE 12. Example of Registration and Accumulating Process: In a series of noisy dim images, an image (usually the first one) is chose as a
reference image (a), the remains are regarded as sensed images to be registered, (b) shows the one of them. (c) shows an registered image from
(b), and (d) the corresponding coverage indicator matrix; (e) overlaid image with (a) and (c), (f) an image that overlaid all registered images. (g) the
accumulating times matrix; (h) a final TDI image.

the moving of cameras and the various imaging parameters,
a series of sensed images with difference parallax is generated
by randomly altering relative translation, rotation, and scal-
ing, as well as adjusting their brightness and the AWGN level.
The experiment proved that increasing the relative displace-
ment alone has little effects on registration accuracy, as long
as there exists an overlapping area between any two images,
but the relative rotation and scaling are restricted within±40◦
and 0.7 ∼ 1.4× respectively to ensure registration accuracy.

Nevertheless, it still covers the range of the relative shifts
between continuously acquired images in a short period, these
restrictions still meet the application requirements.

B. PHYSICAL EXPERIMENT
To compare the performance of our method with the classi-
cal one, which is proposed by Tao et al. [8], a real exper-
imental platform is built to conduct physical simulations
(Fig.14), where a scene imageboard is used as a sample
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FIGURE 13. Flow Chart of the Framework of Registration-based TDI.

FIGURE 14. Illustration of Experimental Platform.

FIGURE 15. Experimental Images: (a)Physical Image Sample;
(b)Resolution Chart.

(shown in Fig.15(a)), and our method is implemented in
an image processor which is connected to a CMOS camera
installed on a three-dimensional turnable. To simulate the
unpredictable random motion of an aerial camera (such as
changing in roll or pitch), the turntable rotates at the speed
of 6 mrad/s in the range of ±20◦ while the CMOS camera
capturing images in a push-broom way. The examples of
short-exposure captures are shown in Fig.16. By adjusting

Algorithm 1 Accumulation of a Series of Short-Exposures
Require: A series of short-exposures gi(x, y), (i =

0, 1, 2, . . . , n)
Ensure: A TDI image T (x, y)
1: f (x, y)← g0(x, y);
2: F(u, v)← F {f (x, y)};
3: m(F)(u, v)← |F(u, v)|;
4: Apply HPF and LPT on m(F)(u, v), obtain m

(F)
LP (u, v);

5: Obtain WCSDF w(F)
S (θ ) from m(F)

LP (u, v);

6: M (F)
WLP(α, β)← F

{
w(F)
S (θ )⊗ m(F)

LP (u, v)
}
;

7: Initialize all-ones image 1m×n;
8: i← 1;
9: Initialize AT (x, y) and AO(x, y) with zeros;
10: while i ≤ n do
11: g(x, y) = gi(x, y);
12: m(G)(u, v)← |F {g(x, y)}|;
13: Apply HPF and LPT on m(G)(u, v), obtain m

(G)
LP (u, v);

14: Obtain WCSDF w(G)
S (θ ) from m(G)

LP (u, v);

15: M (G)
WLP(α, β)← F

{
w(G)
S (θ )⊗ m(G)

LP (u, v)
}
;

16: QWLP(α, β)←
M (F)

WLP(α,β)·M
(G)
WLP(α,β)∣∣∣∣M (F)

WLP(α,β)·M
(G)
WLP(α,β)

∣∣∣∣
17: CWLP(λ, θ)← F−1 {QWLP(α, β)}
18: Determine the relative shift (1λ,1θ) from

CWLP(λ, θ);
19: Improve the accuracy to sub-pixel level by quadratic

interpolation, obtain (1λm,1θm)
20: s← exp(1λm)
21: Eliminate the relative rotation and scaling to obtain

g′(x, y);
22: G′(u, v)← F

{
g′(x, y)

}
;

23: Q(u, v)← F∗(u,v)·G′(u,v)
|F∗(u,v)·G′(u,v)| ;

24: C(1x,1y)← F−1{Q(u, v)};
25: Determine the relative shift (1x,1y) from

C(1x,1y);
26: Improve the accuracy to sub-pixel level by quadratic

interpolation, obtain (1xm,1ym)
27: Register g′(x, y) to obtain g′′(x, y);
28: Transform the all-ones images according to the trans-

form parameters to generate coverage indicator matrix
I (x, y);

29: AO(x, y)← AO(x, y)+ g′′(x, y);
30: AT (x, y)← AT (x, y)+ I (x, y);
31: end while
32: T (x, y)← AO(x, y)/AT (x, y)

the imaging parameters (such as integrating stages LI and
exposure time (ET)), the generated TDI images are partly
shown in Fig.17.

To quantify the quality of TDI images, we adopt four
assessments to evaluate the TDI image quality: 1) Infor-
mational entropy; 2) Contrast; 3) Average gradient (AG);
4) Spatial frequency response (SFR).
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FIGURE 16. Short-exposure captures of different integrating time (exposure time): From left to right, the integrating times are: 0.4, 0.5, 0.6, 0.8, 1.0 ms.
The brightness of all these images is rescaled to the range of 0 ∼ 1 for visibility.

FIGURE 17. TDI images generated in physical simulations: from first row to last row: integrating stages of 24, 36, 48; from left column to right column:
exposure time of 0.6, 0.8, 1.0 ms by two different methods (Tao et al. [8] and Ours). The brightness of all these images is rescaled to the range of 0 ∼ 1 for
visibility.

1) INFORMATIONAL ENTROPY
Short-exposure captures have a relatively smaller size of
quantification, as shown in Fig.16, when accumulating these
captures to generate a TDI image, the size of quantifica-
tion should be improved. We use informational entropy as a
metric:

Ent(f ) = −
2N−1∑
i=0

p(i) · log2 p(i) (17)

where p(i) represents the probability of pixels with a gray
level of i in an image f . The entropy of TDI images generated
under different imaging parameters is shown in Table 3. The
entropy of a TDI image would increase as LI or ET increases
before the brightness of TDI images is mostly saturated.
When LI or ET continues to increase, an oversaturated TDI
image will be generated, resulting in a decreased entropy.
In comparison, the proposed method outperformed the classi-
cal one (Tao et al.) [8] by an average of 0.4 in terms of entropy.

FIGURE 18. (a) A long-exposure capture of resolution chart, note that
there is red box labeled on a slant-edge, (b) The SFR Curve calculated
from the slant-edge.

2) CONTRAST
The contrast of a TDI image is also an important indicator of
image quality. They are calculated and shown in Table.4, from
which we can conclude that the contrast can be improved
by increasing LI or ET. However, when the LI or ET is too
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TABLE 3. Entropy of TDI images generated under different imaging parameters.

TABLE 4. Contrast of TDI images generated under different imaging parameters.

TABLE 5. AG of TDI images generated under different imaging parameters.

large, the contrast will also decrease due to the oversatu-
rated TDI image, and there is no significant improvement in
comparison.

3) AVERAGE GRADIENT
The average gradient (AG) can sensitively reflect the ability
of the image to express the contrast of small details. It include
the sum of squared row gradient (SSRG) and the sum of
squared column gradient (SSCG):

SSRG(f ) =
M−1∑
i=0

N−1∑
j=1

[f (i, j)− f (i, j− 1)]2 (18)

SSCG(f ) =
M−1∑
i=1

N−1∑
j=0

[f (i, j)− f (i− 1, j)]2 (19)

Then, we define AG:

AG(f ) =

√
1
MN

[SSRG(f )+ SSCG(f )] (20)

The AG of TDI images are calculated and compared
in Table 5. As the ET increases, the brightness of the image
increases, which leads to more details, so the average gra-
dient also increases. However, the increase of the LI will
cause more motion blur, the AG will decrease. In compar-
ison, the proposed method outperformed the classical one
(Tao et al.) [8] by an average of 0.05 in terms of AG.

4) SPATIAL FREQUENCY RESPONSE (SFR)
The SFR is an indicator of image clarity, which can be
calculated based on the slant-edge analysis [29]. The SFR
may decrease as the ET or LI increases, therefore it is
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FIGURE 19. SFR Curves of the selected slant-edge in TDI images of resolution chart under different imaging parameters.

necessary to compare the final SFR curve under differ-
ent imaging parameters. We choose a resolution chart as
shown in Fig.15(b). To determine the amount that the clarity
decreases, a long-exposure capture is firstly obtained to mea-
sure the original SFR of the camera, as shown in Fig.18(a):
a proper slant-edge is selected (the red box in Fig.18(a)) for
calculating the static SFR curve, as shown in Fig.18(b). Then,
several TDI images of the resolution chart is generated under
different imaging parameters (exposure time and integrating
stages), and theirs corresponding SFR curves are calculated
from the same slant-edge, as shown in Fig.19. It can be seen
that as LI increase, the TDI image clarity may be reduced
due to (1) the accumulation of registration errors, and (2) the
larger range of rolling angle. In comparisons between two
different methods, we can conclude that the proposed method
has superior performances to the method of Tao et al. [8].

V. CONCLUSION
This paper presented a novel framework to generate TDI
images. While a CMOS camera acquiring a series of
short-exposure captures, the proposed method first calculates
the relative shift among these captures, followed by regis-
tering and accumulating, a TDI image is finally generated.
In the registration module, it adopts cross-power spectrums
and correlation functions—both in log-polar and regular—
to calculate the relative transform parameters, wherein a
WCSDF filter is proposed to reduce the influence of noise
in calculating the rotational and scaling shifts among images,
which improved the noise robustness (noise level up to
around 40). The computational simulations show that the
proposed method is applicable when the relative shift is

within ±40◦ in rotation, and 0.7 ∼ 1.4× in scaling, as well
as a large range of translational shift—as long as there exists
a large overlap between any two captures. In reality, while an
airborne camera acquiring images, the CMOS detectors may
have rotational motion (such as yaw, roll and pitch). However,
the ability of de-rotation can only correct the relative shift
induced by yaw, but unable to correct the shift induced by
roll or pitch, resulting in the remaining registration errors
uncorrected, and in turn making the TDI images blurred.
Despite that, the physical experiments show that the proposed
method can still generate TDI images with desirable clarity.
In our physical experiments, we use fluorescent lamps to
illuminate the scene image board, since its illumination level
is much smaller than that of the sun, the exposure time has
to set much longer (0.4 ms ∼ 2 ms), resulting in significant
image motion during each exposure, causing the TDI image
blurred. In sunlight, however, the exposure time need not be
set that long, and its corresponding image motion will be
much smaller, in that case, the quality of TDI images will
be much better.

In summary, the algorithm proposed in this paper enables
TDI-CMOS to correct more generic image shifts in the digital
domain and perform signal accumulation while increasing
some computational complexity. This method directly per-
forms image shift and registration between images, without
additional calculation of the image shift speed, and no addi-
tional mechanism for compensation, which further promotes
the miniaturization of TDI-CMOS. Since it cannot correct the
shifts induced by the roll or pitch of the camera, our future
works will be concentrated on proposing a novel method that
can compensate for more general distortion.

VOLUME 9, 2021 64177



Q. Feng et al.: Improved FMT-Based Registration Used in TDI-CMOS

REFERENCES
[1] X. Kong, X. Bu, C. Mao, L. Zhang, H. Ma, and F. Yan, ‘‘SPAD sensors

with 256×2 linear array for time delay integration demonstration,’’ inProc.
IEEE SENSORS, New Delhi, India, Oct. 2018, pp. 1386–1389.

[2] X. Kong, C. Mao, X. Hu, and F. Yan, ‘‘Time-delay-integration imaging
implemented with single-photon-avalanche-diode linear array,’’ IEEE Sen-
sors J., vol. 21, no. 5, pp. 6012–6023, Mar. 2021.

[3] P.-Y. Huang, W.-Y. Lo, Y.-K. Huang, S.-Y. Lai, J. Ling, D.-C. Chang, and
M.-Y. Yeh, ‘‘Dynamic image acquisition and verification for a 32-stages
time delay and integration CMOS image sensor,’’ in Sensors, Systems, and
Next-Generation Satellites XXII, vol. 10785, S. P. Neeck, P. Martimort, and
T. Kimura, Eds. Bellingham, WA, USA: SPIE, 2018, pp. 153–159.

[4] M. De Stefano, R. Balachandran, and C. Secchi, ‘‘A passivity-based
approach for simulating satellite dynamics with robots: Discrete-time inte-
gration and time-delay compensation,’’ IEEE Trans. Robot., vol. 36, no. 1,
pp. 189–203, Feb. 2020.

[5] W. Qiu and C. Xu, ‘‘Attitude maneuver planning of agile satellites for
time delay integration imaging,’’ J. Guid., Control, Dyn., vol. 43, no. 1,
pp. 46–59, Jan. 2020.

[6] K. Nie, S. Yao, J. Xu, J. Gao, and Y. Xia, ‘‘A 128-stage analog accumulator
for CMOS TDI image sensor,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 61, no. 7, pp. 1952–1961, Jul. 2014.

[7] K. Nie, J. Xu, and Z. Gao, ‘‘A 128-stage CMOS TDI image sensor with on-
chip digital accumulator,’’ IEEE Sensors J., vol. 16, no. 5, pp. 1319–1324,
Mar. 2016.

[8] S. Tao, X. Zhang, W. Xu, and H. Qu, ‘‘Realize the image motion self-
registration based on TDI in digital domain,’’ IEEE Sensors J., vol. 19,
no. 23, pp. 11666–11674, May 2019.

[9] C. Yin, T. Liao, K.-L. Liu, C.-C. Kao, C.-F. Chiu, and C.-C. Hsieh,
‘‘A 32-stage 15-b digital time-delay integration linear CMOS image sensor
with data prediction switching technique,’’ IEEE Trans. Electron Devices,
vol. 64, no. 3, pp. 1167–1173, Mar. 2017.

[10] H. Karagálle, L. Malgaca, and H. F. Öktem, ‘‘Analysis of active vibration
control in smart structures byANSYS,’’ SmartMater. Struct., vol. 13, no. 4,
pp. 661–667, Aug. 2004.

[11] J. T. Bosiers, A. C. Kleimann, H. C. van Kuijk, L. Le Cam, H. L. Peek, J.
P. Maas, and A. J. P. Theuwissen, ‘‘Frame transfer CCDs for digital still
cameras: Concept, design, and evaluation,’’ IEEE Trans. Electron Devices,
vol. 49, no. 3, pp. 377–386, Mar. 2002.

[12] G. G. Olson, ‘‘Image motion compensation with frame transfer CCDs,’’ in
Machine Vision and Three-Dimensional Imaging Systems for Inspection
and Metrology II, vol. 4567, K. G. Harding and J. W. V. Miller, Eds.
Bellingham, WA, USA: SPIE, 2002, pp. 153–160.

[13] J. Xu, ‘‘Digital domain dynamic path accumulation method to compensate
for image vibration distortion for CMOS-time-delay-integration image
sensor,’’ Opt. Eng., vol. 59, no. 10, Oct. 2020.

[14] B. Zitova and J. Flusser, ‘‘Image registration methods: A survey,’’ Image
Vis. Comput., vol. 21, no. 11, pp. 977–1000, Oct. 2003.

[15] M. Petrou, ‘‘Image registration: An overview,’’ Advances in Imaging and
Electron Physic, vol. 130. Amsterdam, The Netherlands: Elsevier, 2004,
pp. 243–291.

[16] D. G. Lowe, ‘‘Object recognition from local scale-invariant features,’’ in
Proc. 7th IEEE Int. Conf. Comput. Vis., 1999, pp. 1150–1157.

[17] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, ‘‘Speeded-up robust fea-
tures (SURF),’’ Revue Praticien-Medecine Generale, vol. 13, no. 465,
pp. 44–45, 1999.

[18] K. Mikolajczyk and C. Schmid, ‘‘A performance evaluation of local
descriptors,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1615–1630, Oct. 2005.

[19] Y. Fu, Y. Lei, T. Wang, W. J. Curran, T. Liu, and X. Yang, ‘‘Deep learning
in medical image registration: A review,’’ Phys. Med. Biol., vol. 65, no. 20,
Oct. 2020, Art. no. 20TR01.

[20] H. R. Boveiri, R. Khayami, R. Javidan, and A. Mehdizadeh, ‘‘Medical
image registration using deep neural networks: A comprehensive review,’’
Comput. Electr. Eng., vol. 87, Oct. 2020, Art. no. 106767.

[21] X. Tong, K. Luan, U. Stilla, Z. Ye, Y. Xu, S. Gao, H. Xie, Q. Du,
S. Liu, X. Xu, and S. Liu, ‘‘Image registration with Fourier-based image
correlation: A comprehensive review of developments and applications,’’
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 10,
pp. 4062–4081, Oct. 2019.

[22] E. De Castro and C. Morandi, ‘‘Registration of translated and rotated
images using finite Fourier transforms,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vols. PAMI–9, no. 5, pp. 700–703, Sep. 1987.

[23] B. S. Reddy and B. N. Chatterji, ‘‘An FFT-based technique for translation,
rotation, and scale-invariant image registration,’’ IEEE Trans. Image Pro-
cess., vol. 5, no. 8, pp. 1266–1271, Aug. 1996.

[24] H. S. Stone, B. Tao, andM.McGuire, ‘‘Analysis of image registration noise
due to rotationally dependent aliasing,’’ J. Vis. Commun. Image Represent.,
vol. 14, no. 2, pp. 114–135, Jun. 2003.

[25] Y. Keller, A. Averbuch, and M. Israeli, ‘‘Pseudopolar-based estimation of
large translations, rotations, and scalings in images,’’ IEEE Trans. Image
Process., vol. 14, no. 1, pp. 12–22, Jan. 2005.

[26] S. A. Abbas, Q. Sun, and H. Foroosh, ‘‘An exact and fast computation of
discrete Fourier transform for polar and spherical grid,’’ IEEETrans. Signal
Process., vol. 65, no. 8, pp. 2033–2048, Apr. 2017.

[27] Y. Dong, W. Jiao, T. Long, G. He, and C. Gong, ‘‘An extension of phase
correlation-based image registration to estimate similarity transform using
multiple polar Fourier transform,’’ Remote Sens., vol. 10, no. 11, p. 1719,
Oct. 2018.

[28] T. Fujisawa and M. Ikehara, ‘‘High-accuracy image rotation and scale
estimation using radon transform and sub-pixel shift estimation,’’ IEEE
Access, vol. 7, pp. 22719–22728, 2019.

[29] P. D. Burns and D. Williams, ‘‘Refined slanted-edge measurement for
practical camera and scanner testing,’’ in Proc. Soc. Imag. Sci. Technol.,
Image Process., Image Qual., Image Capture, Syst. Conf., 2002, pp. 1–8.

QINPING FENG received the B.S. degree from
the Changchun University of Science and Tech-
nology, in 2016. He is currently pursuing the
joint Ph.D. degree with the Changchun Insti-
tute of Optics, Fine Mechanics and Physics,
Chinese Academy of Sciences and the University
of Chinese Academy of Sciences. His research
interests include digital image processing, remote
sensing, and machine learning.

SHUPING TAO received the B.S. degree in com-
munication engineering from Sichuan University,
in 2008, and the Ph.D. degree in optics engineer-
ing from the University of Chinese Academy of
Sciences, in 2013. Since 2013, she has been with
the Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences,
Changchun, China, where she is currently an
Associate Research Fellow. Her research interests
include digital circuit design and image signal
processing.

CHUNYU LIU received the B.S. degree from Jilin
University, in 2005, and the Ph.D. degree from
the Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences,
in 2011. She is currently a Ph.D. Supervisor
and a Researcher with the Changchun Institute
of Optics, Fine Mechanics and Physics, Chinese
Academy of Sciences, mainly engaged in the
research of optical system design and overall
design of optoelectronic systems.

HONGSONG QU received the Ph.D. degree from
the Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences,
in 2008. He is currently a Professor with the
Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences.
His research interests include space photoelectric
imaging and its application.

64178 VOLUME 9, 2021


